説明

スパッタリングターゲット及びその製造方法

【課題】スパッタリングによって膜を形成する際に、スパッタ時に発生するパーティクルやノジュールを低減し、品質のばらつきが少なく量産性を向上させることができ、かつ結晶粒が微細であり90%以上の高密度を備えた硫化亜鉛を主成分とするスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体並びに該ターゲットの製造方法を提供する。
【解決手段】硫化亜鉛を主成分とし、さらに導電性酸化物を含有することを特徴とする膜の屈折率を2.0〜2.6の範囲に調整できるスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スパッタリングによって膜を形成する際に、直流(DC)スパッタリングが可能であり、スパッタ時のアーキングが少なく、これに起因して発生するパーティクル(発塵)やノジュールを低減でき、且つ高密度で品質のばらつきが少なく量産性を向上させることのできる、硫化亜鉛を主成分とするスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体並びに該スパッタリングターゲットの製造方法に関する。
【背景技術】
【0002】
近年、磁気ヘッドを必要とせずに記録・再生ができる高密度記録光ディスク技術が開発され、急速に関心が高まっている。この光ディスクは再生専用型、追記型、書き換え型の3種類に分けられるが、特に追記型又は書き換え型で使用されている相変化方式が注目されている。この相変化型光ディスクを用いた記録・再生の原理を以下に簡単に説明する。
相変化光ディスクは、基板上の記録薄膜をレーザー光の照射によって加熱昇温させ、その記録薄膜の構造に結晶学的な相変化(アモルファス⇔結晶)を起こさせて情報の記録・再生を行うものであり、より具体的にはその相間の光学定数の変化に起因する反射率の変化を検出して情報の再生を行うものである。
【0003】
上記の相変化は1〜数μm程度の径に絞ったレーザー光の照射によって行なわれる。この場合、例えば1μmのレーザービームが10m/sの線速度で通過するとき、光ディスクのある点に光が照射される時間は100nsであり、この時間内で上記相変化と反射率の検出を行う必要がある。
また、上記結晶学的な相変化すなわちアモルファスと結晶との相変化を実現する上で、溶融と急冷が光ディスクの相変化記録層だけでなく周辺の誘電体保護層やアルミニウム合金の反射膜にも繰返し付与されることになる。
【0004】
このようなことから相変化光ディスクは、Ge−Sb−Te系等の記録薄膜層の両側を硫化亜鉛−ケイ酸化物(ZnS・SiO)系の高融点誘電体の保護層で挟み、さらにアルミニウム合金反射膜を設けた四層構造となっている。
このなかで反射層と保護層はアモルファス部と結晶部との吸収を増大させ反射率の差が大きい光学的機能が要求されるほか、記録薄膜の耐湿性や熱による変形の防止機能、さらには記録の際の熱的条件制御という機能が要求される(雑誌「光学」26巻1号頁9〜15参照)。
このように、高融点誘電体の保護層は昇温と冷却による熱の繰返しストレスに対して耐性をもち、さらにこれらの熱影響が反射膜や他の箇所に影響を及ぼさないようにし、かつそれ自体も薄く、低反射率でかつ変質しない強靭さが必要である。この意味において誘電体保護層は重要な役割を有する。
【0005】
上記誘電体保護層は、通常スパッタリング法によって形成されている。このスパッタリング法は正の電極と負の電極とからなるターゲットとを対向させ、不活性ガス雰囲気下でこれらの基板とターゲットの間に高電圧を印加して電場を発生させるものであり、この時電離した電子と不活性ガスが衝突してプラズマが形成され、このプラズマ中の陽イオンがターゲット(負の電極)表面に衝突してターゲット構成原子を叩きだし、この飛び出した原子が対向する基板表面に付着して膜が形成されるという原理を用いたものである。
【0006】
従来、上記保護層は可視光域での透過性や耐熱性等を要求されるため、ZnS−SiO等のセラミックスターゲットを用いてスパッタリングし、500〜2000Å程度の薄膜が形成されている。しかし、これらの材料は、ターゲットのバルク抵抗値が高いため、直流スパッタリング装置により成膜することができず、通常高周波スパッタリング(RF)装置を使用されている。
ところが、この高周波スパッタリング(RF)装置は、装置自体が高価であるばかりでなく、スパッタリング効率が悪く、電力消費量が大きく、制御が複雑であり、成膜速度も遅いという多くの欠点がある。また、成膜速度を上げるため、高電力を加えた場合、基板温度が上昇し、ポリカーボネート製基板の変形を生ずるという問題がある。
【0007】
また、上記硫化亜鉛−ケイ酸化物(ZnS−SiO)ターゲットに使用されるSiOは、通常4N以上の高純度で平均粒径が0.1〜20μmのものが使用されており、700〜1200°Cで焼結して製造されている。
しかし、このような温度範囲ではSiO自体の変形等は発生せず、ZnSとの反応も起こらないため、ZnSとSiOの間に空隙を生じ易く、またSiOを微細にするほど、それが顕著となり、ZnSの緻密化も阻害されるため、ターゲット密度が低下するという問題があった。
