説明

ガラスに対する金属の、金属に対する金属の、又は、セラミックに対する金属の接続を生じさせる方法。

SOFCの用途において使用されるものである、ガラスに対する金属の、金属に対する金属の、及び、セラミックに対する金属の接続を製造する方法であって、前記接続は、ベースのガラス粉末及び金属酸化物の粉末の混合物として生じさせられる。結果として、複合のシールにおいて使用されたガラスの固有の性質は、粘度及び湿潤性を制御するためには、例.MgOを加えることによって、金属を含有する界面において局所的に変えられると共に、同時に、シール成分に向かったベースのガラスの高い熱膨張係数のようなバルクの性質を維持することもある。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガラスに対する金属の、金属に対する金属の、及び、セラミックに対する金属の、接続を生じさせる方法に関係する。前記の接続は、例えば、固体酸化物の燃料セル(SOFC)用途において使用される。
【背景技術】
【0002】
典型的には、平坦なプレートの設計のSOFCは、多数のセルのスタックを含むと共に、それらの各々は、二つの電極によって挟まれた電解質を含む。各々のセルの電極は、個々のセルの間における直列の接続をなす相互接続層と接触したものである。気密のシーリングは、事実上、燃料セルの性能、耐久性、及び安全な動作に重要なものである。
【0003】
ガラスは、ガラスの物理的な及び化学的な性質を幅広い範囲内で仕立てることができるので、SOFCについてのシーリングの材料として適切なものである。異なるガラス及びガラス−セラミックの組成物が、アルカリケイ酸塩、アルカリアルミノケイ酸塩、アルカリ土類ケイ酸塩、アルカリ土類アルミノホウケイ酸塩、リン酸塩、及びホウケイ酸塩のガラスの群内で検討されてきた。しかしながら、たとえ将来有望な結果が報告されてきたとしても、それらのいずれもが、機械的な性能の全ての要件、例.粘度並びに熱膨張及び化学的な混和性、例.湿潤性及び結合性、の調和、を満足することができるものであることはなかった。
【0004】
ベースのガラス、例.アルカリホウケイ酸塩ガラスの中へ、又は、アルミノケイ酸ナトリウムのガラスの中に、分散させられた結晶質の充填剤の材料を備えた複合のシールは、そのシール材とそのシールの表面との間の熱膨張係数(CTE)の正確な調和に関係して将来有望な結果を示してきた。同時に、シーリングの温度における適切な粘度が、得られてきた。
【0005】
しかしながら、金属表面への結合性の最適化が、なお要求されると共に、特に、これらのような金属表面に形成された腐食の鱗片への結合性は、原初の金属の動作温度、組成、及びミクロ構造に依存する。
【0006】
金属とガラスに基づいたシールとの間の結合性は、単一の元素の金属の結合のコート(M=Fe、Ni又はCo)を形成することによって、又は、複合の結合のコートの相(M−CrAlY)が、そのシール及びさらなる元素を付着させることに先立ち金属の表面へ適用されるところの、好適な解決手段によって、立証されてきたものである、Yang,Z;Coyle,C.A.;Baskaran,S.;Chick,LA.“Making metal−to−metal and metal−to−ceramic interconnections for use in high temperature electrochemical devices by forming bond coat on first metal part,applying sealing material to bond coat,and adhering second part to sealing material”、米国特許出願公開第2004060967A1号明細書(特許文献1)を参照のこと。鋼にか又結合のコートにかのいずれかに由来する、その結合のコートのアルミニウム含有率は、結合のコートの性能について本質的なものであることが、要求される。
【0007】
金属の元素それら自体(V、Fe、Ni、Cu、Co、及びMo)の酸化物は、ガラス質のエナメルを第一鉄の合金へ結合するとき、いわゆる下地のコートにおいて周知の構成成分であると共に、様々な酸化状態での樹枝状結晶の形成によってしばしば特徴付けられた、金属のFeを部分的に酸化すること及びガラス質の又は混合させられた酸化物の相を形成することのそれらの能力によって特徴付けられる、Donald,I.W.,“Preparation,properties and chemistry of glass and glass−ceramic−to−metal seals and coatings,J.Mat,Sci.28(1993),p.2841−86(非特許文献1)及びEppler,R.A”Glazes and glass coatings“,The American Ceramic Society,Westen/ille,Ohio(2000)(非特許文献2)を参照のこと。
