説明

固体撮像装置及びその製造方法

【課題】光導波路における開口寸法を配線レイアウトを変更することなく大きくすることにより、光導波路内に高屈折率膜を確実に埋め込むことができ、感度等が優れた光学特性を得られるようにする。
【解決手段】固体撮像装置の画素部Aは、半導体基板101に形成されたフォトダイオードPDと、該フォトダイオードPDの上側部分に凹部117を有する第1の絶縁膜150と、該第1の絶縁膜150の上に、凹部117を埋め込むように形成された第2の絶縁膜160とを有している。固体撮像装置の周辺回路部Bは、第1の絶縁膜150に形成された内部配線115と、該内部配線115の上に形成され、該内部配線115と電気的に接続されるパッド電極121とを有している。パッド電極121は、第2の絶縁膜160の上に形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光導波路を設けた固体撮像装置とその製造方法に関する。
【背景技術】
【0002】
近年、固体撮像装置において、高画素数化により画素の微細化が進展している。これに伴って受光部の微細化が進み、各受光部は高感度な特性を維持することが困難となってきている。その対策として、受光部であるフォトダイオードの上に光導波路を設ける固体撮像装置が提案されている(例えば、特許文献1を参照。)。光導波路は、屈折率が高い材料により構成されるため、入射した光を光導波路の外部に逃がすことなく、効率良くフォトダイオードに伝播することが可能である。
【0003】
図10は特許文献1に記載された従来例に係る半導体装置の断面構造を示している。図10に示すように、画素部RPXには、フォトダイオードPDの上方で且つ積層された絶縁膜21、22、25等を貫通する凹部Hに光導波路が形成されている。光導波路の内部には、埋め込み絶縁膜(パッシベーション膜36)と、高屈折率を有する金属酸化物を含む樹脂膜(埋め込み層37)とが形成されている。特許文献1には、光導波路は、開口寸法が0.8μm、アスペクト比が1〜2程度以上の凹部Hに、屈折率が2.0の窒化シリコン等からなり、膜厚が0.5μm程度のパッシベーション膜36を形成し、さらに、シロキサン系樹脂(屈折率1.7)又はポリイミド等の高屈折率樹脂からなる埋め込み層37を埋め込むことにより形成する構成が記載されている。
【0004】
ここで、パッシベーション膜36は、その堆積時の異方性により凹部Hの縁部で厚く堆積し、底部の近傍で薄くなることが記載されている。
【0005】
周辺回路部RPADにおいては、アルミニウムからなるパッド電極32の上に、パッシベーション膜36と埋め込み層37とが形成されている。すなわち、従来例に係る製造方法によれば、パッド電極32を含むアルミニウム配線を形成した後に、光導波路となる凹部Hを形成し、形成した凹部Hにパッシベーション膜36と埋め込み層37とを順次埋め込んで形成することとなる。
【0006】
パッシベーション膜36は、化学的気相成長(CVD)法により形成された窒化シリコンからなり、上述のように、その屈折率は1.9〜2.0程度である。一方、埋め込み層37は、塗布法により形成された樹脂からなり、上述のように、その屈折率は〜1.7程度である。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2008−166677号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、前記従来の固体撮像装置は、周辺回路部に配線を形成した後に、光導波路となる凹部を形成するため、パッド電極及び配線と画素部における撮像領域との間の距離を小さくできず、凹部の開口寸法が十分に大きくできないという問題がある。
【0009】
具体的には、フォトダイオードの上方に光導波路用の凹部を形成するリソグラフィ工程において、画素部の周囲のパッド形成領域には、既にパッド電極及び該パッド電極と内部配線とを接続する配線(コンタクト配線)が形成されている。このように、周辺回路部にパッド電極及びコンタクト配線が形成された領域の上にレジスト膜を塗布すると、パッド電極及びコンタクト配線の上側とその近傍の領域には段差によるレジストの塗布むら(筋状の膜厚むら)が生じる。このため、レジストの塗布むらの影響により、画素部と配線領域及びパッド形成領域との間の距離が大きくなってしまう。
【0010】
ところで、パッド電極及びコンタクト配線を光導波路用の凹部よりも先に形成するのは、該凹部のアスペクト比が微細化により大きくなる傾向にあり、凹部を埋める埋め込み層には充填性が高い樹脂材を用いる必要があるためである。一般に、樹脂材はパッド電極上に形成される保護膜(パッシベーション膜)等の形成時の熱処理に耐えられないため、パッド電極を先ず形成し、その後、凹部を形成し、該凹部の内部に埋め込み膜とパッド電極上のパッシベーション膜とを形成し、最後に、樹脂膜を形成するという手順を採る必要がある。
【0011】
