説明

Fターム[5F048BH05]の内容

MOSIC、バイポーラ・MOSIC (97,815) | PN接合分離 (956) | ガードリング(ガードバンド) (263)

Fターム[5F048BH05]の下位に属するFターム

Fターム[5F048BH05]に分類される特許

61 - 80 / 213


【課題】DMOS電力回路、CMOSデジタル論理回路、及びコンプリメンタリバイポーラアナログ回路の全てを単一の集積化された回路チップ上に実現するBiCDMOS構造及びその製造方法を提供する。
【解決手段】基層10内に下向きに延出し、且つ基層の上に配置されたエピタキシャル層40内に上向きに延出し、かつエピタキシャル層の上側主面の下に配置された埋め込み絶縁領域21Bと、エピタキシャル層内のみに配置され、かつ埋め込み絶縁領域の上側主面から上向きに延出した埋め込みウェル領域44Bと、エピタキシャル層内に配置され、かつエピタキシャル層の上側主面からエピタキシャル層内に下向きに延出し、かつ埋め込みウェル領域の上側主面に接触する下側主面を備えたウェル領域51Bとを有し、バイポーラトランジスタがウェル領域内に形成され、MOSトランジスタがウェル領域外のエピタキシャル層の上側主面に形成される。 (もっと読む)


【課題】 静電破壊保護回路の動作開始電圧を下げるためトリガ素子を接続した場合であっても、静電破壊保護回路の静電破壊耐量を向上させることができる静電破壊保護回路を提供する。
【解決手段】 トリガ素子が接続される別のベース電極部拡散領域の周囲に、ベース領域より不純物濃度が低く、かつベース領域より深く形成されたP型拡散領域11を備える構造とすることで、別のベース電極部拡散領域近傍で生じる高電界を緩和し、またコレクタの一部を構成する埋め込み領域近傍で、ベース電流供給に必要な高電界を生じさせることができ、静電破壊耐量を向上させている。 (もっと読む)


【課題】SOI(セミコンダクタ・オン・インシュレータ)基板内の底部半導体層からの半導体デバイスについて強化された信号分離を可能とする半導体構造、これを製造する方法、およびこれを操作する方法を提供する。
【解決手段】底部半導体層10と反対の導電性タイプを有するドープ接点領域18は底部半導体層10内の埋め込み絶縁体層20の下に設ける。少なくとも1つの導電ビア構造47,77は、相互接続レベル金属ライン94から、中間工程(MOL)誘電体層80、最上部半導体層30内の浅いトレンチ分離構造33、および埋め込み絶縁体層20を通り、ドープ接点領域18まで延びる構造とする。 (もっと読む)


【課題】SOI基板における容量結合を減少した集積回路を提供する。
【解決手段】底部半導体層と同じ導電型のドーパントを含む第1のドープされた半導体領域18及び反対導電型のドーパントを含む第2のドープされた半導体領域28がSOI基板の埋め込み絶縁層20の直下に形成される。第1のドープされた半導体領域18及び第2のドープされた半導体領域28は、共にグランド電位に接続されるか、又は底部半導体層への少数キャリアの順方向バイアス注入に基づく過剰な電流を生じるには不十分は電圧、即ち、0.6V乃至0.8Vを越えない電位差を保って底部半導体層に対して順方向バイアスされる。上部半導体の半導体装置内の電気信号により誘起される電荷層内の電荷は第1及び第2のドープされた半導体領域に接続されている電気的コンタクトを介して引き出され、これにより半導体装置内の高調波信号を減少させる。 (もっと読む)


【課題】従来の半導体装置では、分離領域の形成領域を狭めつつ、MOSトランジスタの動作耐圧を向上させ難いという問題があった。
【解決手段】本発明の半導体装置では、P型の埋込層9が這い上がり、P型の拡散層12が這い下がり、両拡散層9、12が連結することで、MOSトランジスタ3のバックゲート領域が構成される。この構造により、分離領域1のP型の拡散層13の横方向拡散幅が抑制され、分離領域の形成領域及びMOSトランジスタのデバイスサイズが低減される。その一方で、バックゲート領域での寄生抵抗が低減し、MOSトランジスタの動作耐圧が向上する。 (もっと読む)


