説明

ドーピング装置およびドーピング方法

【課題】 試料の表面に低エネルギーの中性粒子ビームを照射し、試料が電気的に中性を保つように不純物を導入することができるドーピング装置を提供する。
【解決手段】 ドーピング装置10は、試料18に中性粒子を照射して不純物をドープする。ドーピング装置10は、試料18を保持する保持台44と、荷電粒子をプラズマとして発生させるプラズマ室14と、荷電粒子を試料に向けて加速する電極32と、加速された荷電粒子を中性化して中性粒子を生成する中性室16とを備えている。また、このドーピング装置10は、中性化室16と試料18との間に設けられ、中性化室16で中性化されなかった荷電粒子54を除去する偏向電極60と、偏向電極60により除去された荷電粒子54を計測することにより試料18へのドープ量を計測する計測手段64,66,68,70とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体の表面もしくは極浅い領域に不純物を導入するドーピング装置およびドーピング方法に係り、特に半導体製造分野において、面積の大きな試料に低エネルギー中性粒子ビームを照射して高濃度の不純物を導入するドーピング装置およびドーピング方法に関するものである。
【背景技術】
【0002】
図1は、従来のドーピング装置を示す模式図である。図1に示すように、従来のドーピング装置は、荷電粒子を発生させるためのプラズマチャンバ500と、荷電粒子を中性化するための中性化室502と、ドーピングを行う試料504を保持する保持台506と、保持台506が配置された試料室508とを備えている。
【0003】
プラズマチャンバ500で生成された荷電粒子は、引出メッシュ電極510により加速され、中性化室502に到達する。この中性化室502には、ガスフィード503から中性化のためのガスが導入され、中性化室502の圧力が10−3Pa台に維持される。ここで、荷電粒子は、電荷交換衝突により一部が中性化され中性粒子ビームとなり、この中性粒子ビームは試料室508にある試料504の表面に到達し、試料504に不純物がドープされる。中性化室502内で中性化されなかった荷電粒子は、試料504の手前に設けられたサプレッサ512によって除去され、中性粒子ビームのみが試料504に到達する。
【0004】
不純物の低エネルギードーピングの分野では、対象とする試料は、大きな面積を有するガラスなどの絶縁物であることが多く、絶縁物試料に対して荷電粒子によるドーピングを行うと、試料の表面において帯電が生じる。この帯電によって荷電粒子が反発されるので単位時間あたりのドープ量が低下し、処理時間が長くなり生産性が低下する。さらに、帯電が進むとほぼすべての荷電粒子が反発され、ドーピングができなくなってしまう。
【0005】
このような帯電を防止するために、試料504の表面の近傍に、例えば熱電子を放出して荷電粒子による帯電を緩和する方法がある。しかしながら、この方法によれば、例えば、直径が200mmを超えるような大きな面積を有する試料に対して均一な帯電抑制を行うことは難しく、試料の全面に対して不均一なドーピングになりやすい。一般的には、熱電子放出には、タングステンフィラメントを用いることが多いが、タングステンの蒸発による試料の汚染の問題がある。
【0006】
また、不純物の低エネルギードーピングにおける試料の帯電を防ぐ方法として、図1に示すように、低エネルギー中性粒子ビームを照射する方法がある。この方法によれば、大きな面積を有する試料の表面における帯電を防止しつつ、不純物の低エネルギードーピングを行うことができる。しかしながら、中性化のためのガスが試料室508から導入されているため、試料室508の圧力が高くなり、中性粒子ビームの軌道が散乱されてしまう。したがって、単位時間あたりのドープ量が低下し、生産性が低下してしまう。
【0007】
また、中性化室502と試料室508との間にコンダクタンスの差がほとんどないため、中性化室502と試料室508との間の圧力差がほとんどない。したがって、電荷交換衝突による荷電粒子の中性化は、中性化室16で完全に行われているとはいえず、試料室508でも行われている。このように、図1に示す従来のドーピング装置の中性化室16は、中性化のための機能を十分に果たしているとはいえない。
【0008】