さらに、レジストの塗布むらに起因するマスクの重ね合わせ精度の低下、及び開口寸法の変動等により、多層配線層における下層の配線(内部配線)との干渉を回避するために、凹部の開口寸法を大きくすることができないという問題もあり、窒化シリコンのような高屈折率膜による凹部の埋め込みが困難であることも相乗して、受光部の集光特性の向上には限界がある。
【0012】
本発明は、前記の問題に鑑み、光導波路における開口寸法を、配線レイアウトを変更することなく大きく確保することにより、光導波路内に高屈折率膜を確実に埋め込むことができ、感度等が優れた光学特性を得られるようにすることを目的とする。
【課題を解決するための手段】
【0013】
前記の目的を達成するため、本発明は、固体撮像装置を、周辺回路部に設けるパッド電極及び配線を光導波路となる凹部を埋め込む絶縁膜を成膜した後に形成する構成とする。
【0014】
具体的に、本発明に係る固体撮像装置は、半導体基板に形成され、画素部と周辺回路部とを有する固体撮像装置を対象とし、画素部は、半導体基板に形成されたフォトダイオードと、半導体基板の上に形成されフォトダイオードの上側部分に凹部を有する第1の絶縁膜と、第1の絶縁膜の上に凹部を埋め込むように形成された第2の絶縁膜とを有し、周辺回路部は、第1の絶縁膜又は該第1の絶縁膜と同層の層間絶縁膜に形成された配線と、配線の上に形成され該配線と電気的に接続されるパッド部とを有し、パッド部は、第2の絶縁膜の上又は該第2の絶縁膜と同層の第3の絶縁膜の上に形成されている。
【0015】
本発明の固体撮像装置によると、画素部は、半導体基板の上に形成されたフォトダイオードの上側部分の凹部を埋め込むように形成された第2の絶縁膜を有しており、周辺回路部は、配線の上に形成され該配線と電気的に接続されるパッド部を有し、パッド部は、第2の絶縁膜又は該第2の絶縁膜と同層の第3の絶縁膜の上に形成されている。すなわち、パッド部は、光導波路を構成する凹部に埋め込まれる第2の絶縁膜又は該第2の絶縁膜と同層の第3の絶縁膜の上に形成されていることから、第2の絶縁膜又は該第2の絶縁膜と同層の第3の絶縁膜よりも後に形成される。従って、第1の絶縁膜に凹部を形成する際には、第1の絶縁膜の上面は、パッド部等によるレジストの膜厚むらが生じないため、配線のレイアウトが従来と同一であっても、凹部の開口寸法を大きくすることができる。その結果、第2の絶縁膜に樹脂材に代えて高屈折率膜を用いることができるので、感度等が優れた光学特性を得ることができる。
【0016】
本発明の固体撮像装置において、画素部における第2の絶縁膜の上面の高さと、周辺回路部における第2の絶縁膜の上面の高さ又は該第2の絶縁膜と同層の第3の絶縁膜の上面の高さとは互いに等しいことが好ましい。
【0017】
本発明の固体撮像装置において、第2の絶縁膜は、少なくとも2層の膜により構成されていてもよい。
【0018】
この場合に、第2の絶縁膜の少なくとも1層目における凹部の上端の周縁部は、上方に拡がるように形成されていてもよい。
【0019】
本発明の固体撮像装置において、第2の絶縁膜は、屈折率が1.75よりも大きいことが好ましい。
【0020】
本発明の固体撮像装置において、第2の絶縁膜は、窒化シリコン又は酸窒化シリコンを含むことが好ましい。
【0021】
本発明の固体撮像装置において、第3の絶縁膜は、屈折率が1.75よりも小さいことが好ましい。
【0022】
本発明の固体撮像装置において、配線は銅を主成分とし、パッド部はアルミニウムを主成分としてもよい。
【0023】
また、本発明に係る固体撮像装置の製造方法は、半導体基板に形成され、画素部と周辺回路部とを有する固体撮像装置の製造方法を対象とし、半導体基板における画素部にフォトダイオードを形成する工程と、半導体基板の上に、フォトダイオードを覆うように第1の絶縁膜を形成する工程と、周辺回路部における第1の絶縁膜に配線を形成する工程と、第1の絶縁膜におけるフォトダイオードの上側部分に光導波路となる凹部を選択的に形成する工程と、第1の絶縁膜の上に凹部を埋め込むように第2の絶縁膜を形成する工程と、周辺回路部における第2の絶縁膜の上に配線と電気的に接続されるパッド部を形成する工程とを備えている。
【0024】
本発明の固体撮像装置の製造方法によると、周辺回路部における第1の絶縁膜に配線を形成し、その後、第1の絶縁膜におけるフォトダイオードの上側部分に光導波路となる凹部を選択的に形成する。続いて、第1の絶縁膜の上に凹部を埋め込むように第2の絶縁膜を形成し、その後、周辺回路部における第2の絶縁膜の上に配線と電気的に接続されるパッド部を形成する。このように、第1の絶縁膜に凹部を選択的に形成する際には、第1の絶縁膜の上面は、パッド部等によるレジストの膜厚むらが生じないため、配線のレイアウトが従来と同一であっても、凹部の開口寸法を大きくすることができる。その結果、第2の絶縁膜に樹脂材に代えて高屈折率膜を用いることができるので、感度等が優れた光学特性を得ることができる。
【0025】
本発明の固体撮像装置の製造方法は、第2の絶縁膜を形成する工程よりも後に、周辺回路部における第2の絶縁膜を除去する工程と、周辺回路部における第2の絶縁膜を除去した領域に、第2の絶縁膜よりも光の屈折率が低い第3の絶縁膜を形成する工程とをさらに備え、パッド部を形成する工程において、パッド部は、第3の絶縁膜の上に形成してもよい。
