説明

Fターム[4M104GG10]の内容

半導体の電極 (138,591) | 適用素子 (17,168) | MISFET (8,278) | CMOS (2,910)

Fターム[4M104GG10]に分類される特許

121 - 140 / 2,910


【課題】本発明は、高精細なパターニングが可能なパターン形成体の効率的な製造方法を提供することを主目的とする。
【解決手段】本発明は、基板上に形成され、表面が疎水性を示す疎水性層上にフォトレジストパターンを形成するフォトレジストパターン形成工程と、上記フォトレジストパターンが形成された上記疎水性層の表面にエネルギーを照射して親水化し、親水性領域を形成する親水化工程と、上記フォトレジストパターンを剥離し、上記疎水性層表面に、上記親水性領域と上記親水化工程にて上記フォトレジストパターンで覆われていた疎水性領域とがパターン状に形成された親疎水パターンを形成するフォトレジストパターン剥離工程とを有することを特徴とするパターン形成体の製造方法を提供することにより、上記目的を達成する。 (もっと読む)


【課題】プラズマエッチングチャンバ内でデュアルドープゲート構造をエッチングするための方法を提供する。
【解決手段】エッチングされるポリシリコンフィルムを保護するパターンを設ける工程、次いで、プラズマが点火され、保護されていないポリシリコンフィルムのほぼすべてがエッチングされる。次いで、シリコン含有ガスを導入しつつポリシリコンフィルムの残りをエッチングする。また、エッチング処理中にシリコン含有ガスを導入するよう構成されたエッチングチャンバ。 (もっと読む)


【課題】配線の信頼性の高い半導体装置を提供する。
【解決手段】半導体基板42上に台形状の凸部領域と台形状の凹部領域を設け、凹部領域のシリコン表面にはゲート酸化膜45が設けられ、ゲート酸化膜上にはゲート電極46が形成されている。凹部領域に設けられたゲート電極46の両側の凸部領域にはソース・ドレイン高濃度領域48が位置し、ソース・ドレイン高濃度領域48とゲート電極46の間にはソース・ドレイン低濃度領域47が形成されている。ソース・ドレイン高濃度領域48の上表面には第1層目の金属配線49と第2層目の金属配線50と第3層目の金属配線52が積層され、ソース・ドレイン高濃度領域48から第3金属配線までの接続にコンタクトホールやビアホールなどを利用していない。このように本発明の半導体装置は、コンタクトホールやビアホールなどの接続孔を形成しないで素子と配線との接続や配線間接続を行なうことができる。 (もっと読む)


【課題】ゲート電極が金属窒化膜により構成されるMOSFETにおいて、電流駆動能力の向上を図る。
【解決手段】基板10に、素子形成領域20を分離する素子分離領域50を設ける。次に素子形成領域20上にゲート絶縁膜100を形成する。その後ゲート絶縁膜100上に金属窒化膜により構成される下部ゲート電極膜200を形成する。さらに下部ゲート電極膜200を熱処理する。そして下部ゲート電極膜200上に上部ゲート電極膜220を形成する。 (もっと読む)


【課題】サリサイドプロセスにより金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】全反応方式のサリサイドプロセスを用いず、部分反応方式のサリサイドプロセスによりゲート電極8a,8b、n型半導体領域9bおよびp型半導体領域10bの表面に金属シリサイド層41を形成する。金属シリサイド層41を形成する際の熱処理では、ランプまたはレーザを用いたアニール装置ではなく、カーボンヒータを用いた熱伝導型アニール装置を用いて半導体ウエハを熱処理することにより、少ないサーマルバジェットで精度良く薄い金属シリサイド層41を形成し、最初の熱処理によって金属シリサイド層41内にNiSiの微結晶を形成する。 (もっと読む)



【課題】工程数の増加を回避し得る半導体装置及びその製造方法を提供する。
【解決手段】低濃度ドレイン領域28hを形成するためのドーパント不純物が導入される所定領域を除く領域に、所定領域から離間するようにチャネルドープ層22dを形成する工程と、半導体基板10上にゲート絶縁膜24を介してゲート電極26dを形成する工程と、ゲート電極の一方の側の半導体基板内に低濃度ソース領域28gを形成し、ゲート電極の他方の側の半導体基板の所定領域に低濃度ドレイン領域28hを形成する工程とを有している。 (もっと読む)


【課題】酸化物半導体を用いた高性能な半導体装置を提供する。
【解決手段】基板上に酸化物半導体層を形成し、酸化物半導体層上に第1の導電層を形成し、第1の導電層上に第2の導電層を形成し、第2の導電層をエッチングすることで、第1のパターンを形成し、第1のパターンを酸化することにより膨張させ、膨張後の第1のパターンをマスクとして第1の導電層をエッチングすることで、ソース電極及びドレイン電極となる第2のパターンを形成し、膨張後の第1のパターン及び第2のパターン及び酸化物半導体層を覆うゲート絶縁層を形成し、ゲート絶縁層上にゲート電極を形成する。 (もっと読む)


