説明

建設機械の油圧駆動装置

【課題】走行以外のアクチュエータ動作では、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができるとともに、走行動作ではエネルギーのロスを低減し、エネルギ効率の向上を可能とする建設機械の油圧駆動装置を提供する。
【解決手段】シャトル弁37a,37b,37cにより走行動作時かどうかを検出する走行検出装置を構成し、差圧減圧弁30bを含むエンジン回転数検出弁装置30、切換弁39、減圧弁42及びLS制御弁35bの受圧部35dにより、走行動作時でないときはロードセンシング制御の目標差圧を絶対圧Paに設定し、走行動作時はロードセンシング制御の目標差圧を絶対圧Paより絶対圧Pa’に設定する設定変更装置を構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は油圧ショベル等の走行モータを備えた建設機械の油圧駆動装置に係わり、特に、油圧式ミニショベルの走行時のエネルギ効率を向上することができる建設機械の油圧駆動装置に関する。
【背景技術】
【0002】
油圧ポンプ(メインポンプ)の吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう油圧ポンプの吐出流量を制御する油圧駆動装置はロードセンシングシステムと呼ばれている。このロードセンシングシステムでは、複数の流量制御弁の前後差圧をそれぞれ圧力補償弁により所定差圧に保持し、複数のアクチュエータを同時に駆動する複合操作時に負荷圧の大小に係わらず流量制御弁の開口面積に応じた比率で圧油を供給できるようにしている。
【0003】
このようなロードセンシングシステムでは、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧(以下差圧PLSという)を圧力補償弁に導き、圧力補償弁のそれぞれの目標補償差圧を差圧PLSにより設定して、流量制御弁の前後差圧をその差圧PLSに保持するよう制御することが行われており、これにより複数のアクチュエータを同時に駆動する複合動作時に、油圧ポンプの吐出流量が不足するサチュレーション状態になったとき、サチュレーションの程度に応じて差圧PLSが低下し、圧力補償弁の目標補償差圧すなわち流量制御弁の前後差圧が小さくなるため、油圧ポンプの吐出流量をそれぞれのアクチュエータが要求する流量の比に再分配することができる。
【0004】
このようなロードセンシングシステムにおいて、特許文献1では、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧PLSを絶対圧として出力する差圧減圧弁を設け、この差圧減圧弁の出力圧を複数の圧力補償弁に導いて、それぞれの目標補償差圧を設定している。また、油圧ポンプを駆動するエンジンの回転数に依存する圧力を絶対圧として出力する差圧減圧弁を設け、この差圧減圧弁の出力圧をロードセンシング制御レギュレータに導き、ロードセンシング制御の目標差圧をエンジンの回転数に依存する可変値として設定している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−193705号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来のロードセンシングシステムにおいては、駆動するアクチュエータの種類に係わらず、油圧ポンプの吐出圧力がアクチュエータの最高負荷圧に対して、同じ目標差圧だけ高くなるように油圧ポンプ吐出流量を制御し、油圧ポンプの吐出圧と最高負荷圧との差圧PLSを圧力補償弁に導き、流量制御弁の前後差圧が同じ差圧PLSに保持されるように制御している。この流量制御弁の前後差圧PLSの保持は、複雑な複合操作時に、負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配するために必要なものである。しかし、アクチュエータが走行モータである場合は、走行動作時にその差圧PLSがエネルギのロスになってしまう。
【0007】