次に、サプレッサ512に印加される電圧が100V程度より大きい場合、中性化のためのガスが導入されたときに異常放電が起きやすく、異常放電が起きた場合には、サプレッサ512の材質のスパッタリングが発生し、試料504の汚染が発生する。同様に、飛来してきた荷電粒子によりサプレッサ512がスパッタリングされ、サプレッサ512を構成する物質の元素が汚染物質として試料504にドープされ、歩留まりが低下してしまう。さらに、ドープ量をモニターする機能がないため、ドープ量がバッチ間で一定とならず、歩留まりが低下する。
【0009】
【特許文献1】特許第3170792号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明は、このような従来技術の問題点に鑑みてなされたもので、試料の表面に低エネルギーの中性粒子ビームを照射し、試料が電気的に中性を保つように不純物を導入することができるドーピング装置およびドーピング方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するため、本発明の第1の態様によれば、試料の表面に低エネルギーの中性粒子ビームを照射し、試料が電気的に中性を保つように不純物を導入することができるドーピング装置が提供される。このドーピング装置は、試料に中性粒子を照射して不純物をドープするものである。上記ドーピング装置は、上記試料を保持する保持台と、荷電粒子をプラズマとして発生させるプラズマ発生手段と、上記荷電粒子を上記試料に向けて加速する加速手段と、上記加速された荷電粒子を中性化して中性粒子を生成する中性化手段とを備えている。また、上記ドーピング装置は、上記中性化手段と上記試料との間に設けられ、上記中性化手段によって中性化されなかった荷電粒子を除去する荷電粒子除去手段と、上記荷電粒子除去手段により除去された荷電粒子を計測することにより上記試料へのドープ量を計測する計測手段とを備えている。
【0012】
中性化手段では、プラズマ発生手段から放出された荷電粒子をすべて中性化できるわけではなく、一部の荷電粒子はそのまま中性化手段を通過してしまう。このため、上記荷電粒子除去手段は、荷電粒子が上記試料に到達しないように、磁場および/または電場により上記荷電粒子の軌道を曲げることが好ましい。
【0013】
また、上記ドーピング装置は、上記荷電粒子を発生させるプラズマ室と、上記保持台が配置された試料室と、上記プラズマ室と上記試料室との間に配置された中性化室と、上記荷電粒子を中性化するための中性化ガスを上記中性化室に導入する中性化ガス導入ポートとをさらに備えていることが好ましい。
【0014】
また、上記ドーピング装置は、上記プラズマ室と上記中性化室との間、および、上記中性化室と上記試料室との間に、外部から導入されたガスに対するコンダクタンスを小さくし、上記荷電粒子を中性化する電極をさらに備えていてもよい。これにより、導入されたガスのコンダクタンスを低下させながらも、上記電極内を荷電粒子もしくは中性化されたビームを効率よく通過させて、中性化効率とビームの直進性を高めることができる。
【0015】
また、上記ドーピング装置は、上記中性化室の上流側および下流側の少なくとも一方に配置された排気ポンプをさらに備えていてもよい。これにより、プラズマ室に導入したガスとの混合を避けることができる。また、ドーピングを行う試料室の圧力を10−5Paまたは10−5Paよりも低く維持することができる。
【0016】
また、本発明の第2の態様によれば、試料の表面に低エネルギーの中性粒子ビームを照射し、試料が電気的に中性を保つように不純物を導入することができるドーピング方法が提供される。このドーピング方法は、荷電粒子をプラズマとして発生させる工程と、上記荷電粒子を試料に向けて加速する工程と、上記加速された荷電粒子を中性化して中性粒子を生成する工程と、中性化されなかった荷電粒子を除去する工程と、上記試料に上記中性粒子を照射して不純物をドープする工程と、上記試料へのドープ量を制御する工程とを有する。
【0017】
また、上記ドーピング方法は、上記除去された荷電粒子を計測することにより上記試料へのドープ量を計測する工程をさらに有していてもよい。
【発明の効果】
【0018】