【特許文献1】米国特許出願公開第2004060967A1号明細書
【非特許文献1】Donald,I.W.,“Preparation,properties and chemistry of glass and glass−ceramic−to−metal seals and coatings,J.Mat,Sci.28(1993),p.2841−86
【非特許文献2】Eppler,R.A”Glazes and glass coatings“,The American Ceramic Society,Westen/ille,Ohio
【発明の開示】
【発明が解決しようとする課題】
【0008】
先行技術の不都合を考慮して、本発明の目的は、例えば、SOFCの用途において使用されるものである、ガラスに対する金属の、金属に対する金属の、及びセラミックに対する金属の接続を提供することであるが、それと共に、境界の相を、強い結合を得るために、作ることができる。
【課題を解決するための手段】
【0009】
前記の目的は、ガラスに対する金属、金属に対する金属の、及び、セラミックに対する金属の接続を製造すると共に金属合金の組成物と独立の強い結合及び使用の間に発達させられた保護の酸化の鱗片を得るために、境界の相を処理することができる方法によって達成されるが、
前記の接続は、ガラス状の接続層と称された、ベースのガラスの粉末及び金属酸化物の粉末の、好ましくは所定の粒子の大きさの及びバインダーの系における、混合物として望まれた層の厚さまで生じさせられ、
その結合は、制御された条件の下で、上昇させられた温度で提供され、そこでは、
その金属酸化物の粉末は、
− 粒状物の大きさd50<2μmを備えた0から10重量%のホウ素の酸化物;
− 粒状物の大きさd50<2μmを備えた0から10重量%のマグネシウムの酸化物;
− 粒状物の大きさd50<2μmを備えた0から8重量%のナトリウムの酸化物及びカリウムの酸化物;
− 粒状物の大きさd50<1.5μmを備えた1から10重量%のマンガンの酸化物;
− 粒状物の大きさd50<1.5μmを備えた1から10重量%のニッケルの酸化物;
− 粒状物の大きさd50<1.5μmを備えた0から10重量%のバナジウムの酸化物;
− 粒状物の大きさd50<1.5μmを備えた0から5重量%のコバルトの酸化物;及び
− 粒状物の大きさd50<1.5μmを備えた0から5重量%のモリブデンの酸化物;
− 粒状物の大きさd50<1.5μmを備えた0から5重量%の銅の酸化物;
:からなる群より選択されることによって特徴付けられる。
【0010】
その上、前記の目的は、ガラスに対する金属、金属に対する金属、及びセラミックに対する金属の接続を製造する方法によって達成されるが、前記の接続は、5μm以下の粒状物の大きさを有する、ベースのガラスの粉末及び金属の酸化物の粉末を含む混合物で生じさせられることによって特徴付けられる。
【0011】
好適な実施形態は、従属請求項に述べられたものである。
【発明を実施するための最良の形態】
【0012】
本発明を、図面を参照して以下に続くものにおいて説明することにする。
【0013】
以下に続くものにおいて、本発明を、より詳細に記載することにする。
【0014】
本発明に従って、ベースのガラスの粉末は、高い熱膨張の係数を備えたガラスのマトリックスである。そのベースのガラスの粉末は、好ましくは、アルカリアルミノケイ酸塩(NAS)、アルカリ土類アルミノホウケイ酸塩(CAS)、及びリン酸塩のガラス(MAP)からなる群より選択されるが、それらに対して、今後はガラス状の接続層と称される、局所的な湿潤する性質を制御するためには、金属酸化物、例.酸化マグネシウムが、加えられる。
【0015】
特に高い化学的な安定性及び遅い結晶化の挙動が、アルミノケイ酸ナトリウム(NAS)のガラスに関連して報告されてきた、Holand.W. and Beall,G.,“Glass−Ceramic Technology”, The American Ceramic Society,Westerville,Ohio(2002)を参照のこと、と共に、残余のガラス質のガラスが、大きい熱的な変動を、例.室温とガラスを軟化させる温度に近い動作の温度との間の急速なサイクリングを、経験することもあるシールの用途において特に有益なことを証明してきた。
【0016】
