説明

光スキャナ、光走査装置、画像形成装置及び光スキャナの製造方法

【課題】光スキャナの共振周波数のばらつきを抑える。
【解決手段】可動板101、トーションバー103、フレーム部105がシリコン単結晶の基板を加工して一体形成された光スキャナ。基板の一面からのエッチング工程により、凹部102とトーションバー103が加工される。凹部102の底面と、トーションバー103の一面(図の上面)は同じ高さ位置にある。エッチング誤差があっても、可動板101の慣性モーメントの増減とトーションバー103のバネ定数の増減の影響が相殺されるため、共振周波数の変動が抑えられるため、共振周波数のばらつきの少ない光スキャナを実現できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微小なミラーを揺動させて光ビームの偏向を行う光スキャナ(光偏向器)、それを用いた光走査装置及び画像形成装置並びに光スキャナの製造方法に関する。
【背景技術】
【0002】
レーザー光等の光ビームを走査する光走査装置は、バーコードリーダ、レーザープリンタ、ヘッドマウントディスプレイ等の光学機器に用いられている。この種の光スキャナとして、マイクロマシニング技術を利用した、微小ミラーを揺動させる構成のものが提案されている。
【0003】
そのような光スキャナの例を図7(a)に示す。この光スキャナは、同一直線上に設けた2本の梁としての弾性部材3を回転軸(トーションバー)として支持された可動板であるミラー1と、ミラー1に設けた可動電極8と、可動電極8に対向して固定部材5に設けた固定電極9を有し、可動電極8と固定電極9との間の静電吸引力で、2本の弾性部材3を捻り回転軸としてミラー1を往復振動させることができる。
【0004】
図7(b)は、光スキャナをミラー1の断面方向から見た図であり、トーションバー3を捻りの中心としてミラー3が矢印の方向に往復振動する様子を示している。
【0005】
この光スキャナは次のようにして作られる。基板の片面にレジスト膜をスピンコートで形成する。次に、フォトリソグラフィ法で、フレーム部5、ミラー部1、梁部3、可動電極部8、固定電極部9、分離溝6を形成するフォトマスクを用いてレジストを現像定着し、そのパターンを形成したレジスト膜を用いて、ドライエッチング法で形状を形成する。その後、所定の位置に可動電極部8、固定電極部9を形成する。
【0006】
このような光スキャナを複数個用いる図8に示すような光走査装置が提案されている。図示のように、ベース31上に複数の光スキャナ4が配備されている。30は光スキャナ4に駆動電圧を印加する駆動装置である。28はレーザー光源、29は光スキャナ4のミラー1により反射されたレーザービームである。
【0007】
このような光走査装置を用いた画像形成装置として、図9に示すようなレーザープリンタが提案されている。このレーザープリンタ66は、図8に示した光走査装置60と、光走査装置60のミラー1により偏向された反射レーザー光により静電潜像が形成される感光体65と、感光体65に形成された静電潜像をトナーにより現像する現像手段62と、感光体65上に形成されたトナー像を被記録体に転写するための転写手段63と、被記録体を画像形成部に供給するための被記録体供給手段64と、被記録体上のトナー像を定着させるための定着手段67とを備える。
【0008】
図10は、レーザープリンタ66の光走査装置60と感光体65を上から見た図である。光スキャナ4が主走査方向に複数配置されている。レーザー光源28は、画像信号生成装置(図示せず)による画像信号に基づき発光する。レーザー光源28より照射されるレーサービームは、光走査装置60に入射する。光走査装置60のミラー1により偏向された反射レーザー光29が感光体65を走査し静電潜像を形成する。
【0009】
このような画像形成装置では、光走査装置60を構成する光スキャナの共振周波数のばらつきが問題となる。光スキャナの共振周波数f0は例えば図11のように、ばらつきがある。このような共振周波数のばらつきについて、図7(a)に示した構成の光スキャナを例に説明する。