さらに、ZnSにSiOを含有するターゲットは、スパッタリングによって膜を形成する際にアーキングを発生し易く、それが起因となってスパッタ時に発生するパーティクル(発塵)やノジュールが発生し、成膜の均一性及び品質が低下するだけでなく、生産性も劣るという問題があった。
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、スパッタリングによって膜を形成する際に、基板への加熱等の影響を少なくし、高速成膜ができ、膜厚を薄く調整でき、またスパッタ時に発生するパーティクル(発塵)やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができ、かつ結晶粒が微細であり90%以上、特に95%以上、さらには98%以上の高密度を備えた硫化亜鉛を主成分とするスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体並びに該ターゲットの製造方法を得ることを目的とする。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、本発明者らは鋭意研究を行った結果、ターゲットへの添加成分として、導電性酸化物を使用することによりバルク抵抗値を下げてDCスパッタリングを可能とし、保護膜としての特性も損なわず、さらにスパッタ時に発生するパーティクルやノジュールを低減でき、膜厚均一性も向上できるとの知見を得た。
【0010】
本発明はこの知見に基づき、
1.硫化亜鉛を主成分とし、さらに導電性酸化物を含有することを特徴とする膜の屈折率を2.0〜2.6の範囲に調節できるスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
2.導電性酸化物の含有量が1〜50mol%であることを特徴とする上記1記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
3.導電性酸化物が酸化インジウム、酸化スズ、酸化亜鉛から選択した1種以上であることを特徴とする上記1又は2記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
4.酸化アルミニウム、酸化ガリウム、酸化ジルコニウム、酸化ゲルマニウム、酸化アンチモン、酸化ニオブから選択した1種類以上の酸化物を、さらに含有することを特徴とする上記1〜3のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
5.酸化アルミニウム、酸化ガリウム、酸化ジルコニウム、酸化ゲルマニウム、酸化アンチモン、酸化ニオブから選択した1種類以上の酸化物を、導電性酸化物に対して重量比換算で0.01〜20%含有することを特徴とする上記1〜3のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
6.酸化アルミニウム、酸化硼素、酸化燐、アルカリ金属酸化物、アルカリ土類金属酸化物から選択した1種類以上を酸化ケイ素に対する重量比で0.1%以上含有する酸化ケイ素を主成分としたガラス形成酸化物を含有することを特徴とする上記1〜3のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
7.ガラス形成酸化物が総量に対するモル比換算で1〜30%含有することを特徴とする上記6記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
8.ターゲットバルク中に存在する絶縁相又は高抵抗相の平均結晶粒径が5μm以下であることを特徴とする上記1〜7のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
9.ターゲットバルク中に存在する絶縁相又は高抵抗相が、硫化亜鉛、酸化ケイ素、酸化硼素、酸化燐、アルカリ金属酸化物、アルカリ土類金属酸化物の1種以上を含有することを特徴とする上記1〜8のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
10.相対密度が90%以上であることを特徴とする上記1〜9のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
11.バルク抵抗値が1Ωcm以下であることを特徴とする上記1〜10のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体
12.上記1〜11のそれぞれに記載の硫化亜鉛を主成分とするスパッタリングターゲットの製造方法であって、各成分原料粉末を均一に混合し、この混合粉末をホットプレス又は熱間静水圧プレスにより、温度700〜1200°Cに加熱し、面圧100〜300kg/cmの条件で焼結することを特徴とする硫化亜鉛を主成分とするスパッタリングターゲットの製造方法、を提供する。
【発明の効果】
【0011】
本発明は、スパッタリングによって膜を形成する際に、DCスパッタリングを可能とし、DCスパッタリングの特徴である、制御が容易であり、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。また、屈折率を高くすることが可能となるため、このスパッタリングターゲットを使用することにより生産性が向上し、品質の優れた材料を得ることができ、光ディスク保護膜をもつ光記録媒体を低コストで安定して製造できるという著しい効果がある。