本発明に適切な、アルカリアルミノケイ酸塩(NAS)は、10−25モル%の酸化ナトリウム、40−80%モルの二酸化ケイ素、5−20モル%の酸化アルミニウムを含むと共に、自由選択で、0−10モル%の三酸化二ホウ素、0−10モル%の酸化マグネシウム、0−10モル%の酸化カルシウム、0−10%の酸化バリウム、0−2モル%のフッ素、及び0−5モル%のリンの酸化物を含むこともある。
【0017】
本発明に適切な、アルカリ土類アルミノホウケイ酸塩(CAS)は、40−80モル%の二酸化ケイ素、5−20モル%の酸化アルミニウム、20−45モル%の酸化カルシウムを含むと共に、自由選択で、0−5モル%の酸化ナトリウム、0−10モル%の三酸化二ホウ素、0−10モル%の酸化マグネシウム、0−2モル%の酸化バリウム、0−2モル%のフッ素、及び0−5モル%のリンの酸化物を含むこともある。
【0018】
本発明に適切なリン酸塩のガラス(MAP)は、5−25モル%の酸化アルミニウム、10−30モル%の酸化マグネシウム、5−20モル%の酸化カルシウム、40−60モル%のリンの酸化物を含むと共に、自由選択で、0−5モル%の酸化ナトリウム、0−12モル%の二酸化ケイ素、0−10モル%の三酸化二ホウ素、0−5モル%の酸化バリウム、及び0−2モル%のフッ素を含むこともある。
【0019】
表1は、上に定義されたように使用されたベースのガラスについての組成の範囲を例証する。
【0020】
【表1】

相互接続は、本来の合金に依存するミクロ構造及び組成を有する保護のクロムを含有する鱗片を発達させる。その鱗片とその複合のシールの部分との間の湿潤性及び付着を制御するためには、表面のコーティングは、二つの成分の間の強い且つ化学的に混和性の界面を形成する相互接続へ適用される。さらに、その複合のシールの部分に使用されたガラスの固有の性質は、粘度及び湿潤性を制御するためには、例.MgOの追加によって、金属−コートの界面で局所的に変えられてきたものであると共に、同時に、バルクの性質、例.それらシールの成分に向かったそのベースのガラスの高い熱膨張係数を維持する。そのベースのガラスの組成は、かなりの量の残余のガラスが、結合した後並びにそのガラスの複合のシール及びそのガラス状の接続層の部分的な結晶化の後で残留するように、選択されてきたものである。
【0021】
本発明と一致して使用されるものであるベースのガラスの粉末の粒状物の大きさは、好ましくは、0.05μmから100μmまで、より好ましくは、0.05μmから50μmまで、及び、最も好ましくは、0.05μmから30μmまでである。
【0022】
本発明と一致したベースのガラスの粉末と共に使用されるものである金属酸化物の粉末の粒状物の大きさは、5μm以下の、好ましくは、0.05μmから5μmまでの、より好ましくは、0.05μmから3μmまでの、及び、最も好適なのは、0.05μmから1.5μmまでのものである。
【0023】
本発明と一致した結合性は、使用された具体的な成分、特にそのベースのガラスの粉末、に依存するが、上昇させられた温度の下で、提供される。その結合性についての好適な温度は、400℃から1100℃までである。問題になっているガラス転移温度より上に200から400℃までであるためにその温度を選択することは、また好適なことであると共に、いっそうより好適なのは、問題になっているガラス転移温度より上に250から350℃までである。
【0024】
その結合性についての条件は、室温から550℃までの温度範囲を通じた昇温の間に有機バインダーを酸化するための接合部へ空気を第一に供給することによって、接続の最適な結合する強さを達成するために、制御される。第二に、より高い温度で、
典型的には、0.1kPaと1000kPaとの間の、及び好ましくは、10kPaと400kPaとの間の、直交するシーリングの圧力は、適用されると共に、結合させる工程の間に一定に保持されるが、それは、典型的には、0.1から10時間まで持続する。
【0025】
好ましくは、その金属の表面にその金属酸化物と一緒にそのベースのガラスの粉末を適用することに先立ち、その金属の表面は、金属のコーティングでコートされる。前記のコーティングは、好ましくは、制御された雰囲気で、相対的に短い時間、好ましくは0.5から5時間までについて、750と950℃との間の、高い温度まで加熱することによって、その表面の中へと合金が作られることもあるが、そこでは、酸素及び窒素の分圧は、〜10−20バールよりも低く保持される。
【0026】
あるいは、遷移金属の酸化物のコーティングは、そのベースのガラスの粉末及びその金属の酸化物の適用に先立ち、噴霧すること又は浸漬コーティングすることによって、その金属の表面へ適用されることもある。
【0027】