【0010】
ミラー1の共振周波数f0は概略次式で表される。
f0=1/2π√(K/I) ・・・(1)
但し、Iはミラー1の慣性モーメント、Kは2本の弾性部材(トーションバー)3によって決まるバネ定数である。慣性モーメントMは、ミラー1の形状と、その材料の比重により決まる。バネ定数Kは、トーションバー3の形状と、その材料の弾性定数によって決まる。
【0011】
このような光スキャナは、前述したように、フォトリソグラフィによるエッチングマスクの形成と、そのエッチングマスクを用いたエッチングで形状を形成することが一般に行われる。形状形成時の形状のばらつきは、ミラーの慣性モーメント、トーションバーのバネ定数のばらつきを生じさせ、その結果、式1で示される共振周波数f0のばらつきが生じることになる。複数の光スキャナを有する光走査装置60において、各光スキャナ間でミラー1の共振周波数f0にばらつきがあると、図7(b)に示すミラーの振れ角θにばらつきを生じ、各光スキャナで作成される画像の継ぎ目に乱れが生じ良好な画像を得られない。
【0012】
さて、高速動作を必要とする機械要素においては、その慣性が駆動スピードの大きな阻害要素となる。特に、所定角度内を回動振動する機械要素では慣性モーメントを低減する必要があるが、その際、駆動する機械要素の剛性を低下させないように配慮するのが一般的である。そのような目的で、機械要素を中空構造とする方法や補強材(以下、リブという)を固着する方法等が広く知られている。
【0013】
前述したような、光スキャナもしくは光偏向器をレーザビームプリンタ、ヘッドマウントディスプレイ等の画像表示装置やバーコードリーダ等の入力デバイスの光取り入れ装置等に用いる場合においても、微小ミラーには、高速駆動と高剛性という2つの性能が求められる。特に、微小ミラーの剛性が不足している場合、駆動時に微小ミラーが自重による慣性力を受けてミラー面が大きく撓んでしまう。この動撓みは、ミラーの光学特性を著しく低下させ、光偏向器の性能を損なってしまう。また、この種の光偏向器においてはアクチュエータの駆動力が制限される場合が多く、高速駆動のために弾性支持部のバネ剛性を高くすると、偏向角が著しく低下してしまうという課題がある。そのため、可動部分である微小ミラーの慣性モーメントを低減させる必要がある。
【0014】
従来、微小ミラーの慣性モーメントを低減するための様々な提案がなされている。
【0015】
図12は、特許文献1における提案のひとつを示している。図12において、光偏向器1は支持基板2に可動板6の両端がねじり揺動運動軸に相当する弾性支持体(ねじりバネ)3で支持された構造となっている。ねじりバネ3は可動板6をC軸(つまりねじり軸)を中心に弾性的にE方向、つまり時計回り方向と反時計回り方向の両方向にねじれ振動自在に支持するものである。また、可動板6の一方の面は反射面4(図中裏面側で不図示)となっていて、可動板6のE方向のねじれにより反射面4に入射する入射光を所定変位角偏向するものである。なお、可動板6はその両側がそれぞれねじりバネ3と接続しているため、支持基板2によって支持されている。また可動板6は、ねじり揺動するがC軸を中心に回転はしない。また図中、Dで示す矢印方向は、ねじり軸Cと垂直で可動板6の反射面4が形成される面と平行な向きを示しており、特に、Dの矢印方向を「ねじり軸から離れる方向」とする。ここで、可動板6にD方向を法線とする面(以下側面と称するがこの側面とは可動板6のうち反射面即ち本図において不図示である裏面に対する側面のこと)が陥没状になるように凹部5Aが形成され、可動板6の反射面4が形成されない面(以下こちらの面を裏面と称す)には、ねじり軸の両側に陥没状の構造となるように複数の凹部5B,5Cが形成されている。従って、可動板6はねじり軸C付近が最も肉厚であり、ねじり軸C上、つまり可動板6裏面のうちねじりバネ3の延長上に位置する領域には凹部は設けられていない。そして反射面4を支える可動板6の質量はねじり軸から離れるに従って小さくなっている。このような構成にすることで可動板6(ミラー)の慣性モーメントを減少させる。
