説明

Fターム[5F140BF03]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 最下層材料 (6,467)

Fターム[5F140BF03]の下位に属するFターム

半導体 (3,081)
金属 (3,194)

Fターム[5F140BF03]に分類される特許

61 - 80 / 192


【課題】 多重閾値電圧(Vt)電界効果トランジスタ(FET)素子、及びその製造のための技術を提供する。
【解決手段】 1つの態様において、ソース領域と、ドレイン領域と、ソース領域とドレイン領域とを相互接続する少なくとも1つのチャネルと、チャネルの少なくとも一部を囲み、ゲート全体に対し選択的に配置された少なくとも1つのバンド・エッジ金属により多重閾値電圧を有するように構成されたゲートとを含むFET素子が提供される。 (もっと読む)


【課題】寿命を可及的に長くすることの可能なMISFETを備えた半導体装置を提供する。
【解決手段】半導体領域2が形成された半導体基板1と、半導体領域に離間して形成されたソース領域5aおよびドレイン領域5bと、ソース領域とドレイン領域との間の半導体領域3上に形成され金属および酸素を含む金属酸化層12を有するゲート絶縁膜10と、ゲート絶縁膜上に形成されたゲート電極16と、を有するMISFETを備え、金属酸化層に含まれる金属はHf、Zrのうちから選択された少なくとも1つであり、金属酸化層は、更にRu、Cr、Os、V、Fe、Tc、Nb、Taのうちから選択された少なくとも1つの元素が添加され、金属酸化層は元素が添加されたことにより形成される電荷を捕獲または放出する電荷トラップを有し、金属酸化層中における元素の密度は、1×1015cm−3以上、2.96×1020cm−3以下の範囲にあり、電荷トラップは、金属酸化層の中央より半導体領域側にピークを有するように分布することを特徴とする。 (もっと読む)


【課題】 閾値電圧の低い金属ゲート電極においてPMISFETの製造方法を提供する。
【解決手段】 半導体基板10上にPMISFETを作製する方法であって、半導体基板10上に絶縁膜20を形成する工程と、半導体基板10及び絶縁膜20をハロゲン化合物を含むガスにさらして、絶縁膜20上に吸着層110を形成する工程と、吸着層110上に金属を含むゲート電極40を形成して、吸着層110とゲート電極40を反応させて、吸着層110をハロゲン含有金属層にする工程とを有することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】ゲート絶縁膜とゲート電極との間の界面層にカーボン層を導入して、低い閾値電圧を実現している例では、カーボン層中のカーボンはSi半導体基板中に入り、欠陥準位を形成するため、EWFが不安定であった。本発明は上記問題点を解決するためになされたもので、p−metalを用いたMIS型半導体装置において、EWFを安定して増加させることが可能な半導体装置を提供する。
【解決手段】半導体基板10と、半導体基10上に形成された絶縁膜20と、絶縁膜20上に形成され、且つ、CN基又はCO基を含む界面層30と、界面層30上に形成された金属層40とを備えて半導体装置を構成する。 (もっと読む)


【課題】半導体または誘電体と、金属との界面において、接合する金属の実効仕事関数を最適化することを可能にするとともに、抵抗を可及的に低くすることを可能にする。
【解決手段】半導体膜4aと、半導体膜上に形成された酸化膜6bと、酸化膜上に形成された金属膜12aと、を備え、酸化膜がTi酸化膜であって、酸化膜に、V、Cr、Mn、Fe、Co、Ni、Nb、Mo、Tc、Ru、Rh、Pd、Ta、W、Re、Os、Ir、Ptから選ばれた少なくとも一つの元素が添加されている。 (もっと読む)


【課題】素子特性を劣化させることなく、しきい値電圧の低い、金属のゲート電極を有するPチャネルMOSトランジスタを備えた半導体装置を製造することを可能にする。
【解決手段】半導体領域2上にゲート絶縁膜5を形成するステップと、第1金属元素と、OH基、NO(x=1,2)基のうち少なくとも一つを含有する酸素含有金属層6をゲート絶縁膜上に形成するステップと、酸素含有金属層上に第2金属元素を含むゲート電極膜7を形成するステップと、ゲート電極膜を形成した後、酸素含有金属層の熱分解反応或いは脱水反応が生じる温度以上に加熱するステップと、を備えている。 (もっと読む)


【課題】トレンチの側壁部の上部における寄生トランジスタのしきい値電圧の低下を抑制する。
【解決手段】半導体装置は、半導体基板100におけるFET形成領域に形成されたMISトランジスタを備えている。半導体基板100に設けられたトレンチ104内に形成され、FET形成領域を区画するシリコン酸化膜107と、FET形成領域及びシリコン酸化膜107の上に形成されたゲート絶縁膜110と、ゲート絶縁膜110の上に形成されたゲート電極111とを備えている。ゲート絶縁膜110のうち、トレンチ104内に位置するゲート電極111と半導体基板100の側面との間に形成されている部分は、アルミニウムを含有している一方、ゲート絶縁膜110のうち、ゲート電極111と半導体基板100の上面との間に形成されている部分は、アルミニウムを含有していない。 (もっと読む)


