説明

Fターム[4H001CF02]の内容

発光性組成物 (40,484) | 無機螢光体のその他の観点 (1,095) | 製造方法、製造装置 (1,095) | 焼成工程を含むもの (735)

Fターム[4H001CF02]に分類される特許

221 - 240 / 735


【課題】種々の蛍光体粉末に適用可能な低軟化特性を有し、焼成により蛍光体粉末と反応しにくく、しかも耐候性にも優れ、長期間に亘って使用しても劣化が少ない蛍光体複合材料に用いられるSnO−P系ガラスを提供する。
【解決手段】蛍光体複合材料に用いられるSnO−P系ガラスであって、SnO 72モル%以上かつB+ZnO 5モル%以下の組成を含有することを特徴とするSnO−P系ガラス。 (もっと読む)


本発明は、無機核ならびに無機核を300nm以上の厚さで均一に覆うユーロピウムと酸化イットリウムまたはガドリニウム殻とを含む組成物、ならびに該組成物を含有するリン光体に関する。組成物は、8から11のpHを有する、無機核を含む懸濁液を形成すること;反応媒体のpHを一定値に維持しながら、ユーロピウム塩とイットリウムまたはガドリニウム塩とを含む溶液を懸濁液に加えること;生じた固体を分離すること、および固体を最大1000℃の温度で焼成することにより、生成される。 (もっと読む)


【課題】本発明は、緑色発光ガラス及びその製造方法に関する。優れる光透過性及び高均一性を有し、大きいバルクに形成し易く且つ安定性が高いとともに、部品のカプセル化に用いられる場合、プロセスが極めて簡単である緑色発光ガラスを提供し、製造プロセスが簡単であって且つコストが低い緑色発光ガラスの製造方法を提供する。
【解決手段】本発明の緑色発光ガラス及びその製造方法が提供される。緑色発光ガラスは、アルカリ金属酸化物が25モル部〜40モル部、Yが0.01モル部〜15モル部、SiOが40モル部〜70モル部、及びTbが0.01モル部〜15モル部の組成を有している。緑色発光ガラスの製造方法は、原料であるアルカリ金属塩、Y、SiO及びTbを混合した後、1200℃〜1500℃にて1時間〜5時間溶融し、室温まで冷却して還元雰囲気中に置き、600℃〜1100℃にて1時間〜20時間アニールする方法である。 (もっと読む)


【課題】これからのLED照明のさらなる実用化を図る、より高効率の橙色蛍光体で、波長400〜500nmの近紫外線から可視領域の光で励起され、高輝度に発光する新しい橙色蛍光体およびその製造方法を提供する。
【解決手段】近紫外線から可視領域の光で励起される橙色蛍光体であって、EuSiSと同じ単斜晶系の結晶構造を有し、Eu濃度をxとする場合の一般式(CaBa)1−xEuSiSで表されることを特徴とする橙色蛍光体。 (もっと読む)


【課題】真空紫外線や紫外線励起下において、従来のものと比べほぼ同等の明るさを有しながら、残光時間が画期的に短く、しかも材料コスト削減の実現が可能な、緑色発光を呈するTb付活のセリウム・マグネシウム・アルミン酸塩蛍光体、該蛍光体の製造方法、及びこの蛍光体を用いた冷陰極蛍光ランプを提供する。
【解決手段】少なくともセリウム(Ce)、テルビウム(Tb)、マグネシウム(Mg)、アルミニウム(Al)及び酸素(O)からなる蛍光体であって、1/10残光時間が6.4ms以下であることを特徴とするアルミン酸塩蛍光体、あるいは、一般式I:(Ce1-xTbx23・yMgO・nAl23(ただし、式中、x、y及びnはそれぞれ、0.05≦x<0.32、0.6≦y≦3.0、7≦n、又は0.32≦x≦0.8、0.6≦y≦1.8、7≦nの条件を満たす数である)で表されるアルミン酸塩蛍光体。 (もっと読む)


