説明

Fターム[4M104AA03]の内容

半導体の電極 (138,591) | 基板材料 (12,576) | 化合物半導体(半絶縁性基板を含む) (3,646)

Fターム[4M104AA03]の下位に属するFターム

Fターム[4M104AA03]に分類される特許

181 - 200 / 1,500


【課題】SiC製のJBSダイオードにおいて、サージ耐量を低下させることなく、通電劣化現象を抑制することのできる技術を提供する。
【解決手段】アクティブ領域のnドリフト層2内の表面側に、アノード電極4とオーミック接触する複数の第1p領域6と、第1p領域6とは分離され、アノード電極4とショットキー接触する複数の第2領域7とを形成し、アクティブ領域を(11−20)面に射影したときに、複数の第1p領域6を<1−100>方向に正孔の拡散長の2倍よりも広い間隔を置いて配置し、<1−100>方向に配置された第1p領域6と第1p領域6との間に第2p領域7を配置する。 (もっと読む)


【課題】透明酸化物膜を用いた半導体デバイスや回路を提供する。
【解決手段】電子キャリア濃度が1015/cm以上、1018/cm未満である、In―Zn―Ga酸化物、In―Zn―Ga―Mg酸化物、In―Zn酸化物、In―Sn酸化物、Sn−In−Zn酸化物、In酸化物、Zn―Ga酸化物、及びIn―Ga酸化物のうちのいずれかである非晶質酸化物を、N型半導体として用いたN型TFTを含む回路を構成要素としており、前記N型TFTは、ゲート電圧無印加時のソース−ドレイン端子間の電流が10マイクロアンペア未満であり、電界効果移動度が1cm/(V・秒)超であることを特徴とする集積回路。 (もっと読む)


【課題】逆方向リーク電流および順方向電圧を低減することができる半導体装置を提供すること。
【解決手段】表面12および裏面11を有し、表面12側に側壁22および底壁20を有する台形トレンチ17が形成されたSiCエピタキシャル層6の表面12に接するように、アノード電極27をショットキー接合させる。また、各台形トレンチ17の底壁20のエッジ部24を、曲率半径Rが0.01L<R<10L・・・(1)(式(1)において、Lはトレンチ17の幅方向に沿って対向するエッジ部24間の直線距離を示している。)を満たすように、台形トレンチ17の外方へ向かって湾曲する形状に形成する。 (もっと読む)


【課題】順方向電圧降下の増大が抑制され、且つ順方向サージ耐量の高い、整流機能を有する半導体装置を提供する。
【解決手段】互いに対向する第1の主面110から第2の主面120に向かって延伸し、且つ底部が第2の主面120に達しない複数の溝部15が形成された第1導電型の半導体積層体10と、それぞれの外縁領域の一部が溝部15の側面に露出するように半導体積層体10の第1の主面110に互いに離間して埋め込まれた第2導電型の複数のアノード領域20と、アノード領域20の形成されていない領域において半導体積層体10とショットキー接合を形成し、且つアノード領域20とオーミック接合を形成して、半導体積層体10の第1の主面110に配置されたアノード電極30と、半導体積層体10の第2の主面120に配置されたカソード電極40とを備える。 (もっと読む)


【課題】コンタクト抵抗を低減しつつ、イオン注入したp+層の消失を低減できる炭化珪素半導体装置の製造方法の提供を目的とする。
【解決手段】本発明にかかる炭化珪素半導体装置の製造方法は、(a)炭化珪素半導体基体表面にマスクとしての酸化膜マスク層21、酸化膜マスク層22を形成し、室温でイオン注入する工程と、(b)イオン注入を行った炭化珪素半導体基体表面を活性化アニールする工程と、(c)活性化アニール後の炭化珪素半導体基体表面を、ドライエッチングする工程と、(d)ドライエッチング後の炭化珪素半導体基体表面を犠牲酸化し、犠牲酸化膜5を形成する工程と、(e)犠牲酸化膜5を濃度10%以下の希フッ酸で5分以内のエッチングにより除去する工程と、(f)炭化珪素半導体基体裏面にオーミック電極6を、炭化珪素半導体基体表面の所定領域にショットキー電極7をそれぞれ形成する工程とを備える。 (もっと読む)


【課題】リーク電流をより小さくし、かつ、電気的特性を改善したショットキーバリア型のZnO系半導体素子を提供する。
【解決手段】基板1上にn型ZnO系半導体層2、酸化アルミニウム膜3が順に形成されている。また、酸化アルミニウム膜3上には、金属電極4、パッド電極5が形成される。金属電極4は、Pd層4a上にAu層4bが積層された多層膜構造を有している。金属電極4は、半透明電極として機能する。金属電極4上にはパッド電極5が形成されている。基板1の裏面には金属電極4に対向するように、裏面電極6が形成される。n型ZnO系半導体層2とPd層4aでショットキーバリア構造を構成している。 (もっと読む)


