説明

化学気相成長材料及び化学気相成長方法

【課題】長期間の保存安定性に優れ、しかも残留不純物量が少ない良質なルテニウム膜を得ることができるおよびその化学的気相材料を用いてルテニウム膜を形成する簡易な方法を提供すること。
【解決手段】テトラ(μ−ホルマト)ジルテニウム(II,II)、テトラ(μ−フォルマト)(2水和物)ジルテニウム(II,II)の如きジルテニウム錯体からなる化学気相成長材料およびそれを用いて化学気相成長法によりルテニウム膜を形成する方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、化学気相成長材料及び化学気相成長方法に関する。
【背景技術】
【0002】
DRAM(Dynamic Random Access Memory)に代表される半導体デバイスは、その高集積化と微細化に伴い、デバイスを構成する各金属膜、金属酸化膜の材料変更が必要となっている。
なかでも、半導体デバイス内の多層配線用途での導電性金属膜の改良が要求されており、新たに導電性の高い銅配線への変換が進んでいる。この銅配線の導電性を高める目的で多層配線の層関絶縁膜材料には低誘電率材料(Low−k材料)が用いられているが、この低誘電率材料中に含まれている酸素原子が銅配線に容易に取り込まれその導電性を下げるといった問題が生じている。その為、低誘電率材料からの酸素の移動を防ぐ目的で、低誘電率材料と銅配線の間にバリア膜を形成する技術が検討されている。このバリア膜用途として、誘電体層からの酸素を取り込みにくい材料およびドライエッチングにより容易に加工できる材料として、金属ルテニウム膜が注目されている。さらには上記銅配線をメッキ法にて埋め込むダマシン成膜法に於いて、上記バリア膜とメッキ成長膜双方の役割を同時に満たす目的から、金属ルテニウムが注目されている(非特許文献1および2参照)。
また、半導体デバイスのキャパシタにおいても、アルミナ、五酸化タンタル、酸化ハフニウム、チタン酸バリウム・ストロンチウム(BST)のような高誘電率材料の電極材料として、金属ルテニウム膜はその高い耐酸化性と高い導電性から注目されている(特許文献1)。
【0003】
上記の金属ルテニウム膜の形成には、従来スパッタリング法が多く用いられてきたが、近年、より微細化した構造や、薄膜化、量産性への対応として、化学気相成長法の検討が行われている(特許文献2〜4参照)。
しかし、一般に化学気相成長法で形成した金属膜は微結晶の集合状態が疎であるなど表面モルフォロジーが悪く、上記モルフォロジーの問題を解決する手段として、ビス(ジピバロイルメタナート)ルテニウムやルテノセン、ビス(アルキルシクロペンタジエニル)ルテニウムを化学気相成長材料に用いた検討が行われている(特許文献5〜7参照。)。
さらにこれらの化学気相成長材料を製造工程で用いる場合、その製造条件安定の目的からも材料の良好な保存安定性が要求される。しかし、既存のルテノセンやビス(アルキルシクロペンタジエニル)ルテニウム等は、空気の混入などにより短時間で材料の酸化、性能劣化が生じ、結果として成膜したルテニウムの導電性が低下してしまい、その保存安定性と空気中での安定な取扱い性に問題がある。保存安定性が良好なビス(ジピバロイルメタナート)ルテニウムなどを化学気相成長材料に用いると、成膜されたルテニウム膜中の不純物が多く、良質なルテニウム膜が得られない問題がある。上記問題を解決する手段として、その他にカルボニル化合物やジエン化合物を配位子に持ったルテニウム化合物、ルテニウム(II)価を用いた化合物が検討されてきたが(特許文献8〜10)、それぞれ化合物の保存安定性と成膜されたルテニウム膜中の低残留不純物の両立が困難であり、課題である。
【非特許文献1】電子材料 2003年11月号PP47−49
【非特許文献2】Jpn.J.Appl.Phys.,Vol.43,No.6A(2004)PP3315−3319
【特許文献1】特開2003−100909号公報
【特許文献2】特開2003−318258号公報
【特許文献3】特開2002−161367号公報
【特許文献4】特表2002−523634号公報
【特許文献5】特開平06−283438号公報
【特許文献6】特開平11−35589号公報
【特許文献7】特開2002−114795号公報
【特許文献8】特開2002−212112号公報
【特許文献9】特開2003−342286号公報
【特許文献10】特開2006−241557号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明は上記問題に鑑みなされたもので、その目的は保存安定性に優れ、なおかつ残留不純物の少ない良質なルテニウム膜を得ることができる化学的気相成長材料及びその化学的気相成長材料を用いてルテニウム膜を形成する簡易な方法を提供することにある。
【0005】
本発明の他の目的および利点は以下の説明から明らかになろう。
【課題を解決するための手段】
【0006】
本発明によれば、本発明の上記目的およびは、第一に、下記式(1)
【0007】
【化1】

【0008】
R1、R2、R3及びR4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜10の炭化水素基、炭素数1〜10のハロゲン化炭化水素基又または炭素数1〜10のアルコキシ基であり、そしてX及びYはそれぞれ独立に水、炭素数1〜10のケトン化合物、炭素数1〜10のエーテル化合物、炭素数1〜10のエステル化合物、炭素数1〜6のニトリル化合物である、
で表わされる化合物からなる化学気相成長材料によって達成される。
【0009】
本発明によれば、本発明の上記目的および利点は、第二に、下記式(2)
【0010】
【化2】

【0011】
R5、R6、R7及びR8は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜10の炭化水素基、炭素数1〜10のハロゲン化炭化水素基又または炭素数1〜10のアルコキシ基である、
で表わされる化合物からなる化学気相成長材料によって達成される。
【0012】
本発明によれば、本発明の上記目的および利点は、第三に、上記の化学気相成長材料から化学気相成長法によりルテニウム膜を形成する方法によって達成される。
【発明の効果】
【0013】
本発明の化学気相成長材料によると、長期間の保存安定性に優れ、しかも残留不純物量が少ない良質なルテニウム膜を得ることができる。また、その化学的気相材料を用いて簡易な方法でルテニウム膜を形成することができる。
【発明を実施するための最良の形態】
【0014】
以下、本発明について詳細に説明する。