【課題】高い発光強度が得られるカルコパイライト系蛍光体を提供する。また該蛍光体の製造方法、及び該蛍光体を用いた発光装置を提供する。
【解決手段】マンガンとケイ素を含み、組成式Cu(Al1-xGax)(S1-ySey2:Mn,Si(ただし、0≦x≦0.4,0≦y≦0.4)で表される蛍光体の出発原料に金属アルミニウムを含有させる。また、Cu2S、Al23、MnS、Si、S及び金属アルミニウムを所定の比率で混合して得られた混合物を、Ar雰囲気中で焼成して、蛍光体を得る。 (もっと読む)


本発明の組成物は、鉱物コアと、この鉱物コアを均質に覆うシェルからなる粒子を含有し、前記シェルが、セリウムおよび/またはテルビウムリン酸塩または場合によりランタンと組み合わせて構成されている。この組成物は、最大カリウム含有量が7000ppmでカリウムを含有することを特徴とする。本発明の発光体は、前記組成物を少なくとも1000℃で焼成することによって得られる。 (もっと読む)


【課題】高蛍光輝度の希土類添加BaSiS蛍光体を安全かつ効率的に製造する希土類元素添加バリウムチオシリケート蛍光体の製造方法の提供。
【解決方法】アルカリ土類金属、珪素、硫黄、及び蛍光を付与する希土類元素からなる希土類元素添加バリウムチオシリケート蛍光体の製造方法であって、1)希土類元素が均一に分散したBaSiO、又は、2)希土類元素が均一に分散したBaSiO、希土類元素が均一に分散したBaCO、Euが均一に分散したBa(NO及びSiOからなる混合物を合成する第1の工程と、前記第1の工程で得られた希土類元素が均一に分散したBaSiO、又は前記混合物を、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化する第2の工程とからなることを特徴とする希土類元素添加バリウムチオシリケート蛍光体の製造方法。 (もっと読む)


【課題】低コストで合成が可能でありながら、汎用性に優れ、高い応力発光強度を示す新規な発光体(応力発光体)を提供する。
【解決手段】本発明に係る発光体は、単斜晶のLiSrPO:Eu2+からなるか、単斜晶のLiSrPO:Eu2+を含有することを特徴としている。また、本発明に係る別の発光体は、斜方晶のLiBaPOからなる母体構造に形成された空間に、発光中心としてユウロピウム(Eu)のイオンが挿入されたLiBaPO:Eu2+であって、当該発光中心の含有量が2.0〜3.5モル%であるLiBaPO:Eu2+からなる。これらの発光体は、低コストで合成が可能でありながら、高い応力発光強度を示す新規な発光体(応力発光体)である。 (もっと読む)


【課題】製造する際に大きな熱エネルギーを必要とすることが無く、環境への負荷が小さい発光材料を用いた発光素子を提供する。
【解決手段】発光素子は、植物由来の材料を原料とし、ケイ素の含有率が40重量%以上であり、且つ、酸素の含有率が40重量%以上である酸化ケイ素を主成分とした発光材料、発光材料の表面に吸着し、あるいは又、発光材料の表面を修飾した蛍光物質、並びに、発光材料及び蛍光物質から成る蛍光材料複合体40を励起するエネルギー源20から成る。 (もっと読む)


【課題】非晶質赤色蛍光体の新規な製造方法を提案する。
【解決手段】溶液法により得られた蛍光体前駆体を800〜930℃で焼成することを特徴とする一般式M1EuSiO2+x+1.5y(式中、M1は、Ca、Sr及びBaから選ばれる1以上の元素、0.6≦x+1.5y≦0.9)で表される非晶質赤色蛍光体の製造方法および一般式M1EuSiO2+x+1.5y(式中、M1は、Ca、Sr及びBaから選ばれる1以上の元素、0.6≦x+1.5y≦0.9)で表される非晶質赤色蛍光体。 (もっと読む)