【0016】
図13は特許文献1における別の提案を示し、図12の場合と同様にミラーの裏面にリブ部5A’,5B‘、5C’等を形成している。更に、図14に示すように、リブの深さを場所により変えて慣性モーメントを減少させる。
【0017】
図15は特許文献1における別の提案を示している。ミラーの裏面に段差4を形成し、この段差を階段状にすることによって場所によりリブの深さを変え、慣性モーメントを減少させる。
【0018】
図16は特許文献2における提案を示している。ミラー基板3の裏側に、複数の凹部7を形成する。複数の凹部7はシリコン部材で形成される。複数の凹部7は、複数のリブ8と底板部により構成される。この提案では曲げ剛性分布が一定となるように、各領域jの凹部7の大きさを変える。
【0019】
図17は特許文献2における別の提案を示している。ミラー基板3の裏側に、ある一定の曲げ剛性分布となるように階段状の複数の領域6を配置する。なお、階段状の複数の領域6はシリコン部材で形成される。
【0020】
【特許文献1】特許第3740444号公報
【特許文献2】特開2005−300927号公報
【発明の開示】
【発明が解決しようとする課題】
【0021】
しかし、以上のようなミラー部分の慣性モーメントの軽減策には以下のような問題がある。
【0022】
トーションバーの厚さに関し、特許文献1には次の記載がある。
「光偏向器は、例えば、反射面4が1mm×1mmの大きさとし、光の最大偏向角が約35度、光偏向器の共振周波数が約22kHzで、ねじりバネ3の幅が75μm、ねじりバネ3の片側の長さが3000μmとなっている。可動板6とねじりバネ3の厚さは支持基板2の厚さと同じの200μmとなっているが、ねじりバネ3の形成予定部分を形成前にエッチングにより掘り下げておくことにより、ねじりバネ3の厚さをより薄く構成することも可能である。その場合、ねじりバネ3の長さをより短く設定することができる。」
すなわち、元となる基板の厚さをそのまま使うか、またはエッチング等でトーションバーの厚さを薄くなるようにするということである。そのため、トーションバーの厚さは、ミラーのリブの深さを決める工程とは別の工程によって決まる。
【0023】
そこで、従来の提案でミラーの裏面にリブ構造を設ける場合、リブの深さは加工のエッチング工程で決定される。しかし、一般にエッチングで所定の深さを加工形成する場合には、エッチング深さの誤差が出ることは避けられない。
【0024】
前述のように、エッチングにより主たる形状を形成するマイクロスキャナはエッチング時のエッチング量のバラツキによる形状の誤差で共振周波数がばらつくが、リブのエッチング加工時に加工深さのバラツキが生じると、それによりミラー部分の慣性モーメントも変動してしまう。
【0025】
図18にリブ加工の誤差による周波数変動の例を示す。ミラーの厚さ約200μm、リブの深さが160μm、慣性モーメントが1.78×10−5(kgf・s2/cm)、バネ定数6340.6(kgf・cm/rad)、共振周波数が3003Hzの設計であるが、リブの加工誤差により±10μmリブ深さの変動があると、±40Hzの共振周波数のばらつきが生じる。
【0026】
上記問題点に鑑み、本発明は、部材の加工精度のばらつきが起因して発生するミラーの共振周波数のばらつきを抑制した光スキャナを提供すること、かかるスキャナの好適な製造方法を提供すること、かかるスキャナを用いた動作の安定した光走査装置を提供すること、かかる光走査装置を用い良好な画質の画像形成を行う画像形成装置を提供することを目的とする。
【課題を解決するための手段】
【0027】
請求項1に記載の発明は、
基板を加工することにより、可動板、フレーム部、及び、前記可動板を前記フレーム部に支持するトーションバーが一体的に形成されてなり、前記トーションバーを捻り回転軸として前記可動板が往復振動する光スキャナであって、