【課題】半導体基板において回路が形成される領域の占有面積を削減して小型化が図られる半導体装置を提供する。
【解決手段】高電位が印加されるセンス抵抗9と第1ロジック回路26が形成された高電位ロジック領域25の周囲を取り囲むように、分離領域30を介在させて、RESURF領域24が形成されている。RESURF領域24の外側には、接地電位に対して第2ロジック回路22を駆動させるのに必要な駆動電圧レベルが印加される第2ロジック回路領域が形成されている。RESURF領域24では、電界効果トランジスタTのドレイン電極12が内周に沿って形成され、ソース電極10が外周に沿って形成されている。また、センス抵抗9に接続されたポリシリコン抵抗4が、内周側から外周側に向かってスパイラル状に形成されている。 (もっと読む)


【課題】電流利得のばらつきを低減することができる半導体装置を提供する。
【解決手段】第1導電型の半導体基体1と、この半導体基体1の表面の一部に形成された、バイポーラトランジスタの第2導電型のコレクタ層2と、このコレクタ層2の一部に形成された、バイポーラトランジスタの第1導電型のベース層6と、このベース層6の一部に形成された、バイポーラトランジスタの第2導電型のエミッタ層7と、このエミッタ層7の直下の領域を除いた部分の半導体基体1に形成された、第1導電型の半導体層9とを含む半導体装置を構成する。 (もっと読む)


【課題】モールドストレスによる絶縁ゲート型電界効果トランジスタの特性変動を抑制する。
【解決手段】半導体基板上に設けられた絶縁ゲート型電界効果トランジスタと、前記絶縁ゲート型電界効果トランジスタと離間し、前記絶縁ゲート型電界効果トランジスタを取り囲むように前記半導体基板の表面に設けられ、前記絶縁ゲート型電界効果トランジスタのボディと同じ導電型の高不純物濃度層と、前記絶縁ゲート型電界効果トランジスタ及び前記高不純物濃度層上の一面に、前記絶縁ゲート型電界効果トランジスタを覆うように設けられ、ビア及び下層配線を介して前記高不純物濃度層と電気的に接続される最上層配線とを具備することを特徴とする半導体装置が提供される。 (もっと読む)


【課題】回路素子の静電破壊を抑制できる、貫通電極を用いた半導体装置及び半導体装置の製造方法を提供すること。
【解決手段】複数の半導体基板を積層して含む半導体装置であって、半導体基板のうち所与の半導体基板を貫通し、半導体装置の外部端子と電気的に接続する貫通電極53と、所与の半導体基板に設けられた回路素子13と、静電放電保護回路42とを含み、静電放電保護回路42と貫通電極53との配線抵抗が、回路素子13と貫通電極53との配線抵抗よりも小さく構成する。静電放電保護回路42が、所与の半導体基板において、貫通電極53から最も小さい配線抵抗で接続されていてもよい。 (もっと読む)


【課題】面積効率やレイアウト設計の自由度を向上させた半導体装置及び半導体装置の製造方法を提供すること。
【解決手段】複数の外部端子VDD、VSS、Pin1、Pin2を有し、複数の半導体基板10、20、30を積層して含む半導体装置であって、半導体基板のうち少なくとも1つを貫通し、半導体装置のいずれかの外部端子と電気的に接続する貫通電極51、52、53、54と、いずれか1つの半導体基板に設けた複数の静電放電保護回路41、42、43とを含み、貫通電極51、52、53、54は、複数の静電放電保護回路41、42、43のいずれかと電気的に接続され、複数の静電放電保護回路41、42、43は、貫通電極51、52、53、54のいずれかと電気的に接続されている静電放電保護回路41、42、43が設けられる半導体基板は、最下層又は最上層に積層された半導体基板であってもよい。 (もっと読む)