【0026】
本発明の固体撮像装置の製造方法において、第3の絶縁膜は、屈折率が1.75よりも小さいことが好ましい。
【0027】
本発明の固体撮像装置の製造方法において、第2の絶縁膜は、少なくとも2層の膜により構成してもよい。
【0028】
本発明の固体撮像装置の製造方法は、第2の絶縁膜を形成する工程において、第2の絶縁膜の少なくとも1層目における凹部の上端の周縁部を、エッチングにより上方に拡がるように形成してもよい。
【0029】
本発明の固体撮像装置の製造方法において、第2の絶縁膜は、屈折率が1.75よりも大きいことが好ましい。
【0030】
本発明の固体撮像装置の製造方法において、第2の絶縁膜は、窒化シリコン又は酸窒化シリコンを含むことが好ましい。
【0031】
本発明の固体撮像装置の製造方法において、配線は銅を主成分とし、パッド部はアルミニウムを主成分としてもよい。
【発明の効果】
【0032】
本発明に係る固体撮像装置及びその製造方法によると、フォトダイオード上に設ける光導波路の開口寸法を、配線レイアウトを変更することなく大きく確保することができるため、光導波路内に高屈折率膜を空洞(ボイド)を生じることなく確実に埋め込むことができるので、感度等が優れた光学特性を得ることができる。
【図面の簡単な説明】
【0033】
【図1】図1は本発明の一実施形態に係る固体撮像装置を示す要部の模式断面図である。
【図2】図2は本発明の一実施形態に係る固体撮像装置(半導体チップ)を示す模式平面図である。
【図3】図3(a)〜図3(c)は本発明の一実施形態に係る固体撮像装置の要部の製造方法を示す工程順の模式断面図である。
【図4】図4(a)〜図4(c)は本発明の一実施形態に係る固体撮像装置の要部の製造方法を示す工程順の模式断面図である。
【図5】図5(a)及び図5(b)は本発明の一実施形態に係る固体撮像装置の要部の製造方法を示す工程順の模式断面図である。
【図6】図6(a)は本発明の一実施形態に係る固体撮像装置における画素部の一画素のレイアウトを示す模式平面図である。図6(b)は従来の固体撮像装置における画素部の一画素のレイアウトを示す模式平面図である。
【図7】図7は凹部の開口寸法と空洞幅との関係を示す断面図及びグラフである。
【図8】図8(a)〜図8(c)は本発明の一実施形態の第1変形例に係る固体撮像装置の要部の製造方法を示す工程順の模式断面図である。
【図9】図9(a)及び図9(b)は本発明の一実施形態の第1変形例に係る固体撮像装置の要部の製造方法を示す工程順の模式断面図である。
【図10】図10は従来例に係る固体撮像装置を示す要部の模式断面図である。
【発明を実施するための形態】
【0034】
(一実施形態)
本発明の一実施形態に係る固体撮像装置について図1を参照しながら説明する。
【0035】
図1に示すように、一実施形態に係る固体撮像装置は、シリコン(Si)等からなる半導体基板101に区画された画素部Aと周辺回路部Bとから構成される。
【0036】
画素部Aは、半導体基板101の上部に形成されたn型層102と該n型層102の上に形成されたp型層103とからなるフォトダイオードPDを有している。
【0037】
半導体基板1の上には、フォトダイオードPDと隣接して、ゲート絶縁膜104を介在させたゲート電極105を有する複数のトランジスタが形成されている。このトランジストは、フォトダーオードPDに蓄積された電荷を読み出す働きをする。ゲート絶縁膜104には、酸化シリコン等を用いることができ、ゲート電極105には、ポリシリコン等を用いることができる。
【0038】
半導体基板101の全面には、各トランジスタ及びフォトダイオードPDを覆うように、上面が平坦化された酸化シリコン(SiO)等からなる下層絶縁膜106が形成されている。下層絶縁膜106の上には、窒化シリコン(SiN)又は炭窒化シリコン(SiCN)等からなる下地絶縁膜107が形成されている。
【0039】
下地絶縁膜107の上には、それぞれ酸化シリコン等からなる第1の層間絶縁膜108、第2の層間絶縁膜111及び第3の層間絶縁膜114が順次形成されている。第1の層間絶縁膜108におけるゲート電極105の上方の領域には、第1の内部配線109が形成されている。同様に、第2の層間絶縁膜111における第1の内部配線109の上方の領域には、第2の内部配線112が形成され、第3の層間絶縁膜114における第2の内部配線112の上方の領域には、第3の内部配線115が形成されている。ここで、各内部配線109、112及び115には、例えば銅(Cu)又は銅を主成分とする金属を用いることができる。
【0040】
第1の層間絶縁膜108と第2の層間絶縁膜111との間には、第1の内部配線109の上面を覆う第1のライナ膜110が形成されている。同様に、第2の層間絶縁膜111と第3の層間絶縁膜114との間には、第2の内部配線112の上面を覆う第2のライナ膜113が形成され、第3の層間絶縁膜114の上には、第3の内部配線115の上面を覆う第3のライナ膜116が形成されている。ここで、各ライナ膜110、113及び116は、例えば窒化シリコン(SiN)又は炭窒化シリコン(SiCN)等からなり、各内部配線109、112及び115を構成する銅原子の拡散防止膜として機能する。