本発明によれば、試料の表面に低エネルギーの中性粒子ビームを照射し、試料が電気的に中性を保つように不純物を導入することができる。
【発明を実施するための最良の形態】
【0019】
以下、本発明に係るドーピング装置の実施形態について図2から図7を参照して詳細に説明する。なお、図2から図7において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
【0020】
図2は、本発明の第1の実施形態におけるドーピング装置10を示す模式図である。図2に示すように、ドーピング装置10は、円筒状の真空容器12を備えており、この真空容器12の内部には、プラズマが生成されるプラズマ室14と、プラズマ室14のプラズマ中の荷電粒子から中性粒子ビームを生成する中性化室16と、半導体基板、ガラス、有機物、セラミックスなどの試料18の加工を行う試料室20とが形成されている。プラズマ室14、中性化室16、および試料室20は、真空容器12により外部と隔離されている。図2では、プラズマ室14、中性化室16、および試料室20が真空容器12により一体に形成されている例が示されているが、プラズマ室14、中性化室16、および試料室20をそれぞれ別個の真空容器により形成し、他の室とフランジなどを介して接続してもよい。なお、真空容器12の形状として円筒状をその一例として示したが、断面が矩形であったり、それらに類似の形状であってもよい。
【0021】
ドーピング装置10は、プラズマ室14で荷電粒子からなるプラズマを生成した後に、中性化室16で荷電粒子を中性化して低エネルギーの中性粒子ビームを生成し、試料室20に配置された試料の表面に照射して不純物をドープするように構成されている。
【0022】
プラズマ室14の上部には、真空容器12内にプロセスガスを導入するプロセスガス導入ポート22が設けられており、このプロセスガス導入ポート22はプロセスガス供給源24に接続されている。また、プラズマ室14には、排気バルブ26を介して真空ポンプ28が接続されている。
【0023】
プラズマ室14には、プラズマ室14内に荷電粒子をプラズマとして発生させるプラズマ発生手段としてのプラズマ生成用電源30が接続されており、プラズマ室14と中性化室16との間には、荷電粒子のエネルギーを加速する第1電極32が配置されている。この第1電極32には第1電源34が接続されている。このように、第1電極32と第1電源34とによりプラズマ中の荷電粒子を試料18に向けて加速する加速手段が構成されている。
【0024】
中性化室16には、中性化室16内に中性化ガスを導入する中性化ガス導入ポート36が設けられており、この中性化ガス導入ポート36は中性化ガス供給源38に接続されている。このような構成により、中性化ガス導入ポート36を通して中性化室16の内部に中性化ガスが導入されるようになっている。また、中性化室16と試料室20との間には、中性化室16の内部で中性化されなかった残留荷電粒子を除去する第2電極40が配置されており、この第2電極40には第2電源42が接続されている。このように、第2電極40と第2電源42とにより中性化手段によって中性化されなかった荷電粒子を除去する荷電粒子除去手段が構成されている。
【0025】
試料室20内には、試料18を保持する保持台44が配置されており、この保持台44の上面に試料18が載置されている。試料室20の保持台44の近傍には、排気バルブ46を介して真空ポンプ48が接続されている。この真空ポンプ48によって試料室20は所定の圧力に維持される。なお、試料室20の第2電極40の近傍にも、排気バルブ50を介して真空ポンプ52が接続されている。
【0026】
また、試料室20には、第2電極40で除去しきれなかった残留荷電粒子54を除去するための偏向電場を形成する偏向電極60が配置されており、この偏向電極60は偏向電界発生用電源62に接続されている。このように、偏向電極60と偏向電界発生用電源62とにより中性化手段によって中性化されなかった荷電粒子を除去する荷電粒子除去手段が構成されている。
【0027】