【課題】放光性に優れた蛍光塗料を調製するためのアルミナ、アルミン酸塩発光体及びそれらの製造方法を提供する。
【解決手段】0.3μm〜2μmの体積メディアン径d50を有する球形粒子からなるα-アルミナは反射特性に優れており、平均粒径0.25μm〜1.5μmの粒子で構成された約10μmの平均粒径を有する凝集体からなるアルミン酸塩発光体は優れた放光性を有している。粒子状α-アルミナは、γ-アルミナ及びα-アルミナのシードから、焼成、粉砕及び篩分けを組合せた工程を行うことにより低コストで製造することができる。アルミン酸塩発光体は、(1) アンモニウムミョウバン及び希土類金属から、焼成、粉砕及び篩分けを組合せた工程を行うか、(2) γ-アルミナ又はアルミナ・スピネルに希土類金属を含浸した後、脱硝、焼成、粉砕及び篩分けを組合せた工程を行うことにより、低コストで製造することができる。
(もっと読む)


【課題】本発明は、ゲルマニウム酸塩発光材料及びその製造方法に関する。本発明におけるゲルマニウム酸塩発光材料は、発光性能がよく、青紫色光区域発光部品励起に適用され、且つ赤色光、緑色光及び青色光の発光を実現できる。本発明におけるゲルマニウム酸塩発光材料を製造する方法は、製造プロセスが簡単であって且つ製品の品質が安定である。
【解決手段】本発明のゲルマニウム酸塩発光材料は、一般式 (Y1−xLn)GeO(ここで、xの範囲は0<x≦0.3であり、LnはCe、Tm、Ho、Sm、Tb、Eu及びDyのうちから選ばれる一種である。)で表される化合物、又は前記一般式 (Y1−xLn)GeOにおけるYは、Gd、Lu、Sc及びLaから選ばれる少なくとも一種によって、一部又は全てが置換された化合物である。その製造方法は、原料を均一に粉末にした後、1300℃〜1500℃にて6時間〜24時間焼結し、焼結された産物を室温まで冷却し、ゲルマニウム酸塩発光材料を得る。 (もっと読む)


【課題】本発明は、高安定性、高色純度及び高発光効率を有する3価ツリウムにより活性化された酸化物発光材料を提供し、さらに、製造条件が簡単で、製造方法が多様化する3価ツリウムにより活性化された酸化物発光材料製造方法を提供する。
【解決手段】本発明にかかる3価ツリウムにより活性化された酸化物発光材料は、一般式(RE1-xTm)(ここで、xの範囲は0<x≦0.05であり、REはY、Gd、La、Lu及びScから選ばれる一種又は二種である。)で表される化合物である。該化合物は、Tm3+の金属酸化物、塩酸塩、硝酸塩、炭酸塩又はシュウ酸塩と、Y3+、Gd3+、La3+、Lu3+又はSc3+の金属酸化物、塩酸塩、硝酸塩、炭酸塩、及びシュウ酸塩から選ばれる一種又は二種とを原料として用いて、ゾルゲル法によって製造される。 (もっと読む)


【課題】青色発光ダイオードから発する光を白色光に変換する蛍光体膜および蛍光体膜の作製方法に関するものである。
【解決手段】本発明の蛍光体膜は、青色発光ダイオードから発する455nmの青色光を白色に変換するものである。また、前記蛍光体膜は、前記発光ダイオードから発する光を耐久性のある白色光に変換するために、金属アルコキシドおよび/または金属アルコキシドのオリゴマーをバインダーとし、金属酸化物微粒子、および前記青色光の一部を吸収して黄色光を発する黄色蛍光体からなる組成物を分散した分散液とし、塗布・焼成することによって得られる。前記蛍光体膜は、黄色以外の他の色の成分を含まないようにしたため、発光効率を良くすることができるだけでなく、耐湿性、耐熱性、に優れた照明器具を作製することができる。 (もっと読む)