【0041】
下層絶縁膜106の上に積層された、下地絶縁膜107、第1〜第3の層間絶縁膜108、111及び114、並びに第1〜第3のライナ膜110、113及び116を、便宜上、第1の絶縁膜150と呼ぶ。
【0042】
第1の絶縁膜150におけるフォトダイオードPD上の領域には、光導波路となる凹部117が形成されている。第1の絶縁膜150の上には、例えば窒化シリコン(SiN)からなる第2の絶縁膜160が、凹部117を埋め込むように形成されている。ここでは、第2の絶縁膜160は、例えば膜厚が600nmの第1の埋め込み層118と、該第1の埋め込み層118の上に形成された第2の埋め込み層119とから構成される。さらに、第1の埋め込み層118における凹部117の上端の周縁部は壁面が上方に広がるように加工され、いわゆる肩落としエッチングがなされている。
【0043】
第2の絶縁膜160の上における画素部Aに含まれる領域には、例えば有機系樹脂からなる平坦化膜123、カラーフィルタ124及びレンズ125が順次形成されている。
【0044】
周辺回路部Bは、図2に示すように、画素部Aを囲むように配置されている。ここで、画素部Aには、図1に示す1つの画素が行列状に複数個が配置されている。
【0045】
また、図1に示すように、周辺回路部Bには、半導体基板101の上に順次形成された、下層絶縁膜106、下地絶縁膜107、第1の絶縁膜150及び第2の絶縁膜160が形成されている。第1の絶縁膜150には、画素部Aと同様に、第1〜第3の内部配線109、112及び115、並びに第1〜第3のライナ膜110、113及び116が形成されている。
【0046】
図1及び図2に示すように、第2の絶縁膜160の上には、コンタクトホール120を介して第3の内部配線115と接続された外部配線であるパッド電極121が選択的に形成されている。パッド電極121は外部との電気的な接続を取る。ここで、コンタクトホール120に埋め込まれた材料及びパッド電極121には、例えばアルミニウム(Al)又はアルミニウムを主成分とする金属を用いることができる。また、第2の絶縁膜160の上における周辺回路部Bの上には、パッド電極121を露出するように、酸化シリコンからなる保護膜122が形成されている。
【0047】
以下、前記のように構成された固体撮像装置の製造方法について図3(a)〜図5(b)を参照しながら説明する。
【0048】
まず、図3(a)に示すように、イオン注入法により、半導体基板101の上部であって、その画素部Aにn型層102及びp型層103からなるフォトダイオードPDを選択的に形成する。続いて、半導体基板101の上にフォトダイオードPDと隣接してゲート絶縁膜104及びゲート電極105を選択的に形成する。続いて、半導体基板101の上に、全面にわたって下層絶縁膜106を成膜する。その後、成膜した下層絶縁膜106の上面を化学機械研磨(CMP)法又はレジストエッチバック法により平坦化する。続いて、下層絶縁膜106の上の全面に下地絶縁膜107を成膜し、続いて、第1の層間絶縁膜108、第1の内部配線109及び第1のライナ膜110を順次形成する。この工程により、画素部A及び周辺回路部Bにおいて、多層(3層)配線のうちの1層目が形成される。なお、第1の内部配線109は、いわゆるダマシン法により形成することができる。この後、2層目及び3層目の層間絶縁膜111、114、内部配線112、115及びライナ膜113、116を1層目と同様に形成する。
【0049】
続いて、リソグラフィ法及びエッチング法により、下地絶縁膜107から第3のライナ膜116までの各絶縁膜からなる第1の絶縁膜150におけるフォトダイオードPDの上側部分に、光導波路を形成するための凹部117を選択的に形成する。ここで、ドライエッチングには、CF又はC等の、フッ素(F)及び炭素(C)を主成分とするエッチングガスを用いることができる。なお、ここでは、凹部117の底面は下地絶縁膜107の上面と一致しているが、この形態に限られない。すなわち、凹部117の底面は、下地絶縁膜107の内部に留まってもよく、さらには、第1の層間絶縁膜108の内部に留まっていてもよい。すなわち、光導波路となる凹部117の長さ(光路長)が最適化されるように形成すればよい。
【0050】
次に、図3(b)に示すように、例えばプラズマCVD法により、第3のライナ膜116の上に、厚さが600nmの窒化シリコンからなる第1の埋め込み層118を凹部117の底面及び壁面を覆うように形成する。ここで形成される窒化シリコンの屈折率は、1.9〜1.95程度である。
【0051】