【0015】
本発明の化学気相成長材料は、前記式(1)および下記式(2)のそれぞれで表される。
上記式(1)に於いて、R1、R2、R3及びR4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜10の炭化水素基、炭素数1〜10のハロゲン化炭化水素基又または炭素数1〜10のアルコキシ基である。ここで、炭素数1〜10の炭化水素基としては炭素数1〜7の炭化水素基であることが好ましく、その具体例としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ネオペンチル基、n−ヘキシル基、シクロヘキシル基、フェニル基、ベンジル基、メチルフェニル基を挙げることができる。また炭素数1〜10のハロゲン化炭化水素基としては炭素数1〜6のハロゲン化炭化水素基であることが好ましい。その具体例としては、例えばクロロメチル基、ジクロロメチル基、トリクロロメチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2.2.2−トリフルオロ−エチル基、ペンタフルオロエチル基、ペルフルオロプロピル基、ペルフルオロブチル基、ペルフルオロヘキシル基、ペンタフルオロフェニル基を挙げることができる。また炭素数1〜10のアルコキシ基としては炭素数1〜6のアルコキシ基であることが好ましく、その具体例としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブチトキシ基、イソブトシキ基、t−ブトキシ基、n−ヘキサオキシ基、フェノキシ基を挙げることができる。R1、R2、R3及びR4の好ましい例としては、水素原子、フッ素原子、メチル基、エチル基、イソプロピル基、t−ブチル基、ネオペンチル基、トリフルオロメチル基、ペンタフルオロエチル基、2.2.2−トリフルオロ−エチル基、ペルフルオロヘキシル基、メトキシ基、エトキシ基、t−ブトキシ基を挙げることができる。
【0016】
また、上記式(1)において、X及びYはそれぞれ独立に水、炭素数1〜10のケトン化合物、炭素数1〜10のエーテル化合物、炭素数1〜10のエステル化合物、炭素数1〜6のニトリル化合物である。ここで、炭素数1〜10のケトン化合物としては、炭素数1〜7のケトン化合物が好ましく、その具体例としては、アセトン、2−ブタノン、3-メチル−2−ブタノン、2−ペンタノン、ピナコロン、3−ペンタノン、3−ヘキサノン、2−ヘプタノンを挙げることができる。炭素数1〜10のエーテル化合物としては、炭素数1〜6のエーテル化合物が好ましく、その具体例としては、ジメチルエーテル、メチルエチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジプロピルエーテルが挙げられる。炭素数1〜10のエステル化合物としては、炭素数1〜7のエステル化合物が好ましく、その具体例としては、メチルアセテート、エチルアセテート、プロピルアセテート、ブチルアセテート、ペンチルアセテート、アミルアセテート、メチルプロピオネート、エチルプロピオネート、ジメチルカルボナト、ジエチルカーボネートを挙げることができる。炭素数1〜6のニトリル化合物の具体例としては、アセトニトリル、プロピオニトリルが挙げられる。X及びYの好ましい例としては、水、アセトン、2−ブタノン、メチルアセテート、メチルプロピオネート、ジメチルカーボネート、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、アセトニトリルを挙げることができる。
【0017】
上記式(2)に於いて、R5、R6、R7及びR8は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜10の炭化水素基、炭素数1〜10のハロゲン化炭化水素基又または炭素数1〜10のアルコキシ基である。ここで、炭素数1〜10の炭化水素基としては炭素数1〜7の炭化水素基であることが好ましく、その具体例としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ネオペンチル基、n−ヘキシル基、シクロヘキシル基、フェニル基、ベンジル基、メチルフェニル基を挙げることができる。また炭素数1〜10のハロゲン化炭化水素基としては炭素数1〜6のハロゲン化炭化水素基であることが好ましい。その具体例としては、例えばクロロメチル基、ジクロロメチル基、トリクロロメチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2.2.2−トリフルオロ−エチル基、ペンタフルオロエチル基、ペルフルオロプロピル基、ペルフルオロブチル基、ペルフルオロヘキシル基、ペンタフルオロフェニル基を挙げることができる。また炭素数1〜10のアルコキシ基としては炭素数1〜6のアルコキシ基であることが好ましく、その具体例としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブチトキシ基、イソブトシキ基、t−ブトキシ基、n−ヘキサオキシ基、フェノキシ基を挙げることができる。R5、R6、R7及びR8の好ましい例としては、水素原子、フッ素原子、メチル基、エチル基、イソプロピル基、t−ブチル基、ネオペンチル基、モノフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、2.2.2−トリフルオロ−エチル基、ペルフルオロヘキシル基、メトキシ基、エトキシ基、t−ブトキシ基を挙げることができる。
上記式(1)および式(2)で表される化合物の合成法は、D.Rose and G.Wilkinson,J.Chem.Soc.(A),1791,(1970)およびA.J.Lindsay and G.Wilkinson,J.Chem.Soc.Dalton Trans.,2321,(1985)を参照できる。
【0018】
上記式(1)で表される化学気相成長材料の具体例としては、例えば