また、試料室20には、偏向電極60により除去された荷電粒子が照射されるターゲット64が設置されている。このターゲット64には、ターゲット64に照射された荷電粒子による電流を計測する電流計66が接続されている。この電流計66はアンプ68を介してコントローラ70に接続されている。コントローラ70は、電流計66により計測された電流値に基づいて試料18のドープ量を算出し、プラズマ電源30を制御して荷電粒子の生成量を調整するようになっている。このように、ターゲット64、アンプ68、電流計66、およびコントローラ70により、荷電粒子除去手段により除去された荷電粒子を計測することにより前記試料へのドープ量を計測する計測手段が構成されている。
【0028】
次に、本実施形態におけるドーピング装置10の動作について説明する。まず、試料室20内の保持台44の上に試料18を載置する。そして、真空ポンプ28および真空ポンプ48を作動させることにより、真空容器12内を真空排気し、プラズマ室14内および試料室20の圧力を10−4Pa以下、好ましくは10−5Pa台に保持する。そして、排気バルブ26を閉じ、プロセスガス導入ポート22から不純物を含んだプロセスガスとして例えばAsH、Bなどをプラズマ室14に導入するとともに、プラズマ室14内の圧力を10−2Paないしは10−1Pa台に保持する。
【0029】
次に、プラズマ生成用電源30によりプラズマ室14の内部にエネルギーを加え、プラズマを発生させる。プラズマ室14の内部にエネルギーを加え、プラズマ室14の内部にプラズマを発生させるプラズマ発生手段としては、例えば、誘導結合型プラズマを用いることができる。誘導結合型プラズマは、単純な構造で高密度プラズマを生成できるので、近年の半導体製造装置において盛んに活用されるようになってきている。プラズマ発生用電源は、商用周波数である13.56MHzや2.45GHzの高周波、あるいは、このような高周波をパルス状に間欠的に印加したものを用いることができる。あるいは、その他の周波数の交流電界、パルス電界、直流電界、磁場、レーザー、衝撃波、接触熱電離などを用いてプラズマ室14の内部にエネルギーを加えてもよい。
【0030】
そして、発生させたプラズマから荷電粒子を放出させる。プラズマから荷電粒子を放出させる方法としては、プラズマ自身の発散を利用することができる。物質を加熱(エネルギー添加)していくと、固体(物質の第1の状態)から液体(物質の第2の状態)へ、そして液体(物質の第2の状態)から気体(物質の第3の状態)へと状態が変化するが、さらにエネルギーを加えるとプラズマが生成される。このように、プラズマは、物質の第4の状態と呼ばれる高エネルギー状態にある。このプラズマのエネルギーの高さを利用して、プラズマ自身から荷電粒子を発散させることができる。
【0031】
しかし、プラズマ自身からの荷電粒子の発散(自然拡散)は、空間電荷制限を受けるため、生産性向上を目的としてプラズマ密度を向上させても、効率的なドーピングが行えない。そこで、試料18に対して効率的なドーピングを行うために、数十ボルトから数百ボルト、最大で数キロボルトまで荷電粒子のエネルギーを加速することがある。図2に示す例では、第1電源34により第1電極32に電圧を印加して、プラズマ室14のプラズマから荷電粒子を加速するようになっている。
【0032】
誘導結合型プラズマにより荷電粒子を生成した場合、プラズマが有するプラズマ電位は、放電のための電力やガスの種類、圧力などによって異なるが、おおよそ数Vから100V程度になる。したがって、荷電粒子の初期エネルギーは、第1電極32の電位をアース電位とした場合には、おおよそ数eVから100eV程度となる。これは、プラズマが第1電極32と接触する部分にはイオンシースが形成され、プラズマ中の荷電粒子をプラズマ電位相当のエネルギーで加速するからである。
【0033】
荷電粒子のエネルギーをさらに高めたい場合には、プラズマ電位を上回る電圧を第1電極32に印加するのがよい。例えば、荷電粒子のエネルギーを1keV程度に高めたい場合には、第1電極32に約1kVの電圧を印加すればよい。逆に、例えば100Vなど比較的高めのプラズマ電位にあるプラズマから、より低エネルギーの荷電粒子を加速したい場合には、プラズマ室14の内部に電位制御用電極(図示せず)を設け、電位制御用電極に電圧を印加してプラズマ電位を下げてやればよい。
【0034】