次に、図3(c)に示すように、例えば、Arスパッタエッチング法により、第1の埋め込み層118における凹部117の上端部に対してその周縁部が上方に拡がるように肩落としエッチングを行う。この肩落としエッチングは、続いて形成する第2の埋め込み層119の凹部117への埋め込み特性を向上するために行う。上述したように、プラズマCVD法により窒化シリコン膜を堆積すると、堆積時の異方性により、窒化シリコン膜は、凹部の上端部の近傍が他の部分よりも厚く堆積される傾向がある。このため、特に凹部117に開口寸法が小さい場合には、肩落としエッチングにより第2の絶縁膜160の埋め込み特性が改善されるため、有効である。なお、肩落としエッチングには、Arスパッタエッチング法の物理的なエッチング法に代えて、CF又はCHF等をエッチングガスとする化学的なエッチング法を用いてもよい。CF又はCHF等をエッチングガスとする化学的なエッチング法による肩落としエッチングでは、直線的ではなく、丸みを帯びた形状となる。すなわち、肩落としエッチングでは必ずしも直線的な肩落としでなくとも、丸みを帯びたような形状でもよく、第2の埋め込み層119における凹部117の上端部の広がり形状を改善できるようなエッチング法であればよい。
【0052】
次に、図4(a)に示すように、再度、プラズマCVD法により、第1の埋め込み層118の上に、厚さが1000nmの窒化シリコンからなる第2の埋め込み層119を凹部117を埋め込むように形成する。第2の埋め込み層119を構成する窒化シリコンも、第1の埋め込み層118と同様の屈折率1.9〜1.95程度を有している。第2の埋め込み層119は、凹部117の上方において若干の凹みが残存するものの、凹部117の内部においては、空洞(ボイド)が発生することなく埋め込むことができる。
【0053】
なお、本実施形態においては、各層間絶縁膜108、111及び114と、各ライナ膜110、113、及び116とのエッチング選択比が異なる材料を用いたが、層間絶縁膜とライナ膜とのエッチング選択比がほぼ等しくなるような材料を用いるか、又はライナ膜を設けないような場合には、第1の絶縁膜150自体に肩落としエッチングを行ってもよい。このようにすると、第2の絶縁膜160を単層の埋め込み層により、中断することなく成膜することができる。
【0054】
また、本実施形態においては、プラズマCVD法により埋め込み層の形成を行ったが、凹部117の開口径が埋め込みに十分な大きさである場合には、成膜とArスパッタエッチングとを同時に行いながら膜を形成する高密度プラズマCVD法(HDP−CVD)を用いてもよい。そうすれば、第2の絶縁膜160を単層の埋め込み層により形成することができる。
【0055】
次に、図4(b)に示すように、CMP法により、半導体基板101上の全面に形成された第2の埋め込み層119の上面に対して平坦化を図る研磨を行って上部の凹みを消失する。
【0056】
次に、図4(c)に示すように、リソグラフィ法及びエッチング法により、周辺回路部Bにおいて、第2の絶縁膜160に第3の内部配線115を露出するコンタクトホール120を選択的に形成する。本実施形態においては、図2に示すように、パッド電極121は、画素部Aの周囲に配置された周辺回路部Bにのみ設けられており、従って、コンタクトホール120も周辺回路部Bにのみ形成される。
【0057】
次に、図5(a)に示すように、リソグラフィ法及びスパッタ法等により、例えば厚さが700nmのアルミニウムからなるパッド電極121を選択的に形成する。
【0058】
続いて、第2の絶縁膜160の上に全面にわたって、膜厚が300nmの酸化シリコンからなる保護膜122を形成する。その後、リソグラフィ法及びエッチング法により、画素部Aに形成された保護膜122を選択的に除去する。さらに、リソグラフィ法及びエッチング法により、周辺回路部Bに形成された保護膜122におけるパッド電極121の上側部分を選択的に除去する。
【0059】
次に、図5(b)に示すように、画素部Aから露出する第2の絶縁膜160の上に、平坦化膜123、フィルター124及びレンズ125を順次形成する。
【0060】
このように、図1に示す固体撮像装置を得ることができる。
【0061】
以下、本実施形態に係る固体撮像装置に係る光導波路を形成する凹部117の開口径が従来と比べて大きくできる理由を説明する。
【0062】
まず、図3(a)に示すように、凹部117を形成する際のリソグラフィ工程において、パッド電極は未だ形成されていないため、画素部Aの周辺領域には段差等が存在しない。このため、リソグラフィ工程は、上面が極めて平坦な第1の絶縁膜150を下地層として実施できる。従って、第1の絶縁膜150の上に全面にわたって膜厚が均一なレジスト膜を塗布することができるので、マスクの下地層との重ね合わせ精度を向上することが可能となる。その結果、寸法精度が高い開口パターンを有する凹部117を得ることができる。
【0063】
例えば、1つの画素の大きさが1.8μm程度の固体撮像装置を想定した場合、[表1]に、凹部の開口寸法のばらつきと、下層配線と凹部との必要な間隔との関係を示す。
【0064】
【表1】

【0065】
[表1]の項目1)に示すように、凹部の開口寸法を900nm程度とすると、本実施形態においては、開口寸法のばらつきは、3σ(σ:標準偏差)で20nm程度である。これは、凹部を形成した場合に、900nm±20nmの寸法精度で形成可能であることを意味する。