遷移金属の酸化物、特に、コバルトの、ニッケルの、及びマンガンの酸化物の組み合わせられた作用は、それらは、好ましくは、そのガラス状の接続層と一緒に、その金属に表面のコーティングとして適用されるが、調整可能なベースのコートを包含すると共に、それは、例えば、金属の部分と、ガラス状の複合のシール部分、他の金属の部分、又はセラミックの部分の形態における近隣の成分との間に、強い結合性の成分を提供するためのSOFCの環境において使用される。それら遷移金属の酸化物は、また、より少ない量でそのガラスへ加えられることもある。
【0028】
具体的な接続は、分散させられた金属酸化物の懸濁液で複合のシールの部分をコートすることによって、生じさせられる。これは、例えば、浸漬コーティング又は噴霧することによって実行されることもある。
【0029】
ガラスを湿潤させる性質を制御すするためには、そのベースのガラスの粉末に加えられる金属酸化物の例は、酸化ホウ素、酸化マグネシウム、酸化ナトリウム、酸化カリウム、及び酸化バナジウムであると共に、酸化ホウ素、酸化マグネシウム、及び酸化ナトリウムは、特に好適なものである。ガラスの結合する及び付着の性質を制御するためには、そのベースのガラスの粉末へ加えられるものである又は好ましくはその金属の部分における表面のコートとしての金属酸化物の例は、酸化マンガン、酸化ニッケル、酸化コバルト、酸化モリブデン、酸化銅、又はそれらの混合物である。好適な酸化物は、酸化マンガン、酸化ニッケル、及び酸化コバルトであると共に、酸化ニッケル及び酸化コバルトは、特に好適なものである。
【0030】
さらには、好適な実施形態においては、それら接続は、バインダー系におけるベースのガラスの粉末及び金属酸化物の粉末の混合物として、生じさせられる。
【0031】
本発明を、以下に続くものにおいて、しかしながら本発明を限定するものではない詳細な例に関して、例証することにする。
【0032】
例:
金属の材料は、三つの群:(Krupp−Thyssen,Crofer 22APUによって例示された)クロミア及びCr−Mn−スピネルの二重のシールを発達させる一つのもの、(Sandvik 0YC44によって例示された)クロミアの単一の層の鱗片を発達させる第二のもの、及び、(FeCr合金によって例示された)保護のアルミナの鱗片を発達させる第三のもの、に分割されてきた。第二鉄のクロム鋼の相互接続の材料が、表面のコーティングで処理される前の形状へ切り出された。ニッケルを除いた、金属のコーティングの場合には、その相互接続の金属における表面の酸化物は、エタノールにおけるすすぎが後に続けられた且つ最終的に空気中において60℃で乾燥させられた、超音波の水性のHF/HNO−浴において標本をすすぐことによって、コーティングに先立ち取り除かれた。他のコーティングは、アセトン中で金属の表面を脱脂した且つ空気中において60℃で乾燥させられた後で、適用された。
【0033】
ガラス試料の混合物:
ケイ酸塩ガラスの試料が、4時間の間に1500℃での白金のるつぼにおいて分析の等級の化学物質、NaCO、SiO、Al、B、MgO、NaF、及びCaCOを溶融することによって、生産された。そのガラスは、急冷され、再度溶融され、及び、最終的に、粉末(Beckman coulterのI/S粒子の大きさの分析器によって測定されるような、d50<5μm)へと粉砕された。リン酸塩のガラスは、ボールミリングによって分析の等級のMgHPO(3HO)、Al(PO、HBO、及びSiOを混合すること、急冷する、破砕する、及び粉末(d50<5μm)への最終的なミリングの前に攪拌する一方で30分の間に1500℃でのアルミナのるつぼにおいて溶融することによって、調製された。5−45μmの乾燥した厚さを有する薄いフィルムは、ガラスの粉末又はガラスの粉末及び金属酸化物の粉末の混合物のスクリーン印刷によって、作られた。典型的には、200−400μmの範囲における、ガラスのホイルは、ガラスの粉末又はガラスの粉末及び金属酸化物の粉末の混合物のテープ鋳造によって、作られた。ガラスの複合物のシーリングの大きいかたまりは、それについてのCTEが、鋼のCTEに調和させられたが、グラファイトの型へ充填されると共にpO<3×10−9気圧において2時間の間に750℃で焼結される前に18時間の間にガラスの粉末とボールミルにおいて混合させられた、MgOの粉末(d=90−200μm)又は金属の粉末(FeCr合金,d=10−200μm)から調製された。焼結されたシールは、平行な、滑らかな表面を得るために、最終的に機械加工された。三つの調製されたベースのガラスの試料は、表2に例証される。
【0034】
表2は、三つの調製されたベースのガラスの試料を例証する。
【0035】
【表2】

例1:
Crofer 22APU(c)は、スクリーン印刷することによって、ガラス番号3/MgO/Co(4重量%のMgO,0.5重量%のCo)のガラス状の接続層の15μmの厚さの層でコートされた、図2Aにおける(b)。ガラス番号3は、調製され、複合のシール部分(a)について72重量%の金属の粉末(FeCr合金,90μm<d<120μm)と組み合わせられた。金属及び複合のシールは、750℃まで冷却する前における4時間の間の950°までの加熱の間における400kPaによって、一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0036】
例2:
Sandvik 0YC44(c)は、公称で0.1μmの金属のニッケル(d)でコートされ、スクリーン印刷することによって、ガラス番号1/MgOのガラス状の接続層(2重量%のMgO,d<1.1μm(b),図2Bを参照のこと)の45μmの厚さの層でコートされた。ガラス番号1は、調製されたと共に、複合のシール部分(a)について55重量%の粗大なMgOと組み合わせられた。金属及び複合のシールは、アルゴン/水素の混合物において750℃まで冷却する前に、4時間の間に950℃まで加熱する間で400kPaによって一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0037】
例3:
Sandvik 0YC44(c)は、公称で0.1μmのMnの金属(d)でコートされ、その表面の中へそのコーティングの合金を作るためにアルゴン(pO<10−20気圧)中で予備加熱され、室温まで冷却した後で、スクリーン印刷すること(b)によって、ガラス番号3/MgO/NaOのガラス状の接続層(10重量%のMgO,d<1.3μm;1重量%のNaO,d<2μm)の15μmの厚さの層でコートされた、図2B参照。ガラス番号3は、調製され、複合のシールの部分(a)について79重量%の金属の粉末(SS316)と組み合わせられた。金属及び複合のシールは、アルゴン/水素の混合物において750℃まで冷却する前に、4時間の間に950℃まで加熱する間に、400kPaによって、一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0038】
例4:
Crofer 22APU(c)は、金属のコバルト(d)でコートされ、図2B参照、その表面へそのコーティングの合金を作るためにアルゴン(pO<10−20気圧)中で2時間の間に900℃で予備加熱されたと共に、室温まで冷却した後に、スクリーン印刷すること(b)によって、ガラス番号1/MgOのガラス状の接続層(20重量%のMgO)の薄い厚さの層でコートされた。ガラス番号1は、調製され、複合のシール部分(a)について55重量%の粗大なMgOと組み合わせられた。金属及び複合のシールは、空気中で400℃まで加熱され、そして、4時間の間に950℃まで加熱すると共にアルゴン/水素の混合物において750℃まで冷却する間に、400kPaによって、一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0039】
例5:
Sandvik 0YC44(c)は、Mnの金属でコートされ、その表面へそのコーティングの合金を作るためにアルゴン(pO<10−20気圧)中で0.5時間の間に850℃で予備加熱され(d)、室温まで冷却した後で、スクリーン印刷することによって、ガラス番号1/MgOのガラス状の接続層(2重量%のMgO)の45μmの厚さの層でコートされた、図2Bにおける(b)。ガラス番号1は、調製され、複合のシール部分(a)について55重量%の粗大なMgOと組み合わせられた。金属及び複合のシールは、空気中で400℃まで加熱され、そして、550℃まえ冷却する前に4時間の間に750℃まで加熱する間に、400kPaによって、一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0040】
例6:
Crofer 22APU(c)は、酸化コバルトの5μmの厚さの層(e)でコートされ、そして、スクリーン印刷すること(b)によって、ガラス番号1/MgOのガラス状の接続層(5重量%のMgO)の15μmの厚さの層でコートされた、図2C参照。ガラス番号1は、調製され、複合のシール部分(a)について55重量%の粗大なMgOと組み合わせられた。金属及び複合のシールは、空気中で400℃まで加熱され、そして、750℃まで冷却する前に4時間の間に950℃まで加熱する間に、400kPaによって、一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0041】
例7