加速する荷電粒子としては、正の電荷を有する正イオンと、負の電荷を有する負イオンとがあるが、正イオンを加速したい場合には第1電極32に負の電圧を印加し、負イオンを加速したい場合には第1電極32に正の電圧を印加する。なお、第1電極32は、荷電粒子の加速エネルギーを決めるだけでなく、プラズマ室14と中性化室16のガスのコンダクタンスを低下させ、荷電粒子の中性化も行う役割を有する。
【0035】
図3は、第1電極32の構造の一例を示す斜視図である。図3に示す例では、第1電極32は、六角柱状のスリット80が多数組み合わされたハニカム構造82により構成されている。このハニカム構造82は、光電子増倍管に用いられるハニカムスリットのような構造を有しており、全開口部に対する光学的開口率が高い。
【0036】
また、図3に示すハニカム構造82は、1つのスリット80の開口部面積に対してスリット80の長さが長く、アスペクト比が高いため、ガスに対するコンダクタンスが小さい。例えば、スリット80の六角形の対角線の長さを1mmとし、スリット80の長さを10mmとした場合、1つのハニカムスリット80のコンダクタンスは、約1.2×10−5(m/s)しかない。なお、このコンダクタンスの値は、「真空ハンドブック」(日本真空技術株式会社(現、株式会社アルバック)編、オーム社、初版、P.35−40)を参考にして算出した。
【0037】
これらのハニカムスリット80は、ガスに対するコンダクタンスが小さいにもかかわらず、直進性のよいビームに対しては、透過率が高い。荷電粒子のうち直進性の良いビーム成分を持つ荷電粒子が、ハニカムスリット80を通り抜ける際に残留ガス分子との電荷交換衝突により中性化される。この残留ガスは、プラズマ生成用プロセスガスと同一であるために、プラズマ室14で生成された荷電粒子と同一元素で構成されている。したがって、電荷交換が行われる断面積も最大となり、中性化効率が高い。なお、ここでいう残留ガスまたは残留ガス分子とは、プラズマ室14に導入された放電用プロセスガスのうち、プラズマ室14の内部で荷電粒子となることなくプラズマ室14から流出してきた放電用プロセスガスまたは放電用プロセスガス分子のことをいう。
【0038】
荷電粒子のうち等方的に拡散する荷電粒子は、ハニカムスリット80の内壁に衝突し、正イオンの場合は電子の再付着で中性化され、負イオンの場合は電子の脱離により中性化される。このように、第1電極32によってプラズマ中の荷電粒子の中性化を行うことができる。
【0039】
図4は、第1電極32の構造の他の例を示す斜視図である。図4に示す例では、第1電極32は、多数の薄肉円筒管180を束ねたマルチキャピラリー構造182により構成されている。通常の厚さの円筒管の場合は、ガスに対するコンダクタンスは小さくできるものの、光学的透過率が低下し得られる中性粒子ビームが少なくなる。このような問題を避けるため、図4に示す例では薄肉円筒管を用いている。
【0040】
図5は、第1電極32の構造の他の例を示す斜視図である。図5に示す第1電極32は、機械加工や放電加工などにより1枚の板280に多数の孔282を形成した構造を有している。なお、図5に示す例では、1枚の板を用いているが、複数の板に多数の孔を形成してもよい。
【0041】
なお、図4および図5に示した構造の第1電極においても、図3で示した構造の第1電極と同様の効果が得られる。すなわち、ガスに対するコンダクタンスを小さく保ったまま、直進性の良いビームに対する透過率が高く、円筒状スリット内において荷電粒子の中性化が効率良く行われる。
【0042】
プラズマ室14に生成されるプラズマが高密度になるに伴い、デバイ長が短くなるので、第1電極32を薄い板状の多数の小孔の開いた電極とした場合は、開口部の代表寸法(例えば、円形開口部の場合は直径、ハニカム開口部の場合は対角線長など)が1mmを下回るような小孔ですらプラズマが染み出してきてしまう。ここで、デバイ長は、プラズマ密度と電子温度で決められる長さであり、プラズマを表す寸法の一つとして用いられる。デバイ長λ(cm)は、電子温度をkTe(eV)、電子密度(プラズマ密度)をne(cm)とすれば、以下の式で表される。
λ=(kTe/4πne1/2 (cm)
例えば、プラズマ密度が1011cm、電子温度が4eVである場合、デバイ長はおよそ47μmとなる。
【0043】
