説明

Fターム[4K029DC35]の内容

物理蒸着 (93,067) | スパッタリング装置 (13,207) | スパッタ方式 (5,546) | 放電プラズマによるもの (2,861) | 電源 (2,524) | 高周波 (853)

Fターム[4K029DC35]に分類される特許

1 - 20 / 853



【課題】ICのシールド用メッキ膜を製造する設備及びICの金属シールド膜層を提供する。
【解決手段】ベース31は、チャンバー311を有している。ワーク支持具32は、チャンバー311に内設されており、かつ複数の回転軸と回転自在に接続され、各回転軸は、少なくとも一つのジグを有し、そのジグでは、少なくとも一つのICを取付ける。各中周波マグネトロンターゲット33及び各多重アークイオンターゲット34は、それぞれチャンバー311に内設され、中周波マグネトロンターゲット33及び多重アークイオンターゲット34が、金属材料をIC上にスパッターリングを行うように用いられることによって、ICの表面に少なくとも一つの金属シールド膜層が形成される。 (もっと読む)


【課題】優れた耐摩傷性を備えたトップコート層が、アンダーコート層を介して、樹脂基材の表面に、十分に高い密着性をもって積層形成されてなる樹脂製品を提供する。
【解決手段】ポリカーボネート製の樹脂基材12の表面に積層されたアンダーコート層14上に、無機珪素化合物のスパッタ層からなる基層部18と、無機珪素化合物のプラズマCVD層からなる表層部20との複層構造を有するトップコート層16を更に積層形成して、構成した。 (もっと読む)


【課題】単結晶基板上において、圧電薄膜を良好な単結晶の状態で確実にエピタキシャル成長させて成膜し、圧電特性を確実に向上させる圧電素子と、その製造方法を提供する。
【解決手段】圧電素子10は、以下の工程によって製造される。単結晶基板1を、振動する振動部1Aと、振動部1Aと連結されて振動が生じない非振動部1Bとに分けたときに、単結晶基板1上で、非振動部1B上を含む領域であって、振動部1A上の圧電薄膜3の成膜領域を除く領域に、圧電薄膜3の単結晶での成長を阻害する阻害膜2を成膜する。次に、上記成膜領域となる振動部1A上の少なくとも一部に、圧電薄膜3を単結晶でエピタキシャル成長させて成膜するとともに、阻害膜2上に、圧電薄膜3を非晶質または多結晶で成膜する。その後、阻害膜2上に成膜された圧電薄膜3を除去する。 (もっと読む)


【課題】ターゲットであるCu2Oから、単一結晶相からなる有用なCu2O被膜(堆積膜)又はCuO被膜を選択的に形成できると共に、そのCu2O被膜の形成に際して、そのCu2O被膜の膜質制御を簡単に行うことができる被膜形成方法を提供する。
【解決手段】ターゲットとして、Cu2Oを用い、Arをプラズマ化するための投入電力とArを含む全ガス圧力とを、前記Cu2Oからのスパッタ粒子をO2流量比が高まるに伴ってCu2O,Cu4O3,CuOに順次、変化し得るように設定し、その上で、前記投入電力及び前記全圧力の下で、O2流量比を調整する。これにより、的確に、単一結晶相からなる有用なCu2O被膜又はCuO被膜のいずれかを選択的に形成できるようにする。また、Cu2O被膜の形成に際しては、O2流量比調整により広い範囲で抵抗率(キャリア密度)を調整して、Cu2O被膜の膜質特性の変更を簡単に行えるようにする。 (もっと読む)


【課題】裏面に反射膜を積層したサファイア基板の内部にストリートに沿って改質層を形成することができ、かつ反射膜をストリートに沿って切断することができるサファイア基板の加工方法を提供する。
【解決手段】表面に複数の光デバイスが格子状のストリート22で区画形成されたサファイア基板20をストリートに沿って分割するサファイア基板の加工方法であって、基板に対して透過性を有する波長のレーザー光を裏面側から基板の内部に集光点を位置付けてストリートに沿って照射し、ストリートに沿って改質層を形成する工程と、基板の裏面に反射膜210を積層する工程と、裏面に積層された反射膜側から反射膜に対して吸収性を有する波長のレーザー光線をストリートに沿って照射し、反射膜をストリートに沿って切断する工程と、基板に外力を付与して基板を変質層が形成されたストリートに沿って破断し、個々の光デバイスに分割する工程とを含む。 (もっと読む)


【課題】 スパッタ法により良好にNa添加されたCu−In−Ga−Seからなる膜を成膜可能なスパッタリングターゲット及びその製造方法を提供すること。
【解決手段】 Cu,In,GaおよびSeを含有し、さらに、NaF化合物、NaS化合物、又はNaSe化合物の少なくとも1種の状態でNaが、Na/(Cu+In+Ga+Se+Na)×100:0.05〜5原子%の割合で含有され、酸素濃度が、200〜2000重量ppmであり、残部が不可避不純物からなる成分組成を有する。 (もっと読む)