Sandvik 0YC44(c)は、Mnの金属でコートされ、図2Dにおける(d)、その表面の中へそのコーティングの合金を作るためにアルゴン(pO<10−20気圧)中で0.5時間の間に850℃で予備加熱された。そして、その金属は、10μmの厚さの酸化コバルト(e)でスラリーコートされた。そのコーティングの合金を作ると共にそれを酸化するために0.5時間の間に500℃まで空気中で予備加熱され、室温まで冷却した後で、スクリーン印刷すること(b)によって、ガラス番号1/MgO/Bのガラス状の接続層(2重量%のMgO,d<1.1μm;4重量%のB,d<0.8μm)の45μmの厚さの層のでコートされた。ガラス番号1は、調製され、複合のシールの部分(a)について55重量%の粗大なMgOと組み合わせられた。金属及び複合のシールは、750℃まで冷却する前に、4時間の間に880℃まで加熱する間に、400kPaによって、一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0042】
例8
Sandvik 0YC44(c)は、公称で0.1μmの金属のニッケルでコートされ、図2Bにおける(d)、スクリーン印刷することによって、ガラス番号3/MgO/NaO(10重量%のMgO,2重量%のNaO)のガラス状の接続層(b)の45μmの厚さの層でコートされた。ガラス番号3は、調製されたと共に、複合のシール部分(a)について70体積%の金属の粉末(SS316,50μm<d<140μm)と組み合わせられた。金属及び複合のシールは、アルゴン/水素の混合物において750℃まで冷却する前に、空気中で4時間の間に950℃まで加熱する間に、400kPaによって一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0043】
例9
Sandvik 0YC44(c)は、バインダー系において分散させられた酸化ニッケルの公称で10μmの層(d25<1.5μm)(e)でスプレーコートされた、乾燥させられ、スクリーン印刷することによって、ガラス番号3/MgO/NaOのガラス状の接続層(3重量%のMgO;4重量%のNaO)の45μmの厚さの層でコートされた。(b)、図3A参照。アルミン酸マグネシウムのスピネルのセラミックは、矩形の形状へ切り取られ、平面の平行な表面(h)を得るために、研削された。金属及びセラミックの部分は、アルゴン/水素の混合物において750℃まで冷却する前に、4時間の間に950℃まで加熱する間に、400kPaによって一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0044】
例10
ガラス番号1は、表2参照、調製され、55重量%の粗大なMgOと組み合わせられた、図2E−1における(a)。それら粉末は、有機のビヒクル(EtOHに溶解させられたパラフィン)及び単軸成形によって作られた複合のシール部分と混合させられた。マグネシウムマンガンスピネル(MgMn)の粉末(d50=2μm)が、分散させられ、有機のビヒクルと混合させられた。その後、複合のシール部分は、浸漬コーティングによってスピネルスラリーでコートされた(e)。Crofer 22APU(c)及びコートされたシールの受け皿は、おおよそ10kPaによって一緒に保持され、900℃まで加熱されたが、そこでは、その負荷が、温度を保つ一方で、40kPaまで増加させられた。2時間後に、その温度は、750℃まで低減されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0045】
例11
ガラス番号1は、表2参照、調製され、55重量%の粗大なMgOと組み合わせられた、図2E−2における(a)。それら粉末は、有機のビヒクル(EtOHに溶解させられたパラフィン)及び単軸成形によって作られた複合のシール部分と混合させられた。マグネシウムマンガンスピネル(MgMn)の粉末(d50=2μm)が、分散させられ、有機のビヒクルと混合させられた。その後、複合のシール部分は、浸漬コーティングによってスピネルスラリーでコートされた(e)。Crofer 22APU(c)は、金属のコバルト(25μm/cm)でコートされたと共に、その表面へのコーティングの合金を作るためにアルゴン(pO<10−20気圧)中で2時間の間に900℃で予備加熱された。室温まで冷却した後に、その金属及びそのコートされたシール部分は、おおよそ10kPaによって一緒に保持され、900℃まで加熱されたが、そこでは、その負荷が、温度を保つ一方で、40kPaまで増加させられた。2時間後に、その温度は、750℃まで低減されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0046】
例12