【課題】ポリシリコン抵抗体の上に急速熱酸化処理により形成され、シリサイド化ブロック用酸化膜の一部として用いる熱酸化膜の膜厚が多種のポリシリコン抵抗体間でばらつくことにより、ポリシリコン抵抗体が部分的にシリサイド化されることを回避する。
【解決手段】多種のポリシリコン抵抗体全てにおいて、急速熱酸化処理によりポリシリコン抵抗体上に生成される熱酸化膜の膜厚と、ポリシリコン抵抗体を含む非シリサイド化領域に形成された保護酸化膜の膜厚との和が、シリサイド化ブロック用酸化膜としてのブロック性能を確保するために必要な膜厚以上となるように、保護酸化膜の膜厚を決定する。多種のポリシリコン抵抗体間で急速熱酸化処理により生成される熱酸化膜の膜厚に差が生じる場合でも、熱酸化膜と保護酸化膜とをシリサイド化ブロック用酸化膜として用いることにより、充分なブロック性能を確保することができる。 (もっと読む)


【課題】並列に並ぶゲートパターンを有する半導体装置において、ゲートパターンのレイアウトを工夫することによって、光近接効果を補正しつつ、集積度を向上させる。
【解決手段】並列に並ぶゲートパターン21,22の端部と、並列に並ぶゲートパターン23,24の対向端部とにおいて、ゲートパターン21の端部はゲートパターン22の端部よりもゲートパターン23,24の方に突き出ており、ゲートパターン24の対向端部はゲートパターン23の対向端部よりも、ゲートパターン21,22の方に突き出ている。引っ込んでいる方の、ゲートパターン22の端部およびゲートパターン23の対向端部について、仕上がり形状において後退が生じない程度に、補正量を大きく設定することができる。 (もっと読む)


【課題】酸化物の一部領域又は全領域の比抵抗を低下させることにより、簡易な工程で多様な電子素子を作製できる電子素子基板の製造方法を提供する。
【解決手段】少なくとも最表層の一部が比抵抗1×10Ω・cm以下の酸化物からなる基板における前記酸化物の一部領域又は全領域に対し、前記基板の電位よりも高い電位を印加することにより、前記一部領域又は前記全領域の比抵抗を低下させる低抵抗化処理工程を有する電子素子基板の製造方法である。 (もっと読む)


【課題】特性を劣化させることなく、微細化することができる半導体装置およびその製造方法を提供する。
【解決手段】半導体装置は、主表面を有する半導体基板SBと、主表面に互いに間隔をおいて形成されたソース領域SRおよびドレイン領域DRと、ソース領域SRとドレイン領域DRとに挟まれる主表面上に形成されたゲート電極層GEと、ソース領域SRの表面に接するように形成された第1導電層PL1と、ドレイン領域DRの表面に接するように形成された第2導電層PL2とを備え、第1導電層PL1とソース領域SRとの接触領域CR1からゲート電極層GEの下側を通って第2導電層PL2とドレイン領域DRとの接触領域CR2まで延びるように溝REが主表面に形成されている。 (もっと読む)


【課題】閾値電圧が低く、かつ、ゲート絶縁膜のリーク電流を抑制可能な半導体装置およびその製造方法を提供する。
【解決手段】メタルゲート電極103,203の材料として、Taを含むTa膜18,38を用いる。Ta膜18,38中には多くの窒素が含まれており、その窒素の一部がゲート絶縁膜102,202中に拡散することにより、TiNに比べてフラットバンド電圧Vfbが高くなり、NMOSFET100およびPMOSFET200の閾値電圧Vthを低くすることができる。また、Ta膜18,38中の窒素がHfSiON膜17,37中に拡散することにより、ゲート絶縁膜の絶縁性を高くすることができ、ゲートリーク電流Jgを抑制できる。 (もっと読む)


【課題】活性層―電極間の寄生抵抗に起因する素子特性のばらつきの少ないIGZO系電界効果型トランジスタを製造する。
【解決手段】基板B上に、IGZO系アモルファス酸化物からなる半導体層11、ソース電極22、ドレイン電極23、ゲート電極21およびゲート絶縁膜31とを備えてなる電界効果型トランジスタ1の製造方法において、半導体層11上にIGZO系アモルファス酸化物層20をスパッタ成膜により成膜し、その後アニール処理を行って、ソース電極22およびドレイン電極23の少なくとも半導体層11に接触する面側を構成する導電層を形成する。スパッタ成膜における背圧は1×10−5Pa未満とし、アニール処理におけるアニール温度を100℃以上、300℃以下とする。 (もっと読む)