すなわち、走行モータが必要とする最大流量とブームシリンダ、アームシリンダ等の他のアクチュエータが必要とする最大流量を比べた場合、走行モータの方が他のアクチュエータよりも最大流量が少ないという関係にある。従来は、全ての流量制御弁の前後差圧を同じに制御していたため、走行モータが必要とする最大流量を他のアクチュエータが必要とする最大流量よりも少なくするために、走行用の流量制御弁の最大開口面積を他のアクチュエータの流量制御弁よりも小さく設定していた。この場合、走行以外のアクチュエータ動作では、最大開口面積が大きいため、比較的少ない圧損で流量制御弁を介してアクチュエータに必要な最大流量を供給し、必要なアクチュエータ速度を得ることができる。また、圧力補償弁による流量制御弁の前後差圧の制御で、複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができ、円滑な作業を行うことができる。しかし、走行動作の場合は、流量制御弁の最大開口面積が他のアクチュエータのものよりも小さいため、流量制御弁を介して走行モータに圧油が供給されるとき、最大開口面積が小さくなった分、流量制御弁の内部圧損が増加し、エネルギロスが増加する。
【0008】
本発明の目的は、走行以外のアクチュエータ動作では、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができるとともに、走行動作ではエネルギーのロスを低減し、エネルギ効率の向上を可能とする建設機械の油圧駆動装置を提供することである。
【課題を解決するための手段】
【0009】
(1)本発明は、上記課題を解決するために、エンジンと、このエンジンにより駆動される可変容量型のメインポンプと、このメインポンプから吐出された圧油により駆動される走行用の油圧モータを含む複数のアクチュエータと、前記メインポンプから前記複数のアクチュエータに供給される圧油の流量を制御する走行用の流量制御弁を含む複数の流量制御弁と、前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、前記メインポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようメインポンプの押しのけ容積をロードセンシング制御するポンプ制御装置とを備え、前記複数の圧力補償弁は、前記流量制御弁の前後差圧が前記メインポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧に保持されるようにそれぞれの流量制御弁の前後差圧を制御する建設機械の油圧駆動装置において、前記走行モータが駆動される走行動作時かどうかを検出する走行検出装置と、前記走行検出装置の検出結果に基づいて、前記走行動作時でないときは前記ロードセンシング制御の目標差圧を第1規定値に設定し、前記走行動作時は前記ロードセンシング制御の目標差圧を前記1規定値より小さい第2規定値に設定する設定変更装置とを備えるものとする。
【0010】
このように走行検出装置と設定変更装置を設け、走行動作時でないときはロードセンシング制御の目標差圧を第1規定値に設定し、走行動作時はロードセンシング制御の目標差圧を第1規定値より小さい第2規定値に設定することにより、走行以外のアクチュエータ動作では、ロードセンシング制御の目標差圧として第1規定値が設定され、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ圧力補償弁による流量制御弁の前後差圧の制御で、複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができる。また、走行動作では、ロードセンシング制御の目標差圧として第1規定値より小さい第2規定値が設定されるため、それに応じて圧力補償弁により制御される走行用の流量制御弁の前後差圧も小さなり、流量制御弁の内部圧損が低減する。その結果、エネルギーのロスを低減し、エネルギ効率の向上が可能となる。
【0011】
(2)上記(1)において、好ましくは、前記設定変更装置は、前記走行動作時でないときは前記第1規定値に対応する第1絶対圧を生成して信号圧力として出力し、前記走行動作時は前記第2規定値に対応する第2絶対圧を生成して信号圧力として出力する信号圧力生成装置を有し、前記ポンプ制御装置は、前記信号圧力生成装置が出力する前記信号圧力を前記ロードセンシング制御の目標差圧として設定し、前記メインポンプの押しのけ容積を制御する。
【0012】
これによりポンプ制御装置を油圧的に構成することができ、ポンプ制御装置を安価に構成することができる。
【0013】
(3)上記(2)において、好ましくは、前記信号圧力生成装置は、前記メインポンプを駆動する前記エンジンの回転数に依存する圧力を前記第1絶対圧として生成して出力する差圧減圧弁と、パイロット油圧源の圧力を減圧して前記第2絶対圧を生成して出力する減圧装置と、前記走行動作時でないときは前記第1絶対圧を前記信号圧力として出力し、前記走行動作時は前記第2絶対圧を前記信号圧力として出力するよう切り換える切換装置とを有する。
【0014】