デバイ長は、プラズマの準中性状態を保とうとする性質から生じるデバイ遮蔽の効果の及ぶ範囲である。デバイ遮蔽とは、プラズマ中に金属などの異物が挿入された際に、プラズマ中の荷電粒子が異物を取り囲んで、異物の周りに電位の障壁を作り、異物からの電位がプラズマ中に浸透することを防ごうとすること(=遮蔽)をいう。例えば、正の電荷を帯びた金属棒をプラズマ中に挿入した場合、金属棒の周囲を負の荷電粒子(電子)が取り囲み、正の電荷を帯びた金属棒による電界がプラズマ全体に浸透しないように遮蔽する。
【0044】
一般に、デバイ長よりも長い機械的寸法の隙間があると、プラズマはその隙間を通り抜けて外部へ染み出すことが知られている。例えば、図3から図5に示すような第1電極32を用いた場合には、本来はデバイ長よりも径の小さな孔を開ける必要があるが、数mmを超えるような厚みの第1電極32に1mmを下回るような孔を直径数十mmを超えるような面に形成することは現実的ではない。そこで、第1電極32を、孔の長さが孔径の2倍から50倍、好ましくは10倍程度であるアスペクト比を持つ構造とすることで、プラズマの染み出しを防止することができる。また、先述したように孔の中で荷電粒子と残留ガス分子との電荷交換により荷電粒子が中性化される。よって、第1電極の構造を図3から図5に記載の構造とすることにより、ガスに対するコンダクタンスの低下、プラズマの染み出し防止、中性化の3つの機能を同時に実現することができる。
【0045】
図5に示す例では、孔径(ハニカム形状や矩形形状の場合は対角線長)は、アスペクト比とプラズマ室14に生成されるプラズマの密度にもよって異なるが、0.5mmから10mmとするのがよく、より好ましくは1mmから2mmとするのがよい。例えば、プラズマ室14に生成されるプラズマの密度を1011/cm、孔径1mm、スリット長10mmとし、板状電極280にピッチ1.33mmで千鳥状に孔282を形成した第1電極32を用いたとき、プラズマが中性化室16へ染み出すことを防止できた。
【0046】
そして、中性化室16にプラズマ室14に導入したガスと同一種類のガス、例えばAsHやBなどを導入し、中性化室16の内部の圧力を10−3Paから10−1Pa台に維持する。中性化室16での荷電粒子の中性化は、電荷交換衝突によって行われる。電荷交換衝突の衝突断面積は、同じガス分子同士において最大となるため、中性化室16にはプラズマ室14と同じガスを導入することが効果的であるが、アルゴンやネオンなどの異種のガスを導入してもよい。
【0047】
また、プラズマ室14に導入されたガスは、プラズマ室14と中性化室16との間に設けられた真空ポンプ28に接続された排気バルブ26を開けない限り、すべて中性化室16に流入する。さらに、中性化室16と試料室20との間に設けられた第2電極40のガスに対するコンダクタンスが小さいため、中性化室16に導入するガスの流量が少ないか、あるいは中性化室16に導入するガスがなくても、中性化室16の内部の圧力を10−3Paから10−1Pa台に維持することができる。
【0048】
第2電極40は、第1電極32で加速されたプラズマ中の荷電粒子のうち、第1電極32および中性化室16により中性化できなかった残留荷電粒子を除去するためのものである。第1電極32で加速したエネルギーと同等以上の電圧の符号が逆の電圧を第2電極40に印加することで、すべての荷電粒子を除去できる。しかしながら、第1電極で数百ボルト以上の加速エネルギーを受けた場合、第2電極40に数百ボルトを印加すると、中性化室16の圧力が比較的高いために異常放電を起こすことがあり、ここで荷電粒子を再生成してしまう不都合が生じる場合がある。このような場合には、第2電極40に印加する電圧を異常放電が起こらない電圧以下に抑える必要がある。第2電極40へ印加する電圧を低くすると、それを上回るエネルギーを持つ荷電粒子が第2電極40を通過してしまう。この矛盾は次のようにすることにより解決できる。
【0049】
すなわち、第2電極40を第1電極32と同一の構造とすることで、第2電極40のスリット内で荷電粒子の中性化が行われ、第2電極40を通過する荷電粒子を減らすことができる。したがって、第2電極40の電位を第1電極32の電位まで高めることなく荷電粒子の除去が効果的に行える。すなわち、第2電極40を第1電極32と同じ構造にすることの効果は大きく、残留荷電粒子の中性化率の向上、中性粒子ビームの直進性の向上とを同時に実現することができる。
【0050】