前記可動板の反射面と反対側の面に、前記基板の第1の面側から加工された所定の深さの凹部を有し、
前記基板の第1の面側の前記トーションバーの面と、前記凹部の底面とが、前記基板の厚み方向の同一位置にあることを特徴とする光スキャナである。
【0028】
かかる構成の光スキャナにおいては、凹部形成の加工工程で加工が設定より進み(オーバーエッチング)、凹部低部が設計より薄くなり凹部を含む可動板の慣性モーメントが設計値より小さくなっても、同時にトーションバーの基板厚さ方向のサイズも短くなり、トーションバーの断面積が小さくなってトーションバーのバネ定数も小さくなるため、光スキャナの共振周波数の変動幅を小さくすることが可能になる。
【0029】
また、凹部形成の加工工程で加工程が設定より遅れ(アンダーエッチング)、凹部低部が設計より厚くなり凹部を含む可動板の慣性モーメントが設計値より大きくなっても、同時にトーションバーの基板厚さ方向のサイズも長くなり、トーションバーの断面積が大きくなってトーションバーのバネ定数が大きくなるため、光スキャナの共振周波数の変動幅を小さくすることが可能になる。
【0030】
請求項2に記載の発明は、請求項1に記載の光スキャナにおいて、
前記可動板の慣性モーメントの設計値をI、前記トーションバーのバネ定数の設計値をK、前記凹部及び前記トーションバネの前記基板の厚さ方向の加工誤差をΔDとするとき、
前記加工誤差ΔDにより生じる前記可動板の慣性モーメントの設計値との差ΔIと前記トーションバーのバネ定数の設計値との差ΔKが、
ΔI=(ΔK/K)I
となるような前記凹部の底面積と前記トーションバーの被加工面積の関係を有することを特徴とする光スキャナである。
【0031】
かかる構成の光スキャナにおいては、凹部形成の加工工程で加工が設定からずれ(オーバーエッチング又はアンダーエッチング)、凹部の深さが設計よりΔDだけずれ、それにより凹部を含む可動板の慣性モーメントが設計値よりΔIだけずれても、同時にトーションバーの基板厚さ方向のサイズもΔDだけずれ、それによりトーションバーのバネ定数もΔKだけずれる。そして、ΔI=(ΔK/K)Iの関係を満たすので
K+ΔK/I+ΔI=K/I
となるため、光スキャナの共振周波数の変動を効果的に抑制することが可能になる。
【0032】
請求項3に記載の発明は、請求項1に記載の光スキャナの製造方法であって、前記前記基板の第1の面側の前記トーションバーの面と前記凹部の底面とを、同一の加工工程によって形成することを特徴とする製造方法である。また、請求項4に記載の発明は、請求項3に記載の製造方法において、前記加工工程はエッチング工程であることを特徴とする製造方法である。
【0033】
このように、同一の加工工程での加工誤差は凹部形成とトーションバー形成の両方に均等であるため、共振振動数のばらつきの少ない光スキャナを作成できる。
【0034】
請求項5に記載の発明は、請求項1に記載の光スキャナと、該光スキャナに光を照射する光源とを有することを特徴とする光走査装置である。光スキャナの共振周波数のばらつきが小さいため、駆動周波数のばらつきの少ない光走査装置を実現できる。
【0035】
請求項6に記載の発明は、前記光スキャナ及び前記光源を複数組有することを特徴とする請求項5に記載の光走査装置である。それぞれの光スキャナの共振周波数のばらつきが小さく駆動周波数が揃うため、各光スキャナによる走査の継ぎ目の乱れの少ない光走査装置を実現できる。
【0036】
また、請求項7に記載の発明は、請求項5又は6に記載の光走査装置と、該光走査装置により走査されて静電潜像が形成される感光体と、該静電潜像をトナー像にする現像手段と、該トナー像を用紙に転写する転写手段とを備えることを特徴とする画像形成装置である。光走査装置の駆動周波数のバラツキが少なく、また、各光スキャナによる走査の継ぎ目の乱れが少ないため、安定した性能の画像形成装置を実現できる。
【発明の効果】
【0037】