【課題】プロセスの自由度を高めつつ、活性層とオーミックコンタクトをとるオーミック電極を形成できる半導体トランジスタの製造方法を提供する。
【解決手段】GaN系の半導体からなる活性層上に、オーミック電極を形成する半導体トランジスタの製造方法であって、活性層3上に、タンタル窒化物からなる第1の層11と、第1の層11上に積層されたAlからなる第2の層12とを形成する工程と、第1及び第2の層11,12を、520℃以上、600℃以下の温度で熱処理することにより、活性層3とオーミックコンタクトをとるオーミック電極9s,9dを形成する工程とを備える。 (もっと読む)


【課題】 ソース・ドレイン電極と半導体膜との接触抵抗を低減し、移動度特性を向上した薄膜トランジスタを提供する。さらに、それを用いた高性能の表示装置を提供する。
【解決手段】 板上に形成されたゲート電極と、前記ゲート電極を覆うようにして前記基板上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成された半導体膜と、少なくとも各々の一部が前記半導体膜上に形成され、ソース電極及びドレイン電極として機能する一対の電極と、を具備する薄膜トランジスタであって、前記半導体膜は、GeあるいはSi及びGeを含有し、前記一対の電極の各々は、ボロンあるいはV族元素を含有する金属膜で形成され、前記一対の電極の各々と前記半導体膜との間に、ジャーマノシリサイドあるいは金属−Ge間化合物が形成されている。 (もっと読む)


【課題】Cu合金をソース・ドレイン電極に用いたTFTにおいて、コンタクト膜に対して酸化処理を施す場合であっても、良好なオン特性を維持する表示装置を提供することを目的とする。
【解決手段】半導体層4と、銅と1種類の添加元素とを含む銅合金層を有するソース電極10およびドレイン電極9と、ソース電極10及びドレイン電極9のそれぞれの電極と半導体層4との間に形成されるコンタクト膜5と、それぞれの電極とコンタクト膜5との間に形成される酸化物膜8と、を含む薄膜トランジスタ基板を有する表示装置であって、コンタクト膜5は、不純物とシリコンとを含み、酸化物膜8は、シリコン、不純物および酸素を含むとともに、酸化物膜8における不純物濃度がコンタクト膜5における不純物濃度よりも低い、ことを特徴とする表示装置。 (もっと読む)


【課題】 フィン型MISトランジスタ、プレーナ型MISトランジスタ及び抵抗素子を集積化した半導体装置において、的確な製造方法を提供する。
【解決手段】 フィン部10aを形成する工程と、フィン部の側面に第1のゲート絶縁膜14及び第1のゲート電極膜15を形成する工程と、フィン部並びにフィン部の側面に形成された第1のゲート絶縁膜及び第1のゲート電極膜を囲み、第1のゲート電極膜に接する半導体導電部16aを形成する工程と、半導体導電部上並びにプレーナ型MISトランジスタ形成領域及び抵抗素子形成領域に、第2のゲート絶縁膜20及び第2のゲート電極膜21を形成する工程と、半導体導電部上及び抵抗素子形成領域に形成された第2のゲート絶縁膜及び第2のゲート電極膜を除去する工程と、半導体導電部上並びにプレーナ型MISトランジスタ形成領域及び抵抗素子形成領域に、抵抗素子用の半導体膜を形成する工程とを備える。 (もっと読む)


【課題】耐圧の異なるトランジスタが同一半導体基板上に混載されている場合においても、それらのトランジスタの性能が向上するようにストレスライナ膜を構成することが可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上に混載された低耐圧トランジスタおよび高耐圧トランジスタ上に形成するストレスライナ膜11、12は、互いに膜質を異ならせることができる。ここで、ストレスライナ膜11は、低耐圧トランジスタの性能が効果的に改善され、高耐圧トランジスタの性能があまり改善されないように膜質を設定することができる。また、ストレスライナ膜11は、高耐圧トランジスタの性能が効果的に改善され、低耐圧トランジスタの性能があまり改善されないように膜質を設定することができる。 (もっと読む)


【課題】電流コラプスが抑制された窒化物半導体を用いた電界効果トランジスタを容易に実現できるようにする。
【解決手段】電界効果トランジスタは、基板100の上に形成され、第1の窒化物半導体層122及び第2の窒化物半導体層123を有する半導体層積層体102を備えている。半導体層積層体102の上には、互いに間隔をおいてソース電極131及びドレイン電極132が形成されている。ソース電極131とドレイン電極132との間には、ソース電極131及びドレイン電極132と間隔をおいてゲート電極133が形成されている。ドレイン電極132の近傍には正孔注入部141が形成されている。正孔注入部141は、p型の第3の窒化物半導体層142及び第3の窒化物半導体層142の上に形成された正孔注入電極143を有している。ドレイン電極132と正孔注入電極142とは、電位が実質的に等しい。 (もっと読む)


121 - 140 / 2,910