これにより信号圧力生成装置の全体を油圧的に構成することができ、信号圧力生成装置を安価に構成することができる。
【0015】
(4)上記(3)において、好ましくは、前記減圧装置は、前記パイロット油圧源の圧力を減圧して前記第2絶対圧を生成し出力する減圧弁である。
【0016】
これにより安価な油圧部品である減圧弁を用いて減圧装置を構成することができる。
【0017】
(5)上記(3)において、また好ましくは、前記減圧装置は、前記パイロット油圧源の圧力を減圧して前記第2絶対圧を生成し出力するパイロット作動形減圧弁である。
【0018】
これにより走行操作開始時の走行操作開始時のロードセンシング制御の目標差圧の減少を緩やかにし、走行操作性を向上することができる。
【0019】
(6)上記(3)において、更に好ましくは、前記減圧装置は、可変絞り要素を含み、前記パイロット油圧源の圧力を分圧して前記第2絶対圧を生成し出力する分圧回路である。
【0020】
これにより可変絞り要素の絞り径を変更することにより第2絶対圧を自由に調整することができ、設計の自由度を増すことができる。
【0021】
(7)上記(2)において、また好ましくは、前記信号圧力生成装置は、前記エンジンにより駆動されるパイロットポンプと、前記パイロットポンプの吐出油が通過する油路に設置され、通過流量に応じて前後差圧を変化させる流量検出弁と、前記流量検出弁の前後差圧を前記第1絶対圧として生成して出力する差圧減圧弁とを有し、前記流量検出弁は、前記走行動作時に制御圧力が導かれて前記流量検出手段の可変絞り部を開く方向に作用する受圧部を有し、前記差圧減圧弁は、前記走行動作時でないときは、前記受圧部に前記制御圧が導かれていない前記流量検出弁の前後差圧を前記第1絶対圧として生成して出力し、前記走行動作時は、前記受圧部に前記制御圧が導かれた前記流量検出弁の前後差圧を前記第2絶対圧として生成して出力する。
【0022】
これにより流量検出弁に制御圧力を導くだけで第1絶対圧から第2絶対圧に切り換えることができるので、信号圧力生成装置を少ない部品点数で構成することができる。
【0023】
(8)上記(2)において、また好ましくは、前記信号圧力生成装置は、前記走行検出装置の検出信号を入力し、この検出信号に基づいて前記走行動作時かどうかを判断し、前記走行動作時に制御用の電気信号を出力する制御装置と、前記制御装置から前記制御用の電気信号が出力されていないときは、前記第1絶対圧を生成して出力し、前記制御装置から前記制御用の電気信号が出力されたときは、前記第2絶対圧を生成して出力する電磁比例減圧弁とを有する。
【0024】
これにより制御装置の演算処理により制御用の電気信号を任意に変更することができ、第2絶対圧を自由に調整することができる。
【発明の効果】
【0025】
本発明によれば、走行以外のアクチュエータ動作では、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができるとともに、走行動作ではエネルギーのロスを低減し、エネルギ効率を向上することができる。
【図面の簡単な説明】
【0026】
【図1】本発明の第1の実施形態に係わる建設機械の油圧駆動装置の構成を示す図であり、油圧駆動装置のコントロールバルブ以外の部分を示す図である。
【図2】本発明の第1の実施形態に係わる建設機械の油圧駆動装置の構成を示す図であり、油圧駆動装置のコントロールバルブの部分を示す図である。
【図3】油圧ショベルの外観を示す図である。
【図4】走行モータに供給される圧油の流量を制御する走行用のバルブセクションにおける流量制御弁の開口面積特性を示す図である。
【図5】走行用の操作レバー装置の操作時の制御パイロット圧(走行パイロット圧)と目標LS差圧の変化の関係を示す図である。
【図6】本発明の第2の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。
【図7】本発明の第3の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。
【図8】本発明の第4の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。
【図9】走行用の操作レバー装置の中立時(走行用リモコン弁中立時)と走行用の操作レバー装置の操作時(走行リモコン弁操作時)の目標LS差圧の変化を示す図である。
【図10】本発明の第5の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。
【発明を実施するための形態】
【0027】