【課題】より高い特性を有する膜体を形成する。
【解決手段】被膜部材10の製造方法は、スパッタリングターゲット部材を用い、スパッタリング処理によって被処理部材11に膜体12を形成する形成工程、を含むものである。この形成工程では、1又は複数のスパッタリングターゲット部材を用い、Mg、Al、O及びNの元素を含む膜体12を被処理部材11の表面に形成する処理を行う。ここで、スパッタリングターゲット部材は、Mg、Al、O及びNの全てが含まれていれば、どのような形態でも構わず、スパッタリングターゲット部材を1種用いるものとしてもよいし、スパッタリングターゲット部材を複数種用いるものとしてもよい。被処理部材11に形成された膜体12には、Mg、Al、O及びNが含まれている。 (もっと読む)


【課題】スパッタリング法を用いた酸化物半導体膜の成膜時の異常放電の発生が抑制され、連続して安定な成膜が可能なスパッタリングターゲットを提供すること。希土類酸化物C型の結晶構造を持つ、表面にホワイトスポット(スパッタリングターゲット表面上に生じる凹凸などの外観不良)がないスパッタリングターゲット用の酸化物を提供すること。
【解決手段】ビックスバイト構造を有し、酸化インジウム、酸化ガリウム、酸化亜鉛を含有する酸化物焼結体であって、インジウム(In) 、ガリウム(Ga)および亜鉛(Zn)の組成量が原子比で以下の式を満たす組成範囲にある焼結体を提供する。
In/(In+Ga+Zn)<0.75 (もっと読む)


【課題】より電気伝導度の安定した酸化物半導体膜を提供することを課題の一とする。ま
た、当該酸化物半導体膜を用いることにより、半導体装置に安定した電気的特性を付与し
、信頼性の高い半導体装置を提供することを課題の一とする。
【解決手段】結晶性を有する領域を含み、当該結晶性を有する領域は、a−b面が膜表面
に概略平行であり、c軸が膜表面に概略垂直である結晶よりなる酸化物半導体膜は、電気
伝導度が安定しており、可視光や紫外光などの照射に対してもより電気的に安定な構造を
有する。このような酸化物半導体膜をトランジスタに用いることによって、安定した電気
的特性を有する、信頼性の高い半導体装置を提供することができる。 (もっと読む)


【課題】成膜装置において、成膜中に基板へのイオン照射を十分に行うと共に、良好なイオン化率を得る。
【解決手段】本発明の成膜装置1は、内側に配備された内極磁石9と、この内極磁石9の外側に配備され且つ内極磁石9より磁力線密度が大きな外極磁石10とで形成された非平衡磁場形成手段6と、非平衡磁場形成手段6の前面に配備されたターゲット5とからなるスパッタリング蒸発源4を2基有し、2基のスパッタリング蒸発源4を1組として10kHz以上の周波数で極性が切り替わる交流電流を流すことにより、両スパッタリング蒸発源4の間に放電を起こして成膜を行う交流電源8が設けられている。 (もっと読む)


【課題】 本発明は、ドープされた金属酸化物誘電体材料を有する電子部品及びドープされた金属酸化物誘電体材料を有する電子部品の作製プロセスを提供する。
【解決手段】 ドープされた金属酸化物誘電体材料及びこの材料で作られた電子部品が明らかにされている。金属酸化物はIII族又はV族金属酸化物(たとえば、Al、Y、TaまたはV)で、金属ドーパントはIV族元素(Zr、Si、TiおよびHf)である。金属酸化物は約0.1重量パーセントないし約30重量パーセントのドーパントを含む。本発明のドープされた金属酸化物誘電体は、多くの異なる電子部品及びデバイス中で用いられる。たとえば、ドープされた金属酸化物誘電体は、MOSデバイスのゲート誘電体として用いられる。ドープされた金属酸化物誘電体はまた、フラッシュメモリデバイスのポリ間誘電体材料としても用いられる。 (もっと読む)


【課題】無潤滑または境界潤滑環境下での使用において、DLCなどの従来の非晶質炭素皮膜と同等の低摩擦性を有し、かつ従来の非晶質炭素皮膜よりも優れた耐摩耗性を有する皮膜が形成された摺動部品を提供する。
【解決手段】本発明に係る摺動部品は、無潤滑または境界潤滑環境下で使用される摺動部品であり、前記摺動部品を構成する基材の摺動面に非晶質硬質皮膜が形成された摺動部品であって、前記非晶質硬質皮膜は、硼素、炭素、窒素および酸素を少なくとも含有し、前記硼素、前記炭素、前記窒素および前記酸素の合計を100原子%とした場合に、前記炭素の含有率が12原子%以上であり、前記窒素の含有率が10原子%以上であり、前記硼素の含有率が前記炭素および前記窒素のそれぞれの含有率よりも高く、前記酸素の含有率が5原子%以上12原子%以下であり、前記非晶質硬質皮膜の厚さが0.08μm以上10μm以下であることを特徴とする。 (もっと読む)