以上に述べたように、本発明によれば、共振周波数のばらつきの小さい光スキャナを提供することができ、かかるスキャナの好適な製造方法を提供することができ、かかるスキャナを用いた動作の安定した光走査装置を提供することができ、また、かかる光走査装置を用い良好な画質の画像形成を行う画像形成装置を提供することができる。
【発明を実施するための最良の形態】
【0038】
以下、本発明の実施形態について添付図面を用い説明する。
【0039】
図1及び図2は本発明の光スキャナの斜視図及び平面図である。図3は、図2のA−A’断面図である。なお、図1乃至図3は光スキャナの主要部のみを示すものであって、駆動用電極等は省略されている。
【0040】
この光スキャナは、シリコン単結晶の基板を用い一体的に形成されるものであって、ミラー部材としての可動板101、フレーム部105と、可動板101をフレーム部105に揺動可能に支持する一対のトーションバー3とを備える。可動板101の一方の面には反射面104が形成され、その反対側の面106には断面矩形の複数の凹部102が形成されている。各凹部102の壁部がリブとして作用する。
【0041】
トーションバー103と凹部102は基板の同一面側から同一工程で加工されることにより、図3に示すように、凹部102の底面109と可動板101の反射面104との距離108(凹部底部の厚さ)と、トーションバー103の厚さ(基板厚み方向のサイズ)107は等しくなっている。換言すれば、凹部102の底面109とトーションバー103の一面(図3における上面)が基板厚さ方向の同一位置にある。
【0042】
また、トーションバー103の上部110の形状と凹部の底面9の面積について、請求項2の関係、すなわちΔI=(ΔK/K)Iを満たすように、トーションバー103と凹部102が設計されている。
【0043】
次に、この光スキャナの製作方法について説明する。
【0044】
[製作方法1]
図4を参照し、本発明の光スキャナの製作方法1について説明する。
【0045】
工程(a):シリコン単結晶の基板220の片面にレジスト膜をスピンコートで形成し、その後、フォトリソグラフィ法で、フレーム部105、可動板101を形成するためのフォトマスクを用いてレジストを現像定着することにより、パターニングされたレジスト膜220を形成する。
【0046】
工程(b):このレジスト膜220をマスクとして用いて、ドライエッチング法で基板が貫通するまでエッチングし、可動板101、フレーム部105、トーションバー103を形成する。この時点では、トーションバー107は可動板101及びフレーム部105と同じ厚さである。このレジスト膜の残りはエッチング加工後に除去する。
【0047】
工程(c):可動板101、フレーム部105、トーションバー103の加工が済んだ基板に更にレジスト膜をスピンコートで形成し、その後、フォトリソグラフィ法で、凹部102、トーションバー107を形成するためのフォトマスクを用いてレジストを現像定着し、パターニングされたレジスト膜230を形成する。
【0048】
工程(d):このレジスト膜230を用いて、ドライエッチング法で所定の深さまでエッチングし、凹部102を形成する。このときに、トーションバー103も所定の深さまでエッチングされるため、トーションバー103の上面と凹部102の底面は同じ高さ位置にある。
【0049】
工程(e):レジスト膜の残りをエッチング加工後に除去する。これで、反射面104を形成すれば図1乃至図3に示した光スキャナを得られる。
【0050】
なお、工程(e)でエッチング誤差が生じ、凹部102の底部の厚さに誤差が生じても、トーションバー103の厚さに同じ誤差が生じるため、ミラー部である可動板101の慣性モーメントへの加工誤差の影響とトーションバー103のバネ定数への加工誤差による影響は相殺され、したがって光スキャナの共振周波数の変動は抑えられる。
【0051】
[製作方法2]
図5を参照し、本発明の光スキャナの製作方法2について説明する。
【0052】