Sandvik 0YC44(e)は、公称で0.1μmの金属のニッケルでコートされた、図3Bにおける(d)、及び、スクリーン印刷することによって、酸化コバルトの5μmの厚さの層(e)でコートされた。Crofer 22APU(g)は、スクリーン印刷することによって、ガラス番号3MgO/Coのガラス状の接続層の15μmの厚さの層でコートされた(b)。ガラス番号5 3/MgO/NaO/CaOのガラス状の接続層の200μmの厚さのテープ鋳造のホイル(i)は、これらの二つの金属部分の間に挟まれた。その化合物は、550℃まで冷却する前に、空気中において4時間の間に750℃まで加熱する間に400kPaによって一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0047】
例13
図2AにおけるCrofer 22APU(c)は、スクリーン印刷することによって、ガラス番号2/Coのガラス状の接続層(5重量%のCo、d<1.5μm)の15μmの厚さの層でコートされた(b)。ガラス番号2は、調製され、複合のシール部分(a)について79重量%の金属粉末(0YC44)と組み合わせられた。金属及び複合のシールは、550℃まで冷却する前に、4時間の間に700℃まで加熱する間に、200kPaによって一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0048】
例14
Sandvik 0YC44(c)は、Mnの金属でコートされた、図2Dにおける(d)、と共に、その表面にそのコーティングの合金を作るためにアルゴン/水素(pO<10−20気圧)中において0.5時間の間に850℃で予備加熱された。そして、その金属は、10μmの厚さの酸化コバルト層でスラリーコートされ(e)、そのコーティングの合金を作ると共にそれを酸化するために0.5時間の間に800℃まで空気中で予備加熱され、室温まで冷却した後に、スクリーン印刷することによって、ガラス番号2/MgO(2重量%のMgO)のガラス状の接続層の45μmの厚さの層でコートされた(b)。ガラス番号2は、調製され、複合のシールの部分(a)について55重量%の粗大なMgOと組み合わせられた。金属及び複合のシールは、550℃まで冷却する前に、4時間の間に700℃まで加熱する間に、100kPaによって一緒に保持されたが、そこでは、その接続は、室温まで二回熱的に循環させられる前に、500時間の間に経時変化させられた。
【0049】
上に示された且つ記載されたように、本発明の形態及び詳細における様々な変化が、なされることもあることは、当業者には明らかなことであるはずである。このような変化が、ここに添付された特許請求の範囲の主旨及び範囲内に含まれることは、意図されたことである。
【図面の簡単な説明】
【0050】
【図1】図1は、一般的な概念及び方法を図説する。
【図2】図2A−2Eは、それら接続を製造する方法及びその方法の具体的な実施形態を図説する。
【図3】図3A−3Bは、その方法の特別な実施形態を図説する。

【特許請求の範囲】
【請求項1】
ガラスに対する金属の接続、金属に対する金属の接続、及び、セラミックに対する金属の接続を製造すると共に金属合金の組成物と独立の強い結合及び使用の間に発達させられた保護の酸化の鱗片を得るために、境界の相を処理することができる方法において、
前記接続は、ベースのガラスの粉末及び金属酸化物の粉末の混合物として望まれた層の厚さまで生じさせられ、
該結合は、制御された条件の下で、上昇させられた温度で提供され、
該金属酸化物の粉末は、
− 粒状物の大きさd50<2μmを備えた0から10重量%のホウ素の酸化物;
− 粒状物の大きさd50<2μmを備えた0から10重量%のマグネシウムの酸化物;
− 粒状物の大きさd50<2μmを備えた0から8重量%のナトリウムの酸化物及びカリウムの酸化物;
− 粒状物の大きさd50<1.5μmを備えた1から10重量%のマンガンの酸化物;
− 粒状物の大きさd50<1.5μmを備えた1から10重量%のニッケルの酸化物;
− 粒状物の大きさd50<1.5μmを備えた0から10重量%のバナジウムの酸化物;
− 粒状物の大きさd50<1.5μmを備えた0から5重量%のコバルトの酸化物;及び
− 粒状物の大きさd50<1.5μmを備えた0から5重量%のモリブデンの酸化物;
− 粒状物の大きさd50<1.5μmを備えた0から5重量%の銅の酸化物;
:からなる群より選択される
ことを特徴とする、方法。
【請求項2】
前記接続は、金属の部分における金属の表面のコーティングと組み合わせられるバインダーの系において金属酸化物の粉末の追加と共にベースのガラスの粉末として生じさせられると共に、
前記コーティングは、ガラス状の接続層の適用に先立ち制御された雰囲気において加熱することによって、該表面へと合金が作られる
ことを特徴とする、請求項1に記載の方法。
【請求項3】
バインダー系における金属酸化物の追加でベースのガラスの粉末として生じさせられた前記接続は、該金属の部分における金属酸化物のコーティングと組み合わせられると共に、