さらに、スパッタ時に発生するパーティクル(発塵)やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができ、かつ空孔が少なく結晶粒が微細であり、相対密度90%以上の高密度を備えた硫化亜鉛を主成分とするスパッタリングターゲットを製造することができ、また保護膜としての特性も損なわずに、該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体を得ることができるという著しい効果を有する。
【発明を実施するための最良の形態】
【0012】
本発明のスパッタリングターゲットは、硫化亜鉛を主成分とし、さらに導電性酸化物を含有する。これによって、通常使用されているZnS−SiOと同等の保護膜としての特性を備え、かつバルク抵抗値が1Ωcm以下であるスパッタリングターゲットを得ることができ、DCスパッタリングが可能となる。
DCスパッタリングは、上述のRFスパッタリングに比べ、成膜速度が速く、スパッタリング効率が良いという優れた特徴を持つ。また、DCスパッタリング装置は価格が安く、制御が容易であり、電力の消費量も少なくて済むという利点がある。
また、屈折率を通常のZnS−SiO(2.0〜2.1)より大きくすることで、保護膜自体の膜厚を薄くすることも可能となるため、生産性向上、基板加熱防止効果を発揮できる。
したがって、本発明のスパッタリングターゲットを使用することにより、生産性が向上し、品質の優れた材料を得ることができ、光ディスク保護膜をもつ光記録媒体を低コストで安定して製造できるという著しい効果がある。
【0013】
スパッタリングターゲット中の導電性酸化物の含有量は、1〜50mol%とすることが望ましい。含有量を1〜50mol%とする理由は導電性を得、かつZnS自体の特性を維持するためである。
また、導電性酸化物は、酸化インジウム、酸化スズ、酸化亜鉛から選択される。さらに、酸化アルミニウム、酸化ガリウム、酸化ジルコニウム、酸化ゲルマニウム、酸化アンチモン、酸化ニオブから選択した1種類以上の酸化物を、さらに含有させることができる。この含有量は、導電性酸化物に対して重量比換算で0.01〜20%含有させるのが望ましい。
酸化物を含有させる理由は導電性酸化物と価数の異なる酸化物を固溶させて不定比性を生じさせ、それにより伝導電子ホールを多くすることができるためである。この場合は特に、ZnSと混合する前に予め酸化物を固溶させることが望ましい。
また、導電性酸化物に対して重量比換算で0.01〜20%とする場合の下限値は、添加による効果を得るためであり、また上限値は、固溶限より多く添加すると導電性が阻害され、膜特性への影響が無視できなくなるからである。
【0014】
さらに、本発明のスパッタリングターゲットに、酸化ケイ素を含有させることができる。酸化ケイ素を含有させると光学特性、熱伝導率等をZnS−SiOと同等に調整できるという利点がある。
酸化ケイ素を含有させると直流スパッタリングにおいて、異常放電の起点となり易いという欠点があるが、酸化アルミニウム、酸化硼素、酸化燐、アルカリ金属酸化物、アルカリ土類金属酸化物から選択した1種類以上を酸化ケイ素に対する重量比で0.1%以上のガラス形成酸化物を含有させることによって、前記欠点を解消することができるので、上記の光学特性、熱伝導率等をZnS−SiOと同等に調整できるという効果がある酸化ケイ素を添加することは有効である。
また、このガラス形成酸化物は、総量に対するモル比換算で1〜30%含有させることが望ましい。これは異常放電がなくZnS−SiOと同等の膜を得ることができる。
【0015】
ターゲットバルク中に存在する絶縁相又は高抵抗相の平均結晶粒形が5μm以下であることが望ましい。これによって、異常放電を抑制する効果を得ることができる。
さらにこのターゲットバルク中に存在する絶縁相又は高抵抗相が、硫化亜鉛、酸化ケイ素、酸化硼素、酸化燐、アルカリ金属酸化物、アルカリ土類金属酸化物の1種以上を含有することが望ましい。これによって、絶縁性の大きい酸化ケイ素の抵抗値を低減することができる。
さらに本発明のターゲットの相対密度が90%以上、さらには95%以上の高密度のものを得ることができる。これによって、スパッタリングの際にパーティクル(発塵)やノジュールをより低減させ、品質のばらつきが少なく量産性を向上させることができる。
【0016】
本発明のスパッタリングターゲットの製造方法に際しては、硫化亜鉛等の原料粉末を均一に混合し、ホットプレス又は熱間静水圧プレスにより、温度700〜1200°Cに加熱し、面圧100〜300kg/cmの条件で焼結する。
これによって、焼結体の相対密度90%以上、さらには相対密度95%以上、バルク抵抗値が1Ωcm以下である硫化亜鉛を主成分とするスパッタリングターゲットを製造することができる。
本発明の硫化亜鉛を主成分とするスパッタリングターゲットの密度の向上は、空孔を減少させ結晶粒を微細化し、ターゲットのスパッタ面を均一かつ平滑にすることができるので、スパッタリング時のパーティクルやノジュールを低減させ、さらにターゲットライフも長くすることができるという著しい効果を有する。
【実施例】