テトラ(μ−ホルマト)(2水和物)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(2−ブタノン)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(ジメチルエーテル)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(テトラヒドロフラン)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(ジメチルカルボナト)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(メチルアセタト)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(メチルプロピオナト)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−アセタト)(2水和物)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(2−ブタノン)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(ジメチルエーテル)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(テトラヒドロフラン)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(ジメチルカルボナト)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(メチルアセタト)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(メチルプロピオナト)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−プロピオナト)(2水和物)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(2−ブタノン)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(ジメチルエーテル)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(テトラヒドロフラン)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(ジメチルカルボナト)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(メチルプロピオナト)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−モノフルオロアセタト)(2水和物)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)(ジ2−ブタノン)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)ジ(ジメチルエーテル)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)ジ(ジメチルカルボナト)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)(ジメチルモノフルオロアセタト)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−トリフルオロメチルアセタト)(2水和物)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)(ジ2−ブタノン)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(ジメチルエーテル)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(ジメチルカルボナト)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)(ジメチルトリフルオロメチルアセタト)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−テトラフルオロエチルアセタト)(2水和物)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)(ジ2−ブタノン)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(ジメチルエーテル)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(ジメチルカルボナト)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)(ジメチルテトラフルオロエチルアセタト)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−メトキシアセタト)(2水和物)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)(ジ2−ブタノン)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジ(ジメチルエーテル)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジ(ジメチルカルボナト)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)(ジメチルメトキシアセタト)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−エトキシアセタト)(2水和物)ジルテニウム(II,II)、テトラ(μ−エトキシアセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−エトキシアセタト)(ジ2−ブタノン)ジルテニウム(II,II)、テトラ(μ−エトキシアセタト)ジ(ジメチルエーテル)ジルテニウム(II,II)、テトラ(μ−エトキシアセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−エトキシアセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−エトキシアセタト)ジ(ジメチルカルボナト)ジルテニウム(II,II)、テトラ(μ−エトキシアセタト)(ジメチルエトキシアセタト)ジルテニウム(II,II))、テトラ(μ−エトキシアセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
等を挙げることができる。
【0019】
これらのうち、