【課題】 本発明は基板上での同軸トランジスタを開示する。
【解決手段】同軸構造のMOSFETであって、チップ或いは基板(Wafer Bonding)を積層し、軸心貫通孔により貫通し接続してより高い集積度及びラッチ効果のない同軸全対称のCMOSFETの集積回路を形成することができる。 (もっと読む)


【課題】周辺トランジスタやメモリセルを構成するnMISトランジスタの駆動特性の劣化を抑制することができる半導体装置の製造方法を提供する。
【解決手段】n型の電界効果型トランジスタを含む半導体装置の製造方法において、半導体基板に対してp型不純物となる元素を有するp型不純物元素含有ガスを含むエッチングガスを用いて、半導体基板に素子分離溝を形成するとともに、素子分離溝の内面に、p型不純物を含む不純物層を形成する素子分離溝形成工程と、素子分離溝内に塗布型絶縁膜を埋め込んで素子分離絶縁膜を形成する素子分離絶縁膜形成工程と、を含む。 (もっと読む)


【課題】起動回路と周辺回路とを併せて集積化し得る半導体装置を提供する。
【解決手段】領域411においては、素子分離領域により規定されるドレイン領域121にボディ領域が形成され、ボディ領域にN型のソース領域が形成される。ドレイン領域121とN型のソース領域との間に第1のゲート電極20が配置される。素子分離領域は開口部133が形成されたループ状部と、開口部133を介してドレイン領域121に接続された延在領域122を規定する部分とを備える。延在領域122に、N型のソース引出領域が形成される。内部回路412においては、ドレイン領域121にP型のボディ領域が形成され、P型のボディ領域にN型のソース領域が形成され、ドレイン領域121とN型のソース領域との間に第2のゲート電極331が形成される。 (もっと読む)


【課題】PNPN寄生サイリスタによるラッチアップ現象を防止する。
【解決手段】P型半導体基板50pに形成されたNウェル51n内に設けられ、外部端子に接続されたPMOSトランジスタ24と、PMOSトランジスタ24に隣接して配置され、一端及び他端に電源電位VDDQ及び接地電位VSSQがそれぞれ供給されるMOSゲート容量41とを備え、PMOSトランジスタ24とMOSゲート容量41によって構成されるPNPN寄生サイリスタのカソードとなるN型拡散層52nが電源電位VDDQに固定されている。これにより、PNPN寄生サイリスタはオンすることができないことから、ラッチアップ現象により素子が破壊されるという問題がなくなる。 (もっと読む)


【課題】絶縁ゲート型半導体装置において、ゲートパッド部の下方に保護ダイオードが配置されるためトランジスタセルが配置できず、チップ上の無効領域となっていた。またソース電極層はゲートパッド部を除いて配置され、素子領域の端部のセルではソースパッド部からゲートパッド部を迂回するように電流経路が形成される領域があった。
【解決手段】電極構造を2層とし、ゲートパッド部の少なくとも一部に保護ダイオードとの非重畳領域を形成する。非重畳領域下方にセルおよび1層目のソース電極層を配置でき、ソース電極層内の抵抗の偏りを小さくできる。更に、ゲートパッド部から保護ダイオードまでの距離が、ソースパッド部から保護ダイオードまでの距離より小さくなる位置に保護ダイオードを配置する。これにより効率的にトランジスタ動作を行える素子領域を大きく確保でき、且つ配線部下方の第1ソース電極層抵抗を低減できる。 (もっと読む)