図2に示すように、試料室20には、第2電極40で除去しきれなかった残留荷電粒子を除去するための偏向電場を形成する偏向電極60が配置されている。例えば、試料の直径が300mmのとき、長さ200mmの偏向電極60を、電極間隔が300mm、偏向電極60の上端から試料18までの距離が500mmとなるように配置する。このとき、偏向電極60に850Vの電圧を印加することで、例えば、500Vで加速された荷電粒子501の偏向距離は450mmとなり、試料18の表面に到達しようとする荷電粒子501を完全に除去することができる。
【0051】
中性粒子ビームによる不純物のドーピングにおいて、最も問題となるのはドープ量の制御である。この問題は、ドーピングする粒子が荷電粒子ではなく、中性粒子であるために、ドープ量を電流として検出できないことに起因している。
【0052】
そこで、本実施形態では、第2電極40を通過して試料室20まで達した残留荷電粒子を電流として計測することによりドープ量を計測している。ここでいう残留荷電粒子とは、プラズマ室14から引き出された荷電粒子のうち、第1電極32、中性化室16、および第2電極40を通過して試料室20に到達した後もなお荷電粒子として存在する粒子のことをいう。
【0053】
すなわち、予めドーピング条件における第2電極40を通過した後の中性化率を求めておき、例えば偏向電極60で偏向された残留荷電粒子54をターゲット64に照射し、ターゲット64に流入する残留荷電粒子54を電流計66により計測する。計測された電流値に基づいてドープ量を算出することができる。例えば、ターゲット64としてファラデーカップを用いれば、2次電子による測定誤差をなくすることができるため、ファラデーカップを用いることが好ましい。
【0054】
電流計66により計測された電流値に応じて、電流計66からアンプ68を経由して、あるいは直接コントローラ70に信号が送られる。コントローラ70では、予め求められた中性化率と電流計66で計測された電流値に基づいてドープ量が決定される。
【0055】
ドープ量が所定値に達したとき、コントローラ70からプラズマ生成用電源30に停止信号が送られ、プラズマの生成が停止される。プラズマ生成が停止されることによって、荷電粒子の発生がなくなるので低エネルギー中性粒子ビームが試料18に到達しなくなり、ドーピングが終了する。このような一連の動作をすることでドープ量を制御することができる。
【0056】
また、プラズマ室14におけるプラズマ生成を停止することなくドープ量を制御することもできる。例えば、試料18の全面を覆うことができるシャッタ(図示せず)を試料18の上流側に配置し、所定のドープ量に達した時点でモータや圧搾空気などの動力でシャッタを作動させ、試料18への低エネルギー中性粒子ビームの照射を物理的に終了させることもできる。
【0057】
図6は、本発明の第2の実施形態におけるドープ装置の部分拡大図である。図6に示すように、試料室20には、第2電極40で除去しきれなかった残留荷電粒子を除去するための偏向磁場を形成するコイル160が配置されている。広範囲に均一磁場を形成する必要がある場合には、コイル160としてヘルムホルツコイルを用いることが好ましい。このヘルムホルツコイルは、同一形状の2つの円形コイルで構成され、これらの2つの円形コイルをその直径と同じ間隔で配置したものである。このような構成により、2つの円形コイルの中央にできる磁場分布が均一となる。
【0058】
例えば、第2電極40から試料18までの距離が500mmであり、直径が300mmの試料にAsをドープする場合、第2電極40と試料18との間の中間点に直径300mmのヘルムホルツコイル160を配置する。このときのヘルムホルツコイル160による磁場強度を0.05テスラとして均一な磁場を発生させれば、Asのラーマー半径が0.56mとなり、例えば500Vで加速された荷電粒子を完全に除去することができる。ここで、ラーマー半径は、荷電粒子が磁場中で受けるローレンツ力によって回転運動をするときの回転半径である。ラーマー半径rは、荷電粒子の質量をm、荷電粒子の速度をv、荷電粒子の価数をZ、電子の電荷をe、磁場をBとすると、以下の式で与えられる。
r=mv/ZeB
【0059】