テトラ(μ−ホルマト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−ホルマト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−アセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−アセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−プロピオナト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、
テトラ(μ−トリフルオロメチルアセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−テトラフルオロエチルアセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(ジエチルエーテル)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−テトラフルオロエチルアセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
テトラ(μ−メトキシアセタト)ジ(アセトン)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジ(テトラヒトロフラン)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジ(アセトニトリル)ジルテニウム(II,II)、
が好ましい。
【0020】
上記式(2)で表される化学気相成長材料の具体例としては、例えば
テトラ(μ−ホルマト)ジルテニウム(II,II)、テトラ(μ−アセタト))ジルテニウム(II,II)、テトラ(μ−プロピオナト)ジルテニウム(II,II)、テトラ(μ−モノフルオロアセタト)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジルテニウム(II,II)、テトラ(μ−ペンタフルオロエチルアセタト)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジルテニウム(II,II)、テトラ(μ−エトキシアセタト)ジルテニウム(II,II)、
等を挙げることができる。
【0021】
これらのうち、
テトラ(μ−ホルマト)ジルテニウム(II,II)、テトラ(μ−アセタト)ジルテニウム(II,II)、テトラ(μ−トリフルオロメチルアセタト)ジルテニウム(II,II)、テトラ(μ−ペンタフルオロエチルアセタト)ジルテニウム(II,II)、テトラ(μ−メトキシアセタト)ジルテニウム(II,II)
が好ましい。
これらの化合物は単独でまたは2種以上を混合して化学気相成長材料として使用することができる。1種類の化合物を単独で化学気相成長材料として使用することが好ましい。
本発明の化学的気相成長方法は上記の化学気相成長材料を使用する。
【0022】
本発明の化学的気相成長方法は、上記の化学気相成長材料を使用する他は、それ自体公知の方法を使用できるが、例えば次のようにして実施することができる。
【0023】
(1)本発明の化学気相成長材料を気化せしめ、次いで(2)得られた気体を加熱して、熱分解せしめて基体上にルテニウムを堆積せしめる。なお、上記工程(1)において、本発明の化学気相成長材料の分解を伴っても本発明の効果を減殺するものではない。
ここで使用できる基体としては、例えば、ガラス、シリコン半導体、石英、金属、金属酸化物、合成樹脂等適宜の材料を使用できるが、ルテニウム化合物を熱分解せしめる工程温度に耐えられる材料であることが好ましい。
上記工程(1)において、ルテニウム化合物を気化せしめる温度は、好ましくは100〜350℃であり、更に好ましくは120〜300℃である。
上記工程(2)において、ルテニウム化合物を熱分解せしめる温度は、好ましくは180〜450℃であり、より好ましくは200〜400℃であり、更に好ましくは250〜400℃である。
【0024】
本発明の化学的気相成長方法は、不活性気体の存在下もしくは不存在下又は還元性気体の存在下もしくは不存在下のいずれの条件下でも実施することができる。また、不活性気体および還元性気体の両者が存在する条件で実施してもよい。ここで不活性気体としては、例えば窒素、アルゴン、ヘリウム等が挙げられる。また、還元性気体としては、例えば水素、アンモニア等を挙げることができる。また本発明の化学的気相成長方法は、酸化性気体の共存下で実施することも可能である。ここで、酸化性気体としては、例えば酸素、一酸化炭素、亜酸化窒素等を挙げることができる。
特に、成膜したルテニウム膜中不純物を低減させる目的から、これら還元性気体を共存させることが好ましい。還元性気体を共存させる場合、雰囲気中の還元性気体の割合は、1〜70モル%であることが好ましく、3〜40モル%であることがより好ましい。
【0025】
本発明の化学的気相成長方法は、加圧下、常圧下および減圧下のいずれの条件でも実施することができる。なかでも、常圧下又は減圧下で実施することが好ましく、15,000Pa以下の圧力下で実施することがさらに好ましい。
本発明の化学気相成長材料は、空気中の保存に対して酸化等の劣化が生じにくく保存安定性に優れる。市販の実験用の密閉容器に入れて冷暗所に保持するならば、特に容器内の雰囲気を不活性雰囲気にせずとも、15日間程度材料の劣化は生じない。
上記の如くして得られたルテニウム膜は、後述の実施例から明らかなように、保存安定性に優れ、純度および電気伝導性が高く、例えば、配線電極のバリア膜、メッキ成長膜、キャパシタ電極等に好適に使用することができる。
【実施例】
【0026】
以下、実施例によって、本発明を具体的に説明する。
【0027】
合成例1
テトラ(μ−アセタト)ジルテニウム(II,II)の合成
三塩化ルテニウム・3水和物2.0210g、アダムス酸化白金触媒0.0138g、メタノール25mLをオートクレーブを用いて水素6atm下、3時間攪拌し、青色の溶液を得た。攪拌終了後、濾過を行い、窒素置換したシュレンクに移し、そこに酢酸リチウム2.3580gを加え、18時間加熱還流を行った。還流終了後、熱時濾過を行い、メタノールで3回洗浄し、80℃で真空乾燥し、テトラ(μ−アセタト)ジルテニウム0.9207gを茶色の粉末として得た。収率54%。
ここで得られた固体の元素分析を実施したところ、炭素:21.91%、水素2.70%であった。なおテトラ(μ−アセタト)ジルテニウムとしての理論値は、炭素:21.92%、水素:2.76%であった。
IR(KBr、cm−1):2936vw、1556vs、1444vs、1352s、1046m、944w、691s、621w、581w.