【課題】信頼性の高い薄膜トランジスタを提供する。
【解決手段】薄膜トランジスタ20のゲート電極15、ソース、ドレイン電極33、34のうち、いずれか一つ以上の電極はバリア膜25を有し、バリア膜25が成膜対象物21又は半導体層30に密着している。NiとMoを100原子%としたときに、バリア膜25は、Moを7原子%以上70原子%以下含有し、ガラスからなる成膜対象物21や半導体層30に対する密着性が高い。また、バリア膜25表面にCuを主成分とする金属低抵抗層26が形成された場合に、Cuが半導体層30に拡散しない。 (もっと読む)


【課題】貴金属粒子の残留を抑えながら、基板上に貴金属含有シリサイド膜を生産性良く形成することが可能な半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、基板1上、又は基板1上の導電膜50上に、貴金属を含む金属膜を形成する工程(a)と、基板1に熱処理を加えて金属膜とシリコンとを反応させ、基板1上又は導電膜50上に貴金属を含む金属シリサイド膜11a、11bを形成する工程(b)と、工程(b)の後、金属膜のうち未反応の金属を第1の薬液を用いて溶解するとともに、金属シリサイド膜11a、11bの上面上に酸化膜12を形成する工程(c)と、工程(c)の後、第1の薬液と異なる第2の薬液を用いて基板1上及び導電膜上に残留する貴金属の表面に形成された第2の酸化膜14を除去する工程(d)と、工程(d)の後、第1及び第2の薬液と異なる第3の薬液を用いて残留する貴金属を溶解する工程(e)とを備えている。 (もっと読む)


【課題】配線にCuを用いる配線の電気抵抗値とTFTの電気特性値を均一にするアクティブマトリクス型表示装置及びその製造方法を提供する。
【解決手段】基板およびTFTを有する表示装置の製造方法であって、TFTは、電極および電極近接層を有し、電極は、銅および銅以外の添加元素を含み、以下の工程を含む表示装置の製造方法(A)基板の上に電極および電極近接層が形成される工程、(B)電極または電極近接層がオゾン水で洗浄される工程、(C)前記(B)の工程後の熱処理により、電極と電極近接層との界面に、酸素を含む酸化物膜が形成される工程。 (もっと読む)


【課題】 炭化珪素半導体装置において、製造されたデバイスの金属/炭化珪素デバイス界面の密着性を向上し剥離を抑制することができる炭化珪素半導体装置の電極形成方法を提供することを課題とする。
【解決手段】 表面にグラファイトが形成されている炭化珪素基板上にカーバイドを形成できる金属を被着する工程と、炭化珪素基板をアニールし、該金属層と該炭化珪素基板との間にカーバイドを形成する工程とを含む炭化珪素基板への電極形成方法。 (もっと読む)


【課題】管理コストを低減し、さらに、製造工程を削減して製造原価のコストダウンを図ることの可能な半導体デバイス及び薄膜トランジスタ、並びに、それらの製造方法の提案を目的とする。
【解決手段】所定の材料からなり、活性層41となる半導体と、所定の材料と同じ組成の材料からなり、ソース電極51、ドレイン電極53及び画素電極55の少なくとも一つとなる導電体とを備えた薄膜トランジスタ2の製造方法であって、非晶質の所定の材料からなる被処理体及び導電体(ソース電極51、ソース配線52、ドレイン電極53、ドレイン配線54及び画素電極55)を一括成膜し、さらに一括形成する工程と、形成された被処理体を結晶化させて活性層41とする工程とを有する方法としてある。 (もっと読む)


【課題】酸化物半導体膜を用いたトランジスタに安定した電気的特性を付与し、信頼性の高い半導体装置を作製する。
【解決手段】酸化物半導体膜を用いた半導体装置であるトランジスタにおいて、酸化物半導体膜から水素を捕縛する膜(水素捕縛膜)、および水素を拡散する膜(水素透過膜)を有し、加熱処理によって酸化物半導体膜から水素透過膜を介して水素捕縛膜へ水素を移動させる。具体的には、酸化物半導体膜を用いたトランジスタのゲート絶縁膜を、水素捕縛膜と水素透過膜との積層構造とする。このとき、水素透過膜を酸化物半導体膜と接する側に、水素捕縛膜をゲート電極と接する側に、それぞれ形成する。その後、加熱処理を行うことで酸化物半導体膜から脱離した水素を、水素透過膜を介して水素捕縛膜へ移動させることができる。 (もっと読む)


【課題】高電力で高性能なデバイスによって生成される熱応力に耐えることができる金属相互接続システムを提供する。
【解決手段】半導体デバイス構造であって、炭化ケイ素およびIII族窒化物からなる群から選択される広バンドギャップの半導体部分と、該半導体部分に対する相互接続構造であって、それぞれ2つの高導電性層と互い違いに、少なくとも2つの拡散バリア層を含む、相互接続構造とを備え、該拡散バリア層は、該高導電性層とは異なる熱膨張係数を有し、該高導電性層よりも低い熱膨張係数を有し、該それぞれの熱膨張係数の差異は、該高導電性層の膨張を抑えるために十分な大きさであるが、層間の接着強度を超える歪みを隣接層間に生じさせる差異よりも小さい、半導体デバイス構造。 (もっと読む)