【0066】
一方、図10に示す従来例は、凹部の加工工程を、周辺回路部RPADにパッド電極32を形成した後に実施している。パッド電極32の高さは700nm程度であり、パッド電極32により段差が生じる。このため、前述したように、リソグラフィ工程において塗布されるレジストの膜厚のばらつきが増大して、凹部の寸法ばらつきは3σで80nm程度となる。
【0067】
このように、従来例においては、光導波路を形成するための凹部は、900nm±80nmの寸法精度でしか形成できず、一方、本実施形態においては、900nm±20nmの寸法精度で形成できることになる。
【0068】
次に、[表1]に示す凹部の寸法精度の改善がもたらす効果について、図6(a)及び図6(b)を参照しながら説明する。
【0069】
図6(a)及び図6(b)は、画素部のレイアウトを示しており、図6(a)は本実施形態に係る画素部のレイアウトを示し、図6(b)は比較用として、従来の画素部のレイアウトを示す。いずれも、光導波路となる凹部117(H)、並びにフォトダイオードPDが、内部配線109(24)に囲まれて形成されている。
【0070】
一般に、凹部の加工工程において、内部配線と凹部とのレイアウト上のスペースが十分でないと、凹部のエッチングによる形成時に、該凹部が内部配線と衝突することになる。従って、両者の間に所定の間隔を確保することにより、凹部が内部配線と衝突しないようにレイアウトする必要がある。
【0071】
さらに、[表1]の項目2)に示すように、下層の内部配線と凹部とが接しないように、最低10nmの間隔を確保するとすれば、項目3)の合計欄に示すように、従来例においては、内部配線と凹部とを90nmの間隔をおいてレイアウトする必要がある。
【0072】
これに対し、本実施形態においては、30nmの間隔をおいてレイアウトすればよいことが分かる。すなわち、図6(b)において、仮りに従来例に係る凹部Hの開口寸法を900nmとすれば、従来例においては、画素部の内部配線19同士の間隔は1080nmが必要となる。ここで、本実施形態においても、内部配線109同士の間隔(1080nm)を変更せずにレイアウトすれば、内部配線109と凹部117との間隔を小さくすることが可能となる。その結果、凹部117の開口寸法を1020nmとすることができ、従来例と比べて120nmだけ拡大して形成することができる。
【0073】
さらに、従来例においては、配線形成領域や、パッド形成領域と撮像領域との間にレジストの厚さむらを緩和するための緩和領域を設ける必要があるが、本実施形態によれば、該緩和領域が不要となるため、固体撮像装置を構成するチップ面積を縮小できるという効果もある。
【0074】
図7に光導波路を構成する凹部の開口寸法と凹部内に発生し得る空洞(ボイド)幅との関係を示す。図7の断面図において、第1の絶縁膜150に形成された凹部117に埋め込まれる第2の絶縁膜160に生じる空洞(ボイド)160aとその幅Xを示す。
【0075】
従来の構成においては、凹部の開口寸法が900nmであるため、この凹部に窒化シリコンを埋め込んだとしても、幅が50nmの空洞160aが発生する。
【0076】
しかしながら、本実施形態においては、凹部117の開口寸法を前述のように、1020nmに拡大できるため、空洞幅は0nm、すなわち空洞160aが生じることはない。このため、本実施形態に係る固体撮像装置は、感度等の優れた光学特性を得ることができる。
【0077】
以上説明したように、本実施形態に係る固体撮像装置の製造方法によると、第1の絶縁膜150に凹部117を形成し、その後、該凹部117を高屈折率膜である第2の絶縁膜160で埋め込み、その後、外部配線(パッド電極121)を形成する。すなわち、外部配線を形成するよりも前に凹部117を形成できるため、凹部117の開口寸法のばらつきを低減することができる。このため、凹部117の開口寸法を従来と比べて大きくすることが可能となるので、空洞160aが発生することなく、高屈折率の第2の絶縁膜160を凹部117に確実に埋込むことができる。
【0078】
なお、本実施形態においては、埋め込み絶縁膜である第2の絶縁膜160に、CVD法による屈折率が1.9〜1.95程度で、保護膜122の形成時の熱処理の温度に耐性(熱耐性)がある窒化シリコン(SiN)を用いている。また、本実施形態においては、埋め込み絶縁膜である第2の絶縁膜160は、保護膜122の形成時の熱処理の温度(約300℃〜400℃)に耐性がある材料であればよく、酸窒化シリコン(SiON)等であってもよい。凹部への埋め込み膜は、従来例においては、塗布法による樹脂材料を用いており、この場合の屈折率は、高くて1.75程度である。このため、屈折率が1.75を超える窒化シリコン(SiN)又は酸窒化シリコン(SiON)等であれば、従来例よりも高い感度を得ることができる。ここで、熱耐性とは、材料が熱によって大きく変質しないことをいう。
【0079】
また、第1の埋め込み層118と第2の埋め込み層119とは、保護膜122の形成時に熱耐性がある材料であれば異なる材料であっても構わない。この場合、屈折率が1.75を超える材料が好ましい。