【0028】
合成例2
テトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウム(II,II)の合成
窒素置換したシュレンクにテトラ(μ−アセタト)ジルテニウム0.9059g、トリフルオロ酢酸ナトリウム1.696g、トリフルオロ酢酸28mL、無水トリフルオロ酢酸4mLを入れ、3日間加熱還流した。還流終了後、濾過を行い深紅色の溶液を得た。溶媒を真空留去し、エーテルで抽出した。再び真空留去し、アセトンを用いて再結晶を行い、ヘキサンで洗浄後、真空乾燥し、テトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウム1.3517gを赤紫色の固体として得た。収率65%。
ここで得られた固体の元素分析を実施したところ、炭素:22.19%、水素1.62%であった。なお、テトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウムとしての理論値は、炭素21.83%、水素1.57%であった。
19F−NMR(CDCl)δ−91.68(s、CCF).図1。
IR(KBr、cm−1):2928w、2918w、1681s、1644s、1195vs、1167s、859m、777m、736s、552m、529m.
【0029】
合成例3
テトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウム(II,II)の合成
窒素置換したシュレンクにテトラ(μ−アセタト)ジルテニウム100.4mg、ペンタフルオロプロピオン酸ナトリウム194.1mg、ペンタフルオロプロピオン酸3.6mL、無水ペンタフルオロプロピオン酸0.4mLを入れ、3日間加熱還流した。還流終了後、濾過を行い深紅色の溶液を得た。溶媒を真空留去し、エーテルで抽出した。再び真空留去し、アセトン/ヘキサンを用いて再結晶を行い、ヘキサンで洗浄後、真空乾燥し、テトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウム122.4mgを赤紫色の固体として得た。収率55%。
ここで得られた固体の元素分析を実施したところ、炭素:22.56%、水素1.53%であった。なお、テトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウムとしての理論値は、炭素22.28%、水素1.25%であった。
19F−NMR(CDCl)δ−78.62(s、12F、C)、−140.21(s、8F、CF).図2。
IR(KBr、cm−1):2932w、2866w、1683s、1670sh、1639s、1438m、1333m、1227s、1192sh、1165s、1036s、832m、737m、553m.