【0017】
以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
【0018】
(実施例1)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)の酸化インジウム(In)粉ZnSに対し20mol%の比率で均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1000°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は98%であった。また、抵抗値は2.5×10-3Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングが容易にでき、優れた特性の高密度ZnSを主成分とする導電性酸化物含有相変化型光ディスク保護膜形成用スパッタリングターゲットが得られた。被膜の透過率は93%、屈折率は2.3であった。
【0019】
(実施例2)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)のITO(In−10wt%SnO)粉を、ZnSに対し30mol%の比率で均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1100°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は97%であった。また、抵抗値は4.7×10-3Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングが容易にでき、優れた特性の高密度ZnSを主成分とする導電性酸化物含有相変化型光ディスク保護膜形成用スパッタリングターゲットが得られた。被膜の透過率は88%、屈折率は2.4であった。
【0020】
(実施例3)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)の酸化インジウム(In)粉と酸化ジルコニウム(ZrO)を、ZnSに対し20mol%の比率で均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1000°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は100%であった。また、抵抗値は1.4×10-2Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングが容易にでき、優れた特性の高密度ZnSを主成分とする相変化型光ディスク保護膜形成用スパッタリングターゲットが得られた。被膜の透過率は95%、屈折率は2.3であった。
【0021】
(実施例4)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)の酸化インジウム(In)粉と酸化ジルコニウム(ZrO)をZnSに対し20mol%、さらに珪酸ガラスを同ZnSに対し20mol%の比率で均一に混合した。珪酸ガラスの組成は、SiO−0.2wt%Al−0.1wt%Naである。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1100°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は100%であった。また、抵抗値は5.4×10-2Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングが容易にでき、優れた特性の高密度ZnSを主成分とする相変化型光ディスク保護膜形成用スパッタリングターゲットが得られた。被膜の透過率は95%、屈折率は2.3であった。
【0022】
(実施例5)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)のATO(SnO−10wt%Sb)粉とを同ZnSに対し30mol%の比率で均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度800°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は95%であった。また、抵抗値は5.2×10-1Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングが容易にでき、優れた特性の高密度ZnSを主成分とする相変化型光ディスク保護膜形成用スパッタリングターゲットが得られた。被膜の透過率は85%、屈折率は2.4であった。
【0023】
(実施例6)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)のINO(In−5wt%Nb)粉とを、同ZnSに対し20mol%の比率で均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1100°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は98%であった。また、抵抗値は3.5×10-2Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングが容易にでき、優れた特性の高密度ZnSを主成分とする相変化型光ディスク保護膜形成用スパッタリングターゲットが得られた。被膜の透過率は90%、屈折率は2.3であった。