工程(a):シリコン単結晶の基板310の片面にレジスト膜をスピンコートで形成し、その後、フォトリソグラフィ法で、凹部102、トーションバー107を形成するためのフォトマスクを用いてレジストを現像定着し、パターニングされたレジスト膜330を形成する。
【0053】
工程(b):このレジスト膜330を用いて、ドライエッチング法で所定の深さまでエッチングし、凹部102、トーションバー103の上面を形成する。このレジスト膜の残りはエッチング加工後に除去する。凹部102の底面とトーションバー103の上面は同じ高さ位置になる。
【0054】
工程(c):加工後の基板に更にレジスト膜をスピンコートで形成し、その後、フォトリソグラフィ法で、フレーム部105、可動板101を形成するためのフォトマスクを用いてレジストを現像定着し、パターンニングされたレジスト膜320を形成する。
【0055】
工程(d)このレジスト膜320を用いて、ドライエッチング法で基板を貫通するまでエッチングし、可動板101、フレーム部105、トーションバー107を形成する。
【0056】
工程(e)レジスト膜の残りをエッチング加工後に除去する。これで、反射面104を形成すれば図1乃至図3に示した光スキャナを得られる。
【0057】
この製作方法においても、工程(b)でエッチング誤差により凹部102の底部の厚さに誤差が生じても、トーションバー103の厚さにも同じ誤差を生じるため、可動板101の慣性モーメントへの加工誤差の影響とトーションバー103のバネ定数への加工誤差による影響は相殺され、したがって光スキャナの共振周波数の変動は抑えられる。
【0058】
[製作方法3]
図6を参照し、本発明の光スキャナの製作方法3について説明する。
【0059】
工程(a):シリコン単結晶の基板410の片面に酸化シリコン膜を形成し、更にその上にレジスト膜をスピンコートで形成し、その後、フォトリソグラフィ法で、フレーム部105、可動板101、トーションバー107、凹部102を形成するフォトマスクを用いてレジストを現像定着し、その後、そのレジストマスクを用いて酸化シリコン膜をエッチングし、パターニングされた酸化シリコン膜マスク440を形成する。この酸化シリコン膜マスク40は、可動板101とフレーム部105との分離部及びトーションバー107の外周は貫通しているが、凹部102とトーションバー107の上面は途中の深さまでエッチングされている2段エッチング用のマスクである。
【0060】
工程(b):この酸化シリコン膜マスク40を用いて、ドライエッチング法で、フレーム部105と可動板101との分離部をエッチングする。この場合、エッチングによりシリコン基板がエッチングされるが、同時に酸化シリコン膜マスク440もエッチングされる。この酸化シリコン膜マスク440の途中までエッチングされている部分が、シリコン基板のエッチングで同時にエッチングされ、エッチングの途中で凹部102及びトーションバー103上面に対応する部分の酸化シリコン膜が無くなる。
【0061】
工程(c):可動板101とフレーム部105の分離部が貫通するまでエッチングを進める。これにより、可動板101とフレーム部105が形成されると同時にトーションバー107と凹部102も形成される。このときのトーションバーの上面と凹部102の底面は同じ高さ位置にある。エッチング加工後にレジスト膜の残りを除去する。
【0062】
工程(d):酸化シリコン膜の残りをエッチング加工後に除去する。これで、反射面104を形成すれば、図1乃至図3に示した光スキャナを得られる。
【0063】
この製作方法においても、工程(b)(c)でエッチング誤差が生じ、凹部102の底部の厚さに誤差が生じても、トーションバー103の厚さにも同じ誤差が生じるため、可動板101の慣性モーメントへの加工誤差の影響とトーションバー103のバネ定数への加工誤差による影響は相殺され、したがって光スキャナの共振周波数の変動は抑えられる。
【0064】
以上、本発明の光スキャナとその製造方法について実施形態を説明した。しかし、本発明はそれら実施形態にのみ限定されるものではなく、様々な変形が可能である。かかる変形した態様も本発明に包含される。