【0030】
以下の実施例において、比抵抗はナプソン社製探針抵抗率測定器、形式「RT−80/RG−80」により測定した。膜厚及び膜密度はフィリップス社製斜入射X線分析装置、形式「X’Pert MRD」により測定した。ESCAスペクトルは日本電子(株)製形式「JPS80」にて測定した。また密着性の評価は、JIS K−5400に準拠して碁盤目テープ法によった。
以下の実施例において、比抵抗はナプソン社製探針抵抗率測定器、形式「RT−80/RG−80」により測定した。膜厚及び膜密度はフィリップス社製斜入射X線分析装置、形式「X’Pert MRD」により測定した。ESCAスペクトルは日本電子(株)製形式「JPS80」にて測定した。また密着性の評価は、JIS K−5400に準拠して碁盤目テープ法によった。
【0031】
実施例1
(1).合成例1にて得られたテトラ(μ−アセタト)ジルテニウム(II,II)0.05gを窒素ガス中で石英製ボート型容器に計り取り、石英製反応容器にセットした。反応容器内の気流の下流方向側の近傍に熱酸化膜付きシリコンウエハを置き、室温下で反応容器内に窒素ガスを300mL/minの流量にて20分間流した。その後反応容器中に窒素ガスを100mL/minの流量で流し、さらに系内を13Paにし、反応容器を400℃に15分間加熱した。ボート型容器からミストが発生し、近傍に設置した石英基板に堆積物が見られた。ミストの発生が終了した後、減圧を止め、窒素ガスを系に入れて圧力を戻し、次いで101.3kPaで窒素ガスを200mL/minの流量で流し、反応容器の温度を420℃に上昇させ、そのまま1時間保持したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は920Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、35μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られなかった。
【0032】
(2).保存安定性の確認として、空気に対する劣化性検討を加熱加速テストにて実施した。テトラ(μ−アセタト)ジルテニウム(II,II)1gを50mL容量の石英製三口フラスコに入れ、容器全体を50℃に加熱し、その後常圧下で空気を3L/min.の流量で3時間流通させた。外観上テトラ(μ−アセタト)ジルテニウム(II,II)の変化は無かった。その後、容器を室温に戻し、乾燥窒素で容器内を置換してから、上記(1)と同様の要領で成膜を実施したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は920Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、35μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られず、空気暴露加熱テストによるルテニウム金属膜質の劣化は観察されなかった。
【0033】
実施例2
(1).合成例1にて得られたテトラ(μ−アセタト)ジルテニウム(II,II)0.05gを窒素ガス中で石英製ボート型容器に計り取り、石英製反応容器にセットした。反応容器内の気流の下流方向側の近傍に熱酸化膜付きシリコンウエハを置き、室温下で反応容器内に水素・窒素混合ガス(水素含量3vol%)を300mL/minの流量にて20分間流した。その後反応容器中に水素・窒素混合ガス(水素含量3vol%)を100mL/minの流量で流し、さらに系内を13Paにし、反応容器を400℃に15分間加熱した。ボート型容器からミストが発生し、近傍に設置した石英基板に堆積物が見られた。ミストの発生が終了した後、減圧を止め、窒素ガスを系に入れて圧力を戻し、次いで101.3kPaで水素・窒素混合ガス(水素含量3vol%)を200mL/minの流量で流し、反応容器の温度を420℃に上昇させ、そのまま1時間保持したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は900Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、28μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られなかった。
【0034】
(2).保存安定性の確認として、空気に対する劣化性検討を加熱加速テストにて実施した。テトラ(μ−アセタト)ジルテニウム(II,II)1gを50mL容量の石英製三口フラスコに入れ、容器全体を50℃に加熱し、その後常圧下で空気を3L/min.の流量で3時間流通させた。外観上テトラ(μ−アセタト)ジルテニウム(II,II)の変化は無かった。その後、容器を室温に戻し、乾燥窒素で容器内を置換してから、上記(1)と同様の要領で成膜を実施したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は900Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、28μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られず、空気暴露加熱テストによるルテニウム金属膜質の劣化は観察されなかった。
【0035】
実施例3
(1).合成例2にて得られたテトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウム(II,II)0.05gを窒素ガス中で石英製ボート型容器に計り取り、石英製反応容器にセットした。反応容器内の気流の下流方向側の近傍に熱酸化膜付きシリコンウエハを置き、室温下で反応容器内に窒素ガスを300mL/minの流量にて20分間流した。その後反応容器中に窒素ガスを100mL/minの流量で流し、さらに系内を13Paにし、反応容器を400℃に15分間加熱した。ボート型容器からミストが発生し、近傍に設置した石英基板に堆積物が見られた。ミストの発生が終了した後、減圧を止め、窒素ガスを系に入れて圧力を戻し、次いで101.3kPaで窒素ガスを200mL/minの流量で流し、反応容器の温度を400℃に上昇させ、そのまま1時間保持したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は900Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、21μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られなかった。
【0036】