また、上述した電場と磁場とを組み合わせたE×Bフィルターを用いて、第2電極40で除去しきれなかった残留荷電粒子を除去することとしてもよい。この場合においては、図7に示すように、均一磁場を発生できるヘルムホルツコイル160と偏向電極60とを組み合わせて用いることが好ましい。また、高周波電界による荷電粒子の共鳴現象を利用して残留荷電粒子を除去することもできるが、本実施形態のようにビーム径が比較的大きい(直径300mm以上)場合には現実的ではない。
【0060】
これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【図面の簡単な説明】
【0061】
【図1】従来のドーピング装置を示す模式図である。
【図2】本発明の第1の実施形態におけるドーピング装置を示す模式図である。
【図3】図2に示すドーピング装置の第1電極の一例を示す斜視図である。
【図4】図2に示すドーピング装置の第1電極の他の例を示す斜視図である。
【図5】図2に示すドーピング装置の第1電極の他の例を示す斜視図である。
【図6】本発明の第2の実施形態におけるドーピング装置の部分拡大図である。
【図7】本発明の第3の実施形態におけるドーピング装置を示す模式図である。
【符号の説明】
【0062】
10 ドーピング装置
14 プラズマ室14
16 中性化室
18 試料
20 試料室
24 プロセスガス供給源
28,48,52 真空ポンプ
30,34,42,62 電源
32,40 電極
44 保持台
54 残留荷電粒子
60 偏向電極
64 ターゲット
66 電流計
70 コントローラ
160 ヘルムホルツコイル

【特許請求の範囲】
【請求項1】
試料に中性粒子を照射して不純物をドープするドーピング装置であって、
前記試料を保持する保持台と、
荷電粒子をプラズマとして発生させるプラズマ発生手段と、
前記荷電粒子を前記試料に向けて加速する加速手段と、
前記加速された荷電粒子を中性化して中性粒子を生成する中性化手段と、
前記中性化手段と前記試料との間に設けられ、前記中性化手段によって中性化されなかった荷電粒子を除去する荷電粒子除去手段と、
前記荷電粒子除去手段により除去された荷電粒子を計測することにより前記試料へのドープ量を計測する計測手段と、
を備えたことを特徴とするドーピング装置。
【請求項2】
前記荷電粒子除去手段は、前記荷電粒子が前記試料に到達しないように、磁場および/または電場により前記荷電粒子の軌道を曲げることを特徴とする請求項1に記載のドーピング装置。
【請求項3】
前記荷電粒子を発生させるプラズマ室と、
前記保持台が配置された試料室と、
前記プラズマ室と前記試料室との間に配置された中性化室と、
前記荷電粒子を中性化するための中性化ガスを前記中性化室に導入する中性化ガス導入ポートと、
をさらに備えたことを特徴とする請求項1または2に記載のドーピング装置。
【請求項4】
前記プラズマ室と前記中性化室との間、および、前記中性化室と前記試料室との間に、外部から導入されたガスに対するコンダクタンスを小さくし、前記荷電粒子を中性化する電極をさらに備えたことを特徴とする請求項3に記載のドーピング装置。
【請求項5】
前記中性化室の上流側および下流側の少なくとも一方に配置された排気ポンプをさらに備えたことを特徴とする請求項3に記載のドーピング装置。
【請求項6】
荷電粒子をプラズマとして発生させる工程と、
前記荷電粒子を試料に向けて加速する工程と、
前記加速された荷電粒子を中性化して中性粒子を生成する工程と、
中性化されなかった荷電粒子を除去する工程と、
前記試料に前記中性粒子を照射して不純物をドープする工程と、
前記試料へのドープ量を制御する工程と、
を有することを特徴とするドーピング方法。
【請求項7】
前記除去された荷電粒子を計測することにより前記試料へのドープ量を計測する工程をさらに有することを特徴とする請求項6に記載のドーピング方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−261066(P2006−261066A)
【公開日】平成18年9月28日(2006.9.28)
【国際特許分類】
【出願番号】特願2005−80436(P2005−80436)
【出願日】平成17年3月18日(2005.3.18)
【出願人】(000000239)株式会社荏原製作所 (1,477)
【Fターム(参考)】