【課題】実効酸化膜厚の極めて薄いゲート絶縁膜を有し、且つ、消費電力の少ない半導体装置を、高い歩留まりで製造することができる半導体装置の製造方法をする。
【解決手段】液体の酸化剤を用いてシリコン基板1の表面を雰囲気に露出させることなく酸化することにより、シリコン基板1の表面にシリコン酸化膜6を形成し、
シリコン酸化膜6の上にアルミニウム酸化膜7を形成し、
アルミニウム酸化膜7の上にランタン酸化膜8を形成し、
ランタン酸化膜8の上にハフニウムシリケイト膜9Aを形成し、
その後、窒素を導入して熱処理を行うことにより、ハフニウムシリケイト膜9Aを窒化させて窒化ハフニウムシリケイト膜9を形成し、
前記熱処理により、シリコン酸化膜6ないしランタン酸化膜8を、ランタンアルミニウムシリケイトとする。 (もっと読む)


【課題】高誘電率でありかつリーク電流を低減することが可能なゲート絶縁膜を備えた半導体装置を提供する。
【解決手段】半導体装置は、半導体基板11上に設けられ、かつランタンアルミシリコン酸化物若しくは酸窒化物を含む第1の誘電体膜23と、第1の誘電体膜23上に設けられ、かつハフニウム(Hf)、ジルコニウム(Zr)、チタン(Ti)、及び希土類金属のうち少なくとも1つを含む酸化物若しくは酸窒化物を含む第2の誘電体膜24と、第2の誘電体膜24上に設けられた電極14とを含む。 (もっと読む)


【課題】ゲート絶縁膜内に金属原子を拡散させるための膜の除去を容易にする。
【解決手段】半導体装置の製造方法は、半導体基板上に下地膜を形成する工程と、下地膜上にゲート絶縁膜を形成する工程と、ゲート絶縁膜上に金属膜を形成する工程と、窒素ガス及び不活性ガスの少なくとも一方の雰囲気中で半導体基板、下地膜、ゲート絶縁膜及び金属膜を熱処理する工程と、ゲート絶縁膜上に残存する金属膜を除去する工程と、ゲート絶縁膜上に、ゲート電極膜を形成する工程とを備える。 (もっと読む)


【課題】n型MOSトランジスタ、p型MOSトランジスタにおいて共通のゲート絶縁膜構造及びゲート電極材料を用いながら、各々のトランジスタのしきい値電圧を適正な値へ設定し、且つゲート絶縁膜における酸素欠損に伴う移動度の低下を抑制する。
【解決手段】メタルゲート電極及び高誘電率ゲート絶縁膜を用いた半導体装置の製造方法であって、n型半導体領域200及びp型半導体領域300上にそれぞれ、シリコン酸化物からなる第1のゲート絶縁膜、La,Al,Oを含む第2のゲート絶縁膜、Hfを含む第3のゲート絶縁膜を積層し、その上に金属膜からなるゲート電極を形成し、次いでp型半導体領域300上の、第1のゲート絶縁膜,第2のゲート絶縁膜,第3のゲート絶縁膜,及びゲート電極の積層構造を、水素拡散防止膜350で被覆した後、水素雰囲気で熱処理を施す。 (もっと読む)


プラズマ増強原子層堆積(PEALD)を使用して誘電体層上に導電性の金属層を形成する方法を、関連する組成物および構造と共に提供する。PEALDによって導電層を堆積する前に、非プラズマ原子層堆積(ALD)プロセスによって誘電体層上にプラズマバリア層を堆積する。プラズマバリア層は、誘電体層上のPEALDプロセスにおけるプラズマ反応物質の有害作用を減少させるか、または防止し、接着を増強することができる。非プラズマALDプロセスおよびPEALDプロセスの双方において、同じ金属反応物質を使用することができる。 (もっと読む)


【課題】化合物半導体と絶縁性材料との界面に形成される界面準位が低減した半導体装置を提供する。
【解決手段】閃亜鉛鉱型の結晶構造を有する3−5族化合物半導体と、3−5族化合物半導体の(111)面、(111)面と等価な面、または、(111)面もしくは(111)面と等価な面から傾いたオフ角を有する面に接する絶縁性材料と、絶縁性材料に接し、金属伝導性材料を含むMIS型電極とを備える半導体装置を提供する。 (もっと読む)