【0065】
本発明の光スキャナは共振振動数のばらつきが少ないため、例えば図8に示したような光走査装置用の光スキャナとして好適である。本発明の光スキャナと光源を1組以上備える図8に示したような光走査装置も本発明に包含される。また、かかる光走査装置を用いた図9に示すような画像形成装置も本発明に包含される。
【図面の簡単な説明】
【0066】
【図1】本発明の光スキャナの概略斜視図である。
【図2】本発明の光スキャナの概略平面図である。
【図3】図2のA−A’断面図である。
【図4】本発明の光スキャナの製造工程説明図である。
【図5】本発明の光スキャナの製造工程説明図である。
【図6】本発明の光スキャナの製造工程説明図である。
【図7】光スキャナの説明図である。
【図8】複数の光スキャナを用いた光走査装置の説明図である。
【図9】光走査装置を用いる画像形成装置の説明図である。
【図10】画像形成装置における光走査装置及び感光体の説明図である。
【図11】光スキャナの共振周波数のばらつきを示す図である。
【図12】従来技術を示す斜視図である。
【図13】従来技術を示す斜視図である。
【図14】従来技術を示す平面図及び断面図である。
【図15】従来技術を示す斜視図である。
【図16】従来技術を示す斜視図である。
【図17】従来技術を示す斜視図である。
【図18】リブの深さと共振周波数の関係を示すグラフである。
【符号の説明】
【0067】
101 可動板(ミラー部)
102 凹部
103 トーションバー
104 反射面
105 フレーム部

【特許請求の範囲】
【請求項1】
基板を加工することにより、可動板、フレーム部、及び、前記可動板を前記フレーム部に支持するトーションバーが一体的に形成されてなり、前記トーションバーを捻り回転軸として前記可動板が往復振動する光スキャナであって、
前記可動板の反射面と反対側の面に、前記基板の第1の面側から加工された所定の深さの凹部を有し、
前記基板の第1の面側の前記トーションバーの面と、前記凹部の底面とが、前記基板の厚み方向の同一位置にあることを特徴とする光スキャナ。
【請求項2】
請求項1に記載の光スキャナにおいて、
前記可動板の慣性モーメントの設計値をI、前記トーションバーのバネ定数の設計値をK、前記凹部及び前記トーションバネの前記基板の厚さ方向の加工誤差をΔDとするとき、
前記加工誤差ΔDにより生じる前記可動板の慣性モーメントの設計値との差ΔIと前記トーションバーのバネ定数の設計値との差ΔKが、
ΔI=(ΔK/K)I
となるような前記凹部の底面積と前記トーションバーの被加工面積の関係を有することを特徴とする光スキャナ。
【請求項3】
請求項1に記載の光スキャナの製造方法であって、
前記前記基板の第1の面側の前記トーションバーの面と前記凹部の底面とを、同一の加工工程によって形成することを特徴とする製造方法。
【請求項4】
請求項3に記載の製造方法において、前記加工工程はエッチング工程であることを特徴とする製造方法。
【請求項5】
請求項1に記載の光スキャナと、該光スキャナに光を照射する光源とを有することを特徴とする光走査装置。
【請求項6】
前記光スキャナ及び前記光源を複数組有することを特徴とする請求項5に記載の光走査装置。
【請求項7】
請求項5又は6に記載の光走査装置と、該光走査装置により走査されて静電潜像が形成される感光体と、該静電潜像をトナー像にする現像手段と、該トナー像を用紙に転写する転写手段とを備えることを特徴とする画像形成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2009−69675(P2009−69675A)
【公開日】平成21年4月2日(2009.4.2)
【国際特許分類】
【出願番号】特願2007−239938(P2007−239938)
【出願日】平成19年9月14日(2007.9.14)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】