【課題】蛍光体の耐久性の向上を実現する。
【解決手段】
25℃において、電子スピン共鳴測定で検出されるg=2.00±0.02のシグナルのスピン濃度が、蛍光体1gあたり3×10−9mol以下であり、かつ、下記式[I]で表
される化学組成を有する結晶相を含有する蛍光体。
Ba [I]
(但し、上記式[I]中、 MはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、
Ho、Er、Tm及びYbからなる群より選ばれる少なくとも1種類の付活元素を示し、
はSr、Ca、Mg及びZnから選ばれる少なくとも1種類の二価の金属元素を示
し、 Lは周期律表第4族又は14族に属する金属元素から選ばれる金属元素を示し、 x、y、z、u、v、及びwは、それぞれ以下の範囲の数値である。
0.00001≦x≦3
0≦y≦2.99999
2.6≦x+y+z≦3
0<u≦11
6<v≦25
0<w≦17) (もっと読む)


【課題】焼成コストが低く、発光強度の高い微粉末状態の複合窒化物蛍光体を製造する方法を提供する。
【解決手段】付活元素Mの単体及び/又は化合物、2価の金属Mの窒化物、3価の金属Mの窒化物、並びに、4価の金属Mの窒化物を含む原料混合粉末を焼成して、下記一般式(I)で示される微量酸素を含有する複合窒化物蛍光体を製造する方法。原料混合粉末を嵩密度0.05g/cm以上1g/cm以下の状態とし、焼成温度を1200℃以上1750℃以下とし、被焼成原料中の窒素と酸素の合計モル数に対する酸素のモル数が1%以上20%以下となるように被焼成原料中に酸素を存在させて焼成する。
(I)
(0.00001≦a≦0.15、0.5≦b≦2、0.5≦c≦2、0.5≦d≦2、1.5≦e≦6、0<f≦1.2、0<f/(e+f)≦0.2) (もっと読む)


【課題】発光強度が大きいシリケート系黄色−緑色蛍光体を提供する。
【解決手段】式A2SiO4:Eu2+Dで示され、式中、Aは、Sr、Ca、Ba、Mg、Zn及びCdからなる群より選択される二価金属の少なくとも一つであり、Dは、F、Cl、Br、I、S及びNからなる群より選択されるドーパントである、新規な蛍光体システム。一つの実施態様では、新規な蛍光体は、式(Sr1-x-yBaxy2SiO4:Eu2+Fで示され、式中、Mは、0<y<0.5の範囲の量の、Ca、Mg、Zn又はCdの一つである。蛍光体は、青色LEDからの可視光線を吸収するように構成されており、蛍光体からのルミネセンス光及び青色LEDからの光を組み合わせて白色光を形成することができる。ドーパントイオンを含有しない、従来から知られるYAG化合物又はシリケート系蛍光体よりも大きい強度で光を発することができる。 (もっと読む)


本発明は、式(I) Ma2-y(Ca,Sr,Ba)1-x-ySi5-zMezN8:EuxCey (I)、式中Ma=Li、Naおよび/またはK、Me=Hf4+および/またはZr4+、x=0.0015〜0.20およびy=0〜0.15、z<4である、で表される化合物、これらの化合物の製造方法ならびに、蛍光体およびLEDからの青色または近紫外線発光を変換するための変換蛍光物質としての使用に関する。
(もっと読む)


【課題】青色材料及び材料の製造方法の提供。
【解決手段】一般式LaTi(O1−yで表され、可視光領域(380−750nm)の拡散反射スペクトルにおいて、波長430−480nmの青色光領域にて最高拡散反射率を有し、可視光の最長波長750nmにて、最高拡散反射率の2/3以下の拡散反射率を有する青色材料。(但し、Ti/La>1、y≧0.99、z≦2.6)該青色材料は、ランタン、チタン酸化物(La―Ti―O)前駆体粉末101をアンモニアガス105で窒化、アニール処理した後、水素ガス109で酸素欠損を発生させて得ることができる。水素ガスによる酸素欠損発生に代えて、ストロンチウム(Sr)を添加してアンモニアガスによる窒化、アニール処理を行うことによっても、従来よりも青色の濃い材料が得られる。提供される青色材料は、400℃と高温でも安定であり、顔料に適した青色材料となる。 (もっと読む)


221 - 240 / 735