【0024】
(実施例7)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)のGZO(ZnO−2wt%Ga)粉とを、同ZnSに対し20mol%の比率で均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1100°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は96%であった。また、抵抗値は6.8×10-2Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングが容易にでき、優れた特性の高密度ZnSを主成分とする相変化型光ディスク保護膜形成用スパッタリングターゲットが得られた。被膜の透過率は95%、屈折率は2.2であった。
【0025】
(比較例1)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)の酸化インジウム(In)粉と純度4Nの酸化ケイ素(SiO)を、組成比がそれぞれ20mol%、10mol%の比率で、均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1000°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は98%であった。また、抵抗値は2.0×10-1Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングでは異常放電が起こった。これらが原因となってパーティクル(発塵)やノジュールが増加した。このように、比較例1の条件では成膜の均一性及び品質が低下するだけでなく、生産性も劣るという問題があった。
ZnS−In−SiO相変化型光ディスク保護膜形成用スパッタリングターゲットとしては、適切なものではなかった。
【0026】
(比較例2)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)ののITO(In−10wt%SnO)粉と純度4Nの酸化ケイ素(SiO)を、組成比がそれぞれ20mol%、20mol%の比率で、均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1100°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は100%であった。また、抵抗値は1.4×10-1Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングの際に異常放電が起こった。これらが原因となってパーティクル(発塵)やノジュールが増加した。このように、比較例2の条件では成膜の均一性及び品質が低下するだけでなく、生産性も劣るという問題があった。
ZnS−In−SnO−SiO相変化型光ディスク保護膜形成用スパッタリングターゲットとしては、適切なものではなかった。
【0027】
(比較例2)
純度4N(99.99%)である硫化亜鉛(ZnS)粉に、純度4N(99.99%)ののIZO(In−5wt%ZrO)粉と純度4Nの酸化ケイ素(SiO)を、組成比がそれぞれ20mol%、20mol%の比率で、均一に混合した。
この混合粉をグラファイトダイスに充填し、真空雰囲気中、面圧200kg/cm、温度1100°Cの条件でホットプレスを行った。これによって得られたバルク体の相対密度は99%であった。また、抵抗値は1.0×10-2Ωcmであった。
このバルク体からターゲットを作製し、スパッタ試験を実施したところDCスパッタリングの際に異常放電が起こった。これらが原因となってパーティクル(発塵)やノジュールが増加した。このように、比較例2の条件では成膜の均一性及び品質が低下するだけでなく、生産性も劣るという問題があった。
ZnS−ZrO−SiO相変化型光ディスク保護膜形成用スパッタリングターゲットとしては、適切なものではなかった。
【0028】
以上の実施例1〜7及び比較例1〜3の組成及び特性値を表1に示す。上記実施例に示すように、硫化亜鉛を主成分とし、これに導電性酸化物を含有させることにより、バルク抵抗値を下げ、DCスパッタリングを可能となり、保護膜としての特性も損なわず、さらにスパッタ時に発生するパーティクルやノジュールを低減でき、膜厚均一性も向上できる効果を有することが分かった。
なお、上記実施例1〜7は、本発明のターゲット組成の代表例を示すが、本発明に含まれる他のターゲット組成においても、同様の結果が得られた。
これらに対して、比較例1〜3においては、SiOがそのまま添加されているためバルク抵抗値は低下するが、スパッタリングの際に異常放電が発生し、そしてこれらに起因してパーティクル(発塵)やノジュールが増加し、また相変化型光ディスク保護膜としての特性も損なわれるという問題があることが分かった。
以上から、本発明の硫化亜鉛を主成分とするスパッタリングターゲットは、相変化型光ディスク保護膜を形成するターゲットとして極めて有効であることが分かる。