(2).保存安定性の確認として、空気に対する劣化性検討を加熱加速テストにて実施した。テトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウム(II,II)1gを50mL容量の石英製三口フラスコに入れ、容器全体を50℃に加熱し、その後常圧下で空気を3L/min.の流量で3時間流通させた。外観上テトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウム(II,II)の変化は無かった。その後、容器を室温に戻し、乾燥窒素で容器内を置換してから、上記(1)と同様の要領で成膜を実施したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は900Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、21μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られず、空気暴露加熱テストによるルテニウム金属膜質の劣化は観察されなかった。
【0037】
実施例4
(1).合成例2にて得られたテトラ(μ−トリフルオロメチルアセタト)ジ(アセトン)ジルテニウム(II,II)0.05gを窒素ガス中で石英製ボート型容器に計り取り、石英製反応容器にセットした。反応容器内の気流の下流方向側の近傍に熱酸化膜付きシリコンウエハを置き、室温下で反応容器内に水素・窒素混合ガス(水素含量3vol%)を300mL/minの流量にて20分間流した。その後反応容器中に水素・窒素混合ガス(水素含量3vol%)を100mL/minの流量で流し、さらに系内を13Paにし、反応容器を400℃に15分間加熱した。ボート型容器からミストが発生し、近傍に設置した石英基板に堆積物が見られた。ミストの発生が終了した後、減圧を止め、窒素ガスを系に入れて圧力を戻し、次いで101.3kPaで水素・窒素混合ガス(水素含量3vol%)を200mL/minの流量で流し、反応容器の温度を400℃に上昇させ、そのまま1時間保持したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は870Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、18μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られなかった。
【0038】
(2).保存安定性の確認として、空気に対する劣化性検討を加熱加速テストにて実施した。テトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウム(II,II)1gを50mL容量の石英製三口フラスコに入れ、容器全体を50℃に加熱し、その後常圧下で空気を3L/min.の流量で3時間流通させた。外観上テトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウム(II,II)の変化は無かった。その後、容器を室温に戻し、乾燥窒素で容器内を置換してから、上記(1)と同様の要領で成膜を実施したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は870Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、18μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られず、空気暴露加熱テストによるルテニウム金属膜質の劣化は観察されなかった。
【0039】
実施例5
(1).合成例3にて得られたテトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウム(II,II)0.05gを窒素ガス中で石英製ボート型容器に計り取り、石英製反応容器にセットした。反応容器内の気流の下流方向側の近傍に熱酸化膜付きシリコンウエハを置き、室温下で反応容器内に窒素ガスを300mL/minの流量にて20分間流した。その後反応容器中に窒素ガスを100mL/minの流量で流し、さらに系内を13Paにし、反応容器を400℃に15分間加熱した。ボート型容器からミストが発生し、近傍に設置した石英基板に堆積物が見られた。ミストの発生が終了した後、減圧を止め、窒素ガスを系に入れて圧力を戻し、次いで101.3kPaで窒素ガスを200mL/minの流量で流し、反応容器の温度を400℃に上昇させ、そのまま1時間保持したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は600Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、16μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られなかった。
【0040】
(2).保存安定性の確認として、空気に対する劣化性検討を加熱加速テストにて実施した。テトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウム(II,II)1gを50mL容量の石英製三口フラスコに入れ、容器全体を50℃に加熱し、その後常圧下で空気を3L/min.の流量で3時間流通させた。外観上テトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウム(II,II)の変化は無かった。その後、容器を室温に戻し、乾燥窒素で容器内を置換してから、上記(1)と同様の要領で成膜を実施したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は600Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、16μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られず、空気暴露加熱テストによるルテニウム金属膜質の劣化は観察されなかった。
【0041】
実施例6