以下、本発明の実施の形態を図面に従い説明する。
<第1の実施の形態>
図1及び図2に本発明の第1の実施形態に係わる建設機械の油圧駆動装置の構成を示す。図1は油圧駆動装置のコントロールバルブ以外の部分を示す図であり、図2は油圧駆動装置のコントロールバルブの部分を示す図であり、両者の接続関係を丸数字の1,2及び3で示している。
【0028】
本実施例における油圧駆動装置は、エンジン1と、エンジン1によって駆動されるメインの油圧ポンプ(以下メインポンプという)2と、メインポンプ2と連動してエンジン1により駆動されるパイロットポンプ3と、メインポンプ2から吐出された圧油により駆動される複数のアクチュエータ5,6,7,8,9,10,11,12と、コントロールバルブ4とを備えている。
【0029】
本実施形態に係わる建設機械は例えば油圧ショベルであり、アクチュエータ5は油圧ショベルの旋回モータであり、アクチュエータ6,8は左右の走行モータであり、アクチュエータ7はブレードシリンダであり、アクチュエータ9はスイングシリンダであり、アクチュエータ10,11,12はそれぞれブームシリンダ、アームシリンダ、バケットシリンダである。
【0030】
コントロールバルブ4は、メインポンプ2の供給油路2aに接続され、メインポンプ2から各アクチュエータに供給される圧油の方向と流量をそれぞれ制御する複数のバルブセクション13,14,15,16,17,18,19,20と、複数のアクチュエータ5,6,7,8,9,10,11,12の負荷圧のうち最も高い負荷圧(以下、最高負荷圧という)PLmaxを選択して信号油路21に出力する複数のシャトル弁22a,22b,22c,22d,22e,22f,22gと、メインポンプ2の供給油路2aに設けられ、メインポンプ2の最高吐出圧(最高ポンプ圧)を制限するメインリリーフ弁23と、メインポンプ2の吐出圧(ポンプ圧)Pdと最高負荷圧PLmaxとの差圧PLSを絶対圧として出力する差圧減圧弁24と、ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSがバネ25aにより設定されたある一定値を超えたときにメインポンプ2の吐出流量の一部をタンクTに戻し、差圧PLSをバネ25aにより設定された一定値以下に保つアンロード弁25とを有している。アンロード弁25及びメインリリーフ弁23の出側はコントロールバルブ2内でタンク油路29に接続され、タンクTに接続されている。
【0031】
バルブセクション13は流量制御弁(メインスプール)26aと圧力補償弁27aとから構成され、バルブセクション14は流量制御弁(メインスプール)26bと圧力補償弁27bとから構成され、バルブセクション15は流量制御弁(メインスプール)26cと圧力補償弁27cとから構成され、バルブセクション16は流量制御弁(メインスプール)26dと圧力補償弁27dとから構成され、バルブセクション17は流量制御弁(メインスプール)26eと圧力補償弁27eとから構成され、バルブセクション18は流量制御弁(メインスプール)26fと圧力補償弁27fとから構成され、バルブセクション19は流量制御弁(メインスプール)26gと圧力補償弁27gとから構成され、バルブセクション20は流量制御弁(メインスプール)26hと圧力補償弁27hとから構成されている。
【0032】
流量制御弁26a〜26hは、メインポンプ2からそれぞれのアクチュエータ5〜12に供給される圧油の方向と流量をそれぞれ制御し、圧力補償弁27a〜27hは流量制御弁26a〜26hの前後差圧をそれぞれ制御する。
【0033】
圧力補償弁27a〜27hは目標差圧設定用の開弁側受圧部28a,28b,28c,28d,28e,28f,28g,28hを有し、この受圧部28a〜28hには差圧減圧弁24の出力圧が導かれ、油圧ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSの絶対圧(以下絶対圧PLSという)により目標補償差圧が設定される。このように流量制御弁26a〜26hの前後差圧を同じ差圧PLSという値に制御することにより、圧力補償弁27a〜27hは流量制御弁26a〜26hの前後差圧が油圧ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSに等しくなるように制御する。これにより複数のアクチュエータを同時に駆動する複合操作時は、アクチュエータ5〜12の負荷圧の大小に係わらず、流量制御弁26a〜26hの開口面積比に応じてメインポンプ2の吐出流量を分配し、複合操作性を確保することができる。また、メインポンプ2の吐出流量が要求流量に満たないサチュレーション状態になった場合は、差圧PLSはその供給不足の程度に応じて低下し、これに応じて圧力補償弁27a〜27hが制御する流量制御弁26a〜26hの前後差圧が同じ割合で低下して流量制御弁26a〜26hの通過流量が同じ割合で減少するため、この場合も流量制御弁26a〜26hの開口面積比に応じてメインポンプ2吐出流量を分配し、複合操作性を確保することができる。