【課題】放射線耐性能力をさらに向上することができる半導体装置を提供する。
【解決手段】半導体基板1の上方に形成された第1絶縁膜12と、第1絶縁膜12の上方に形成され、下部電極17と上部電極19に挟まれる強誘電体膜18を有するキャパシタQと、キャパシタの上に形成される第2絶縁膜26と、を有し、第1絶縁膜12と下部電極17の間に、Pb又はBiが添加された結晶を持つ絶縁材料膜から形成される第3絶縁膜16、38と、
を有する。 (もっと読む)


【課題】プラズマを用いたスパッタ法によって、Pb、Zr、Tiを含む誘電体薄膜を成膜する場合でも、圧電特性の高い誘電体薄膜を安定して成膜する。
【解決手段】誘電体薄膜のスパッタによる成膜中に、プラズマの発光分析を行って、上記プラズマの発光スペクトルを取得する。そして、上記発光スペクトルに含まれる、Pb(406nm)のスペクトル強度IPb、Zr(468nm)のスペクトル強度IZr、Ti(453nm)のスペクトル強度ITiをそれぞれ求める。IPb/(IZr+ITi)の値をPとしたとき、0.4<P<0.7を満足するように成膜条件を制御しながら、上記誘電体薄膜を成膜する。 (もっと読む)


【課題】コンパクトで使い勝手が良く、イニシャルコストもランニングコストも安い真空成膜装置を提供する。
【解決手段】成膜チャンバ(2)内に、ワークホルダ(10)と、マグネトロン電極(15)とを設ける。マグネトロン電極(15)には、第1のターゲット材料(16)を設け、これに重ね合わせるように第2のターゲット材料(17)を設ける。第2のターゲット材料(17、17)は第1のターゲット材料(16)をカバーする位置と、開放する位置の2位置を採ることができるようにする。ワークホルダ(10)と、第1、2のターゲット材料(16、17)との間には、直流電圧と高周波電圧とが選択可能に印加されるようにする。 (もっと読む)


【課題】移動度が高く、S値の低い電界効果型トランジスタの提供を目的とする。また、低温又は短時間の熱履歴でも高い特性の得られる電界効果型トランジスタの製造方法の提供を目的とする。
【解決手段】In元素及びZn元素と、Zr、Hf、Ge、Si、Ti、Mn、W、Mo、V、Cu、Ni、Co、Fe、Cr、Nb、Al、B、Sc、Y及びランタノイド類からなる群より選択される1以上の元素Xを、下記(1)〜(3)の原子比で含む複合酸化物からなる半導体層を有する電界効果型トランジスタ。
In/(In+Zn)=0.2〜0.8 (1)
In/(In+X)=0.29〜0.99 (2)
Zn/(X+Zn)=0.29〜0.99 (3) (もっと読む)


【課題】亀裂がなく、かつ、抵抗が低いタングステン遮光膜を得ることが可能なタングステン遮光膜の製造方法およびタングステン遮光膜を提供する。
【解決手段】本発明のタングステン遮光膜の製造方法は、基板11の一面11aに窒化タングステン膜を成膜する成膜工程と、窒化タングステン膜が形成された基板11を熱処理する熱処理工程と、を少なくとも備えたことを特徴とする。 (もっと読む)


【課題】絶縁膜の成膜時における温度上昇を抑制でき、電極の金属拡散を抑制できる圧電振動片の製造方法と、この方法で製造された圧電振動片を備えた圧電振動子、発振器、電子機器および電波時計を提供する。
【解決手段】パッシベーション膜成膜工程は、ターゲット77と、回転可能な回転ドラム71と、を備えたスパッタリング装置70を用いて行い、パッシベーション膜成膜工程は、回転ドラム71の外周面71aにウエハWを取り付けるウエハ取付工程と、ウエハWがターゲット77に対向する位置を通過するように回転ドラム71を回転させてパッシベーション膜を成膜する回転成膜工程と、を備え、回転成膜工程は、ウエハWがターゲット77に対向する位置を複数回通過するように回転ドラム71を回転させることによりパッシベーション膜を成膜することを特徴としている。 (もっと読む)


【課題】複数の圧電体薄膜を積層して形成される圧電体素子における膜の密着性を高めて剥離を防止し、耐久性、信頼性を高めるとともに変位効率(駆動効率)を向上させる圧電体素子を提供する。
【解決手段】基板30上に、第1の電極32が形成され、その上に第1の圧電体膜34が形成される。さらに第1の圧電体膜34の上に拡散ブロック層として機能する金属酸化物膜36が積層され、その上に金属膜38が積層して形成される。金属膜38の上に第2の圧電体膜76が形成され、その上に第2の電極46が積層して形成される。第1の圧電体膜34の分極方向と第2の圧電体膜44の分極方向は互いに異なる。第1の電極32と第2の電極46を接地電位とし、金属膜38を含む中間電極40をドライブ電極とすることができる。各層の圧電体膜を互いに異なる組成で構成することができる。中間層40の厚みと応力値の積は100N/m未満であることが好ましい。 (もっと読む)


1 - 20 / 853