前記コーティングは、ガラス状の接続層の適用に先立ち堆積させられる
ことを特徴とする、請求項1に記載の方法。
【請求項4】
バインダー系における該金属酸化物の追加でベースのガラスの粉末として生じさせられたと共に該金属の部分における金属の表面のコーティングと組み合わせられる前記接続は、該金属の部分における金属酸化物のコーティングの適用に先立ち制御された雰囲気で加熱することによって該表面へ合金が作られると共に、前記コーティングは、該金属及び該ガラス状の接続層を一緒にもってくることに先立ち堆積させられる
ことを特徴とする、請求項1に記載の方法。
【請求項5】
前記接続は、分散させられた金属酸化物の懸濁液で複合のシール部分をコートすることによって生じさせられることを特徴とする、請求項1に記載の方法。
【請求項6】
前記接続は、該金属及び該シール複合物の成分を一緒にもってくることに先立ち制御された雰囲気で加熱することによって表面へ合金が作られる金属の成分における金属の表面のコーティングとの組み合わせで分散させられた金属酸化物の懸濁液で複合のシール部分をコートすることによって生じさせられることを特徴とする、請求項1に記載の方法。
【請求項7】
表面の面積当たりのガラス状の接続層の材料の量は、該金属の部分に発達することもあるいずれの保護のクロミアの片鱗をも溶解させることに十分なものであることを特徴とする、請求項1乃至6のいずれか一項に記載の方法。
【請求項8】
該ベースのガラスは、共晶の結晶化の挙動に帰着する組成においてアルカリ土類のアルミノ珪酸塩のガラスから、又は、曹長石の初生の結晶化の場内の組成においてアルミノケイ酸ナトリウムから、若しくは、アルミノリン酸マグネシウムのガラスから、選択されることを特徴とする、請求項1乃至6のいずれか一項に記載の方法。
【請求項9】
金属コーティングが、適用の後に原位置で酸化され、且つ、次に該金属の部分における該鱗片の組成を制御すると共に、
前記金属の部分は、以下に続くもの:
− マンガン、ニッケル、及びコバルト
から選択される
ことを特徴とする、請求項1乃至6のいずれか一項に記載の方法。
【請求項10】
前記金属の部分は、以下に続くもの:
− <80μg/cmのマンガン;
− <90μg/cmのニッケル、
− <40μg/cmのコバルト
から選択される、請求項9に記載の方法。
【請求項11】
ガラスを軟化させる温度よりも高い動作する温度で準拠したシールを維持するためには、遅い又は共晶の結晶化の挙動と共にガラスの複合物のシールにおいてベースのガラスを使用することを特徴とする、請求項1乃至8のいずれか一項に記載の方法。
【請求項12】
該表面の熱膨張へ該シールの複合の材料の熱膨張を適合させるためには、前記ベースのガラスに高い膨張の材料を加えることを特徴とする、請求項10又は11に記載の方法。
【請求項13】
前記高い膨張の材料は、該シールの過剰な微小な亀裂を予防するために十分な微細な粒状化されたものであると共に、過剰な反応及び該ガラスのマトリックスへの溶解を予防するために十分な粗大なものであることを特徴とする、請求項12に記載の方法。
【請求項14】
前記高い膨張の材料は、d=10−200μmの粒状物の大きさを有する、請求項12に記載の方法。
【請求項15】
ガラスに対して金属を結合させる、セラミックの成分へ金属を結合させる、又は、金属の成分へ金属を結合させるための請求項1乃至14のいずれか一項に記載の方法で得られたガラスの接続の成分に対する該金属の使用。
【請求項16】
ガラスに対する金属の、金属に対する金属の、及びセラミックに対する金属の接続を製造する方法において、
前記接続は、5μm以下の粒状物の大きさを有する、ベースのガラスの粉末及び金属酸化物の粉末を含む混合物で生じさせられることを特徴とする、方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E−1】
image rotate

【図2E−2】
image rotate

【図3A】
image rotate

【図3B】
image rotate


【公表番号】特表2008−525304(P2008−525304A)
【公表日】平成20年7月17日(2008.7.17)
【国際特許分類】
【出願番号】特願2007−548740(P2007−548740)
【出願日】平成17年12月23日(2005.12.23)
【国際出願番号】PCT/EP2005/013968
【国際公開番号】WO2006/069753
【国際公開日】平成18年7月6日(2006.7.6)
【出願人】(507217109)テクニカル ユニバーシティ オブ デンマーク (8)
【Fターム(参考)】