【課題】金属酸化物中の酸素欠損を低減し、電気的特性の安定した半導体装置を提供することを目的の一とする。
【解決手段】ゲート電極と、ゲート電極上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられた第1の金属酸化物膜と、第1の金属酸化物膜に接して設けられたソース電極及びドレイン電極と、ソース電極及びドレイン電極上に設けられたパッシベーション膜と、を有し、パッシベーション膜は、第1の絶縁膜と、第2の金属酸化物膜と、第2の絶縁膜とが順に積層された半導体装置である。 (もっと読む)


【課題】熱(工程)に耐性のある配線構造を採用し、配線上の析出物の発生を抑制できる半導体素子を実現する。
【解決手段】半導体素子本体に接続する金材を含む配線パターンと、この配線パターンに一端側が接続され金材を含む接続端子と、前記半導体素子本体と前記配線パターンと前記接続端子とを覆う絶縁体と、を具備する半導体素子において、前記配線パターンあるいは接続端子の一方の面に一面が接し他面が前記絶縁体に接する面状のシリサイド体を具備したことを特徴とする半導体素子である。 (もっと読む)


【課題】フレキシブルな基板を用いても、高い精度で薄膜トランジスタを形成することができる薄膜トランジスタの製造装置およびその製造方法、ならびにプログラムを提供する。
【解決手段】本発明は、基板上にゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極が少なくとも設けられた薄膜トランジスタの製造方法である。ソース電極およびドレイン電極を形成する工程において、基板の歪み、または基板の伸縮率に基づいて、露光データを、スケーリング処理を用いて薄膜トランジスタのチャネル長を固定した状態で補正して第1の補正データを作成する。この第1の補正データに基づいて、ソース電極およびドレイン電極の形成領域にレーザ光を照射し、その形成領域を親液性にする。この形成領域に、ソース電極およびドレイン電極となる液滴を、打滴データに基づいて打滴する。 (もっと読む)


【課題】常時オフVJFET集積電源スイッチを含むワイドバンドギャップ半導体デバイスの提供。
【解決手段】電源スイッチは、モノリシックまたはハイブリッドに実装され得、シングルまたはマルチチップのワイドバンドギャップ電源半導体モジュールにビルトインされた制御回路と一体化され得る。該デバイスは、高電力で温度に対する許容性があり、耐放熱性のエレクトロニクスコンポーネントにおいて用いられ得る。該デバイスを作成する方法もまた、記述される。 (もっと読む)


【課題】フレキシブルな基板を用いても、高い精度で薄膜トランジスタを形成することができる薄膜トランジスタの製造装置およびその製造方法を提供する。
【解決手段】本発明は、基板上に薄膜トランジスタを製造する製造装置であり、基板に関する基板情報を取得する取得部と、取得部で得られた基板に関する基板情報に基づいて、基板の伸縮強度が高い方向を特定し、伸縮強度が高い方向と薄膜トランジスタのチャネル領域を挟んでソース電極およびドレイン電極が配置される配置方向とが直交するように薄膜トランジスタを形成する向きを設定する設定部とを有する。 (もっと読む)


【課題】電気特性及び信頼性の高い薄膜トランジスタを有する半導体装置、及び該半導体
装置を量産高く作製する方法を提案することを課題とする。
【解決手段】半導体層としてIn、Ga、及びZnを含む酸化物半導体膜を用い、半導体
層とソース電極層及びドレイン電極層との間にバッファ層が設けられた逆スタガ型(ボト
ムゲート構造)の薄膜トランジスタを含むことを要旨とする。ソース電極層及びドレイン
電極層と半導体層との間に、半導体層よりもキャリア濃度の高いバッファ層を意図的に設
けることによってオーミック性のコンタクトを形成する。 (もっと読む)


【課題】本発明の実施例は非晶質酸化物薄膜トランジスタ及びその製造方法、ディスプレイパネルを開示する。
【解決手段】前記非晶質酸化物薄膜トランジスタは、ゲート電極、ゲート絶縁層、半導体活性層、ソース電極及びドレイン電極を含む。前記半導体活性層はチャネル層とオーミック接触層を含み、前記チャネル層は前記オーミック接触層に比べ酸素含有量が高い。また、前記チャネル層は前記ゲート絶縁層と接し、前記オーミック接触層は二つの独立したオーミック接触領域に分けられ、かつ前記二つの独立したオーミック接触領域はそれぞれ前記ソース電極、ドレイン電極と接する。 (もっと読む)


181 - 200 / 1,500