【0029】
【表1】

【産業上の利用可能性】
【0030】
本発明は、スパッタリングによって膜を形成する際に、DCスパッタリングを可能とし、DCスパッタリングの特徴である、制御が容易であり、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。また、屈折率を高くすることが可能となるため、このスパッタリングターゲットを使用することにより生産性が向上し、品質の優れた材料を得ることができ、光ディスク保護膜をもつ光記録媒体を低コストで安定して製造できるという著しい効果がある。
さらに、スパッタ時に発生するパーティクル(発塵)やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができ、かつ空孔が少なく結晶粒が微細であり、相対密度90%以上の高密度を備えた硫化亜鉛を主成分とするスパッタリングターゲットを製造することができ、また保護膜としての特性も損なうことがないという優れた効果を有する。
したがって、上記スパッタリングターゲット及び該ターゲットを使用して相変化型光ディスク保護膜を形成した光記録媒体は、産業上極めて有用である。

【特許請求の範囲】
【請求項1】
硫化亜鉛を主成分とし、さらに導電性酸化物を含有することを特徴とする膜の屈折率を2.0〜2.6の範囲に調整できるスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項2】
導電性酸化物の含有量が1〜50mol%であることを特徴とする請求項1記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項3】
導電性酸化物が酸化インジウム、酸化スズ、酸化亜鉛から選択した1種以上であることを特徴とする請求項1又は2記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項4】
酸化アルミニウム、酸化ガリウム、酸化ジルコニウム、酸化ゲルマニウム、酸化アンチモン、酸化ニオブから選択した1種類以上の酸化物を、さらに含有することを特徴とする請求項1〜3のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項5】
酸化アルミニウム、酸化ガリウム、酸化ジルコニウム、酸化ゲルマニウム、酸化アンチモン、酸化ニオブから選択した1種類以上の酸化物を、導電性酸化物に対して重量比換算で0.01〜20%含有することを特徴とする請求項1〜3のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項6】
酸化アルミニウム、酸化硼素、酸化燐、アルカリ金属酸化物、アルカリ土類金属酸化物から選択した1種類以上を酸化ケイ素に対する重量比で0.1%以上含有する酸化ケイ素を主成分としたガラス形成酸化物を含有することを特徴とする請求項1〜3のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項7】
ガラス形成酸化物が総量に対するモル比換算で1〜30%含有することを特徴とする請求項6記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項8】
ターゲットバルク中に存在する絶縁相又は高抵抗相の平均結晶粒径が5μm以下であることを特徴とする請求項1〜7のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項9】
ターゲットバルク中に存在する絶縁相又は高抵抗相が、硫化亜鉛、酸化ケイ素、酸化硼素、酸化燐、アルカリ金属酸化物、アルカリ土類金属酸化物の1種以上を含有することを特徴とする請求項1〜8のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項10】
相対密度が90%以上であることを特徴とする請求項1〜9のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項11】
バルク抵抗値が1Ωcm以下であることを特徴とする請求項1〜10のそれぞれに記載のスパッタリングターゲット及び該ターゲットを使用して硫化亜鉛を主成分とする相変化型光ディスク保護膜を形成した光記録媒体。
【請求項12】
請求項1〜11のそれぞれに記載の硫化亜鉛を主成分とするスパッタリングターゲットの製造方法であって、各成分原料粉末を均一に混合し、この混合粉末をホットプレス又は熱間静水圧プレスにより、温度700〜1200°Cに加熱し、面圧100〜300kg/cmの条件で焼結することを特徴とする硫化亜鉛を主成分とするスパッタリングターゲットの製造方法。

【公開番号】特開2008−303467(P2008−303467A)
【公開日】平成20年12月18日(2008.12.18)
【国際特許分類】
【出願番号】特願2008−186663(P2008−186663)
【出願日】平成20年7月18日(2008.7.18)
【分割の表示】特願2002−36154(P2002−36154)の分割
【原出願日】平成14年2月14日(2002.2.14)
【出願人】(591007860)日鉱金属株式会社 (545)
【Fターム(参考)】