【0080】
また、本実施形態においては、第2の絶縁膜160として、第1の埋め込み層118及び第2の埋め込み層119による2層の構成としている。すなわち、第1の埋め込み層118を形成し、続いて、該第1の埋め込み層118に対して第2の埋め込み層119の埋め込み性を向上するための角落としエッチングを実施している。さらに微細化が進み、凹部117のアスペクト比が高くなった場合には、角落としエッチングを2回以上実施したり、埋め込み層を3層以上とすることも可能である。
【0081】
逆に、凹部117の開口寸法を拡大できることから、肩落としエッチングを実施しなくても凹部117に空洞160aが生じない場合には、第2の絶縁膜160を単層の構成とすることも可能である。これは、図7のグラフからも、凹部の開口寸法が950nm程度の場合で既に空洞160aが生じていないことからも明らかである。
【0082】
また、本実施形態においては、内部配線は3層構造とし、外部配線(パッド電極)は1層構造としたが、内部配線と外部配線とはそれぞれ1層以上であれば、同様の効果を得ることができる。
【0083】
また、本実施形態においては、3層構造を有する第1の絶縁膜150は、画素部Aと周辺回路部Bとが同等となる構成としたが、画素部Aと周辺回路部Bとで必ずしも同等の構成とする必要はない。例えば、周辺回路部Bにおいて、画素部Aと異なる材料及び構成としてもよい。
【0084】
(一実施形態の第1変形例)
以下、本発明の一実施形態の第1変形例について図8(a)〜図9(b)を参照しながら説明する。
【0085】
第1変形例においては、図8(a)に示すように、第2の絶縁膜160を形成し、その上面を平坦化した後、周辺回路部Bに含まれる第2の絶縁膜160を、リソグラフィ法及びエッチング法により選択的に除去する。
【0086】
次に、図8(b)に示すように、半導体基板1の上の全面に、例えば酸化シリコン(SiO)又は酸窒化シリコン(SiON)からなる第3の絶縁膜170を形成する。その後、リソグラフィ法及びエッチング法により、画素部Aに形成された第3の絶縁膜170を選択的に除去する。
【0087】
次に、図8(c)に示すように、リソグラフィ法及びエッチング法により、周辺回路部Bにおいて、第3の絶縁膜170に第3の内部配線115を露出するコンタクトホール120を選択的に形成する。
【0088】
次に、図9(a)に示すように、リソグラフィ法及びスパッタ法等により、例えば厚さが700nmのアルミニウムからなるパッド電極121を選択的に形成する。
【0089】
続いて、画素部Aにおいては、第2の絶縁膜160の上に、また、周辺回路部Bにおいては、パッド電極121を含む第3の絶縁膜170の上に全面にわたって、膜厚が300nmの酸化シリコンからなる保護膜122を形成する。その後、リソグラフィ法及びエッチング法により、画素部Aに形成された保護膜122を選択的に除去する。さらに、リソグラフィ法及びエッチング法により、周辺回路部Bに形成された保護膜122におけるパッド電極121の上側部分を選択的に除去する。
【0090】
次に、図9(b)に示すように、画素部Aから露出する第2の絶縁膜160の上に、平坦化膜123、フィルター124及びレンズ125を順次形成する。
【0091】
上述した一実施形態においては、光導波路を構成する凹部117に埋め込まれる第2の絶縁膜160を、そのまま周辺回路部Bにおける第3の銅配線115とパッド電極121との間の層間絶縁膜として用いている。
【0092】
この場合、層間絶縁膜は窒化シリコンからなり、高屈折率であることに起因して、第3の内部配線115とパッド電極121との間の層間容量(寄生容量)の増大が設計上懸念される場合がある。
【0093】
そこで、本変形例においては、周辺回路部Bにおける第3の内部配線115とパッド電極121との間の層間絶縁膜である第2の絶縁膜160を、屈折率が低い酸化シリコン又は酸窒化シリコンからなる第3の絶縁膜170に置き換えている。
【0094】
このような構成であっても、パッド電極121を形成するより前に、凹部117を先に形成するため、本発明の一実施形態と同様の効果を得られることは明らかである。
【産業上の利用可能性】
【0095】
本発明に係る固体撮像装置及びその製造方法は、フォトダイオード上に設ける光導波路の開口寸法を大きくできることから、光導波路内に高屈折率膜を空洞を生じることなく確実に埋め込むことができ、従って、光導波路を設けた固体撮像装置等に有用である。
【符号の説明】
【0096】
A 画素部
B 周辺回路部
PD フォトダイオード
101 半導体基板
102 n型層
103 p型層
104 ゲート絶縁膜
105 ゲート電極
106 下層絶縁膜
107 下地絶縁膜
108 第1の層間絶縁膜
109 第1の内部配線
110 第1のライナ膜
111 第2の層間絶縁膜
112 第2の内部配線
113 第2のライナ膜
114 第3の層間絶縁膜
115 第3の内部配線
116 第3のライナ膜
117 凹部
118 第1の埋め込み層
119 第2の埋め込み層
120 コンタクトホール