【課題】絶縁ゲート型半導体装置において、ゲートパッド部の下方に保護ダイオードが配置されるためトランジスタセルが配置できず、チップ上の無効領域となっていた。またソース電極層はゲートパッド部を除いて配置され、素子領域の端部のセルではソースパッド部からゲートパッド部を迂回するように電流経路が形成される領域があった。
【解決手段】電極構造を2層とし、ゲートパッド部の少なくとも一部に保護ダイオードとの非重畳領域を形成する。2層目のゲート電極層は一部が1層目のゲート電極層と重畳し、これを介して保護ダイオードおよびゲート電極と接続する。非重畳領域下方にセルおよび1層目のソース電極層を配置できるので、ゲートパッド部下方の無効領域を従来と比較して大幅に低減でき、ソース電極層内を基板の水平方向に流れる電流について、全てのセルがソースパッド部から最短距離の電流経路となる。 (もっと読む)


【課題】基板の一主面側に全ての外部接続手段が接続される絶縁ゲート型半導体装置において、ゲートパッド部の下方に保護ダイオードが配置される構造では、トランジスタセルおよびソース電極層が配置できず、基板内部の抵抗が大きい問題があった。
【解決手段】電極構造を2層とし、保護ダイオードは素子領域外で素子領域に隣接し、素子領域外周の、主な電流経路に垂直となる辺に隣接して配置する。また、2層目のゲート電極層(ゲートパッド部)の少なくとも一部に保護ダイオードとの非重畳領域を形成する。2層目のゲート電極層は一部が1層目のゲート電極層と重畳し、これを介して保護ダイオードおよびゲート電極と接続する。ゲートパッド部の下方にトランジスタセルおよび1層目のソース電極層を配置する。これにより基板内を流れる電流の抵抗が小さくできる。 (もっと読む)


【課題】半導体集積回路の電源種類が増えても、半導体集積回路の面積増加を抑えることが可能なESD保護素子及びこれを備えた半導体集積回路を提供する。
【解決手段】半導体集積回路は、基板37上に設けられた第1導電型のウエル35と、基板37の上方に設けられた第1の外部端子10、第2の外部端子11、及び第3の外部端子12と、第1の外部端子10と第2の外部端子11との電気経路上に設けられた第1の保護回路20と、第2の外部端子11と第3の外部端子12との電気経路上に設けられた第2の保護回路21と、第3の外部端子12と第1の外部端子10との電気経路上に設けられた第3の保護回路22とを備えている。ウエル35内に連続的に設けられたガードリング40は、ウエル35上に設けられた第1の保護回路20、第2の保護回路21、第3の保護回路30のうち少なくとも2つを囲む。 (もっと読む)


【課題】 LCDドライバICには通常の低耐圧MISFETとともに、高耐圧MISFETが搭載される。通常のMISFETよりゲート酸化膜が厚いため、必然的に電極高さが高くなる。そのためゲート・コンタクトの深さが浅く、通常部とのプロセス上の両立が必要となる。
【解決手段】本願発明は高耐圧MISFETのたとえばチャネル幅方向において、厚膜ゲート酸化領域の境界をゲート電極端より内側に納めたものである。これにより低くなったゲート電極部にゲート・コンタクトを配置し、厚膜境界がゲート電極端より内側でかつ、ゲート・コンタクトとチャネル端との間にくることとなる。 (もっと読む)


【課題】高圧金属電極と低圧電極との間の絶縁耐圧を上昇させることができる。
【解決手段】支持基板5、この支持基板に積層された絶縁膜6、及び絶縁膜に積層された第一半導体層8を備えた高耐圧半導体210と、制御回路とを備える半導体集積回路装置において、高耐圧半導体210は、第一半導体層を取り囲むように、閉ループ状の絶縁膜が形成された内側誘電体分離領域701と、内側誘電体分離領域の外周に、閉ループ状の絶縁膜が形成された外側誘電体分離領域702と、絶縁膜の表面であって、内側誘電体分離領域と外側誘電体分離領域との間に形成された第二半導体層81と、内側誘電体分離領域、外側誘電体分離領域、及び第二半導体層の表面に積層されたフィールド酸化膜50と、第一半導体層に接続され、フィールド酸化膜の表面に形成された金属電極3とを備えている。 (もっと読む)


61 - 80 / 213