(1).合成例1にて得られたテトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウム(II,II)0.05gを窒素ガス中で石英製ボート型容器に計り取り、石英製反応容器にセットした。反応容器内の気流の下流方向側の近傍に熱酸化膜付きシリコンウエハを置き、室温下で反応容器内に水素・窒素混合ガス(水素含量3vol%)を300mL/minの流量にて20分間流した。その後反応容器中に水素・窒素混合ガス(水素含量3vol%)を100mL/minの流量で流し、さらに系内を13Paにし、反応容器を400℃に15分間加熱した。ボート型容器からミストが発生し、近傍に設置した石英基板に堆積物が見られた。ミストの発生が終了した後、減圧を止め、窒素ガスを系に入れて圧力を戻し、次いで101.3kPaで水素・窒素混合ガス(水素含量3vol%)を200mL/minの流量で流し、反応容器の温度を400℃に上昇させ、そのまま1時間保持したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は570Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、21μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られなかった。
【0042】
(2).保存安定性の確認として、空気に対する劣化性検討を加熱加速テストにて実施した。テトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウム(II,II)1gを50mL容量の石英製三口フラスコに入れ、容器全体を50℃に加熱し、その後常圧下で空気を3L/min.の流量で3時間流通させた。外観上テトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウム(II,II)の変化は無かった。その後、容器を室温に戻し、乾燥窒素で容器内を置換してから、上記(1)と同様の要領で成膜を実施したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は570Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、21μΩcmであった。この膜の膜密度は12.0g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られず、空気暴露加熱テストによるルテニウム金属膜質の劣化は観察されなかった。
【0043】
比較例1
(1). 市販のビス(エチルシクロペンタジエニル)ルテニウム0.01gを窒素ガス中で石英製ボート型容器に量計り取り、石英製反応容器にセットした。反応容器内の気流の下流の方向側の近傍に石英基板を置き、室温下で反応容器内に酸素・窒素混合ガス(酸素含量5vol%)を250mL/minの流量にて60分間流した。その後反応容器中に酸素・窒素混合ガス(酸素含量5vol%)を20mL/minの流量で流し、さらに系内を110Paにし、反応容器を350℃に30分間加熱した。ボート型容器からミストが発生し、近傍に設置した石英基板に堆積物が見られた。ミストの発生が終了した後、減圧を止め、窒素ガスを系に入れて圧力を戻し、次いで101.3kPaで窒素ガスを200mL/minの流量で流し、そのまま1時間保持したところ、基板上に金属光沢を有する膜が得られた。この膜の膜厚は850Åであった。この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが判った。このルテニウム膜につき、4端子法で抵抗率を測定したところ、25μΩcmであった。また、この膜の膜密度は12.1g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、基板とルテニウム膜との剥離は全く見られなかった。
【0044】
(2). 市販のビス(エチルシクロペンタジエニル)ルテニウムに対し、実施例1の(2)と同様に空気に対する劣化性検討としての加熱加速テストを実施した。ビス(エチルシクロペンタジエニル)ルテニウム1gを50mL容量の石英製三口フラスコに入れ、容器全体を50℃に加熱し、その後常圧下で空気を3L/min.の流量で3時間流通させた。これにより、本来は薄黄色透明液体状であるビス(エチルシクロペンタジエニル)ルテニウムの外観は黄色不透明の液体状に変化した。その後、容器を室温に戻し、乾燥窒素で容器内を置換してから、上記(1)と同様の要領で成膜を実施したところ、基板上にやや黒ずんだ金属光沢を有する膜が得られた。この膜の膜厚は300Åであった。
この膜のESCAスペクトルを測定したところ、Ru3d軌道に帰属されるピークが280eVと284eVに観察され、他の元素に由来するピークは全く観察されず金属ルテニウムであることが分かった。また、このルテニウム膜につき、4端子法で抵抗率を測定したところ、78μΩcmと低い導電率しか示さなかった。この膜の膜密度は10.8g/cmであった。ここで形成されたルテニウム膜につき、基板との密着性を碁盤目テープ法によって評価したところ、100個の碁盤目ルテニウム膜のうち80個のルテニウム膜が剥離し、ルテニウム膜質が著しく低下した。このように、ビス(エチルシクロペンタジエニル)ルテニウムは空気暴露加熱テストにより成膜されたルテニウム金属膜質が劣化した。
【図面の簡単な説明】
【0045】
【図1】合成例1で得られたテトラ(μ−トリフルオロアセタト)ジ(アセトン)ジルテニウムの19F−NMRスペクトル図。
【図2】合成例3で得られたテトラ(μ−ペンタフルオロプロピオナト)ジ(アセトン)ジルテニウムの19F−NMRスペクトル図。

【特許請求の範囲】
【請求項1】
下記式(1)
【化1】

R1、R2、R3及びR4は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜10の炭化水素基、炭素数1〜10のハロゲン化炭化水素基又または炭素数1〜10のアルコキシ基であり、そしてX及びYはそれぞれ独立に水、炭素数1〜10のケトン化合物、炭素数1〜10のエーテル化合物、炭素数1〜10のエステル化合物、炭素数1〜6のニトリル化合物である、
で表わされる化合物からなる化学気相成長材料。
【請求項2】
下記式(2)
【化2】

R5、R6、R7及びR8は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜10の炭化水素基、炭素数1〜10のハロゲン化炭化水素基又または炭素数1〜10のアルコキシ基である、
で表わされる化合物からなる化学気相成長材料。
【請求項3】
請求項1又は請求項2に記載の化学気相成長材料から、化学気相成長法によりルテニウム膜を形成する方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−19263(P2009−19263A)
【公開日】平成21年1月29日(2009.1.29)
【国際特許分類】
【出願番号】特願2008−68102(P2008−68102)
【出願日】平成20年3月17日(2008.3.17)
【出願人】(000004178)JSR株式会社 (3,320)
【Fターム(参考)】