121 パッド電極(パッド部)
122 保護膜
123 平坦化膜
124 カラーフィルタ
125 レンズ
150 第1の絶縁膜
160 第2の絶縁膜
160a 空洞(ボイド)
170 第3の絶縁膜

【特許請求の範囲】
【請求項1】
半導体基板に形成され、画素部と周辺回路部とを有する固体撮像装置であって、
前記画素部は、
前記半導体基板に形成されたフォトダイオードと、
前記半導体基板の上に形成され、前記フォトダイオードの上側部分に凹部を有する第1の絶縁膜と、
前記第1の絶縁膜の上に、前記凹部を埋め込むように形成された第2の絶縁膜とを有し、
前記周辺回路部は、
前記第1の絶縁膜又は該第1の絶縁膜と同層の層間絶縁膜に形成された配線と、
前記配線の上に形成され、前記配線と電気的に接続されるパッド部とを有し、
前記パッド部は、前記第2の絶縁膜の上又は該第2の絶縁膜と同層の第3の絶縁膜の上に形成されていることを特徴とする固体撮像装置。
【請求項2】
前記画素部における前記第2の絶縁膜の上面の高さと、前記周辺回路部における前記第2の絶縁膜の上面の高さ又は該第2の絶縁膜と同層の第3の絶縁膜の上面の高さとは互いに等しいことを特徴とする請求項1に記載の固体撮像装置。
【請求項3】
前記第2の絶縁膜は、少なくとも2層の膜により構成されていることを特徴とする請求項1又は2に記載の固体撮像装置。
【請求項4】
前記第2の絶縁膜の少なくとも1層目における前記凹部の上端の周縁部は、上方に拡がるように形成されていることを特徴とする請求項3に記載の固体撮像装置。
【請求項5】
前記第2の絶縁膜は、屈折率が1.75よりも大きいことを特徴とする請求項1〜4のいずれか1項に記載の固体撮像装置。
【請求項6】
前記第2の絶縁膜は、窒化シリコン又は酸窒化シリコンを含むことを特徴とする請求項1〜5のいずれか1項に記載の固体撮像装置。
【請求項7】
前記第3の絶縁膜は、屈折率が1.75よりも小さいことを特徴とする請求項1〜6のいずれか1項に記載の固体撮像装置。
【請求項8】
前記配線は、銅を主成分とし、
前記パッド部は、アルミニウムを主成分とすることを特徴とする請求項1〜7のいずれか1項に記載の固体撮像装置。
【請求項9】
半導体基板に形成され、画素部と周辺回路部とを有する固体撮像装置の製造方法であって、
前記半導体基板における前記画素部にフォトダイオードを形成する工程と、
前記半導体基板の上に、前記フォトダイオードを覆うように第1の絶縁膜を形成する工程と、
前記周辺回路部における前記第1の絶縁膜に配線を形成する工程と、
前記第1の絶縁膜における前記フォトダイオードの上側部分に光導波路となる凹部を選択的に形成する工程と、
前記第1の絶縁膜の上に、前記凹部を埋め込むように第2の絶縁膜を形成する工程と、
前記周辺回路部における前記第2の絶縁膜の上に、前記配線と電気的に接続されるパッド部を形成する工程とを備えていることを特徴とする固体撮像装置の製造方法。
【請求項10】
前記第2の絶縁膜を形成する工程よりも後に、
前記周辺回路部における前記第2の絶縁膜を除去する工程と、
前記周辺回路部における前記第2の絶縁膜を除去した領域に、前記第2の絶縁膜よりも光の屈折率が低い第3の絶縁膜を形成する工程とをさらに備え、
前記パッド部を形成する工程において、前記パッド部は、前記第3の絶縁膜の上に形成することを特徴とする請求項9に記載の固体撮像装置の製造方法。
【請求項11】
前記第3の絶縁膜は、屈折率が1.75よりも小さいことを特徴とする請求項10に記載の固体撮像装置の製造方法。
【請求項12】
前記第2の絶縁膜は、少なくとも2層の膜により構成することを特徴とする請求項9〜11のいずれか1項に記載の固体撮像装置の製造方法。
【請求項13】
前記第2の絶縁膜を形成する工程において、前記第2の絶縁膜の少なくとも1層目における前記凹部の上端の周縁部を、エッチングにより上方に拡がるように形成することを特徴とする請求項12に記載の固体撮像装置の製造方法。
【請求項14】
前記第2の絶縁膜は、屈折率が1.75よりも大きいことを特徴とする請求項9〜13のいずれか1項に記載の固体撮像装置の製造方法。
【請求項15】
前記第2の絶縁膜は、窒化シリコン又は酸窒化シリコンを含むことを特徴とする請求項9〜14のいずれか1項に記載の固体撮像装置の製造方法。
【請求項16】
前記配線は、銅を主成分とし、
前記パッド部は、アルミニウムを主成分とすることを特徴とする請求項9〜15のいずれか1項に記載の固体撮像装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−227375(P2012−227375A)
【公開日】平成24年11月15日(2012.11.15)
【国際特許分類】
【出願番号】特願2011−94004(P2011−94004)
【出願日】平成23年4月20日(2011.4.20)
【特許番号】特許第4866972号(P4866972)
【特許公報発行日】平成24年2月1日(2012.2.1)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】