【課題】マルチ酸化プロセスにおいて、p型MOSFETの閾値電圧を、可及的に高精度に制御可能な半導体装置の製造方法を提供する。
【解決手段】LV領域、MV領域及びHV領域にSiGe膜5をそれぞれ形成し、
LV領域、MV領域及びHV領域におけるSiGe膜5の上に第1のゲート絶縁膜6を形成し、
MV領域における第1のゲート絶縁膜6を除去し、
LV領域とHV領域における第1のゲート絶縁膜6、及びMV領域におけるSiGe膜5の上に第2のゲート絶縁膜8を形成し、
LV領域における第1のゲート絶縁膜6及び第2のゲート絶縁膜8を除去し、
LV領域におけるSiGe膜5の上にシリコン膜10を形成し、
LV領域におけるシリコン膜10、及びMV領域とHV領域とにおける第2のゲート絶縁膜8の上に、High−k膜からなる第3のゲート絶縁膜12及びメタル層13を順次形成する。 (もっと読む)


【課題】所望の仕事関数を得ると共にトランジスタの駆動力を劣化させない構造を有する半導体装置を提供する。
【解決手段】半導体装置は、半導体基板1と、半導体基板1の上に形成された界面層5と、界面層5の上に形成された高誘電率ゲート絶縁膜6と、高誘電率ゲート絶縁膜6上に形成されたゲート電極とを備える。高誘電率ゲート絶縁膜6はランタンを含有し、高誘電率ゲート絶縁膜6におけるゲート電極との界面に含まれているランタンの濃度は、高誘電率ゲート絶縁膜における界面層との界面に含まれているランタンの濃度よりも大きい。 (もっと読む)


【課題】耐熱性の低い部分を有する基板に加熱処理をして半導体基板を製造する。
【解決手段】単結晶層を有し熱処理される被熱処理部と、熱処理で加えられる熱から保護されるべき被保護部とを備えるベース基板を熱処理して半導体基板を製造する方法であって、被保護部の上方に、ベース基板に照射される電磁波から被保護部を保護する保護層を設ける段階と、ベース基板の全体に電磁波を照射することにより被熱処理部をアニールする段階とを備える半導体基板の製造方法を提供する。 (もっと読む)


【課題】 本発明は、しきい値電圧の低いNチャネルMISトランジスタを有する半導体装置およびその製造方法を提供することを目的とする。
【解決手段】 本発明の半導体装置の製造方法は、NチャネルMISトランジスタの製造方法であって、基板に形成されたP型半導体領域上に、シリコン酸化膜とこのシリコン酸化膜上の金属酸化膜とを含むゲート絶縁膜を形成する工程と、基板を熱処理した状態で、水素ラジカルを含むガスにゲート絶縁膜を暴露する工程と、ゲート絶縁膜上にゲート電極を形成する工程と、を具備することを特徴とする。 (もっと読む)


【課題】 絶縁ゲート型半導体装置及びその製造方法に関し、炭化タンタル膜の仕事関数を適正に選択的に制御する。
【解決手段】 半導体基板上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に炭化タンタル膜を成膜する工程と、前記炭化タンタル膜の一部を露出する開口を有するマスクパターンを形成したのち、水素プラズマ処理を行う工程とを設ける。 (もっと読む)


【課題】デュアル仕事関数半導体デバイスの製造方法を提供する。
【解決手段】半導体基板100上に、これと接触するゲート誘電体層104を形成する工程と、ゲート誘電体層の上に、これと接触する金属層105を形成する工程と、金属層の上に、これと接触するゲート充填材料の層106を形成する工程と、ゲート誘電体層、金属層、およびゲート充填層をパターニングして、第1ゲートスタックと第2ゲートスタックとを形成する工程と、半導体基板中に、ソースおよびドレイン領域109を形成する工程と、第1および第2ゲートスタックの少なくとも片側の第1および第2領域中に誘電体層を形成する工程と、その後に第2ゲートスタックのみからゲート充填材料を除去し、下層の金属層を露出させる工程と、露出した金属層を金属酸化物層1051に変える工程と、第2ゲートスタックを他のゲート充填材料115を用いて再形成する工程とを含む。 (もっと読む)


【課題】半導体基板上に設けられる金属半導体化合物電極の界面抵抗を低減する半導体装置およびその製造方法を提供する。
【解決手段】半導体基板と、半導体基板上に形成され、Sを1×1020atoms/cm以上含有する界面層と、界面層上に形成され、略全域にSを1×1020atoms/cm以上含有する金属半導体化合物層と、金属半導体化合物層上の金属電極を有することを特徴とする半導体装置。半導体基板上に金属膜を堆積し、第1の熱処理により、金属膜を半導体基板と反応させて、金属半導体化合物層を形成し、金属半導体化合物層に、飛程が金属半導体化合物層の膜厚未満となる条件でSをイオン注入し、第2の熱処理により、Sを再配置することを特徴とする半導体装置の製造方法。 (もっと読む)


61 - 80 / 192