【0034】
また、油圧駆動装置は、パイロットポンプ3の供給油路3aに接続され、パイロットポンプ3の吐出流量に応じて絶対圧を出力するエンジン回転数検出弁装置30と、エンジン回転数検出弁装置30の下流側に接続され、パイロット油路31の圧力を一定に保つパイロットリリーフ弁32を有するパイロット油圧源33と、パイロット油路31に接続され、パイロット油圧源32の油圧を元圧として流量制御弁26a〜26hを操作するための制御パイロット圧a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,pを生成するためのリモコン弁を備えた操作レバー装置34a、34b,34c,34d,34e,34f,34g,34hとを備えている。
【0035】
エンジン回転数検出弁装置30は、パイロットポンプ3の供給油路3aをパイロット油路31に接続する油路30eと、この油路30eに設けられた絞り要素(固定絞り)30fと、油路30e及び絞り要素30fに並列に接続された流量検出弁30aと、差圧減圧弁30bとを有している。流量検出弁30aの入力側はパイロットポンプ3の供給油路3aに接続され、流量検出弁30aの出力側はパイロット油路31に接続されている。流量検出弁30aは通過流量が増大するにしたがって開口面積を大きくする可変絞り部30cを有し、パイロットポンプ3の吐出油は絞り要素30f及び流量検出弁30aの可変絞り部30cの両方を通過してパイロット油路31側へと流れる。このとき、絞り要素30fと流量検出弁30aの可変絞り部30cには通過流量が増加するにしたがって大きくなる前後差圧が発生し、差圧減圧弁30bはその前後差圧を絶対圧Paとして出力する。パイロットポンプ3の吐出流量はエンジン1の回転数によって変化するため、絞り要素30f及び可変絞り部30cの前後差圧を検出することにより、パイロットポンプ3の吐出流量を検出することができ、エンジン1の回転数を検出することができる。また、可変絞り部30cは、通過流量が増大するにしたがって(前後差圧が高くなるにしたがって)開口面積を大きくすることにより、通過流量が増大するにしたがって前後差圧の上昇度合いが緩やかになるように構成されている。
【0036】
メインポンプ2は可変容量型の油圧ポンプであり、その傾転角(容量)を制御するためのポンプ制御装置35を備えている。ポンプ制御装置35は馬力制御傾転アクチュエータ35aと、LS制御弁35b及びLS制御傾転アクチュエータ35cとを有している。
【0037】
馬力制御傾転アクチュエータ35aはメインポンプ2の吐出圧が高くなるとメインポンプ2の傾転角を減らして、メインポンプ2の入力トルクが予め設定した最大トルクを越えないように制限するものであり、これによりメインポンプ2の消費馬力を制限し、過負荷によるエンジン1の停止(エンジンストール)を防止する。
【0038】
LS制御弁35bは対向する受圧部35d,35eを有し、受圧部35dには油路40を介してエンジン回転数検出弁装置30の差圧減圧弁30bで生成された絶対圧Pa(第1規定値)がロードセンシング制御の目標差圧(目標LS差圧)として導かれ、受圧部35eに差圧減圧弁24で生成された絶対圧PLSが導かれ、絶対圧PLSが絶対圧Paよりも高くなると(PLS>Pa)、パイロット油圧源33の圧力をLS制御傾転アクチュエータ35cに導いてメインポンプ2の傾転角を減らし、絶対圧PLSが絶対圧Paよりも低くなると(PLS<Pa)、LS制御傾転アクチュエータ35cをタンクTに連通してメインポンプ2の傾転角を増やし、これによりメインポンプ2の吐出圧Pdが最高負荷圧PLmaxよりも絶対圧Pa(目標差圧)だけ高くなるようにメインポンプ2の傾転量(押しのけ容積)を制御する。制御弁35b及びLS制御傾転アクチュエータ35cは、メインポンプ2の吐出圧Pdが複数のアクチユエータ5,6,7,8,9,10,11,12の最高負荷圧PLmaxよりもロードセンシング制御の目標差圧分だけ高くなるようメインポンプ2の傾転を制御するロードセンシング方式のポンプ制御手段を構成する。
【0039】
ここで、絶対圧Paはエンジン回転数に応じて変化する値であるため、絶対圧Paをロードセンシング制御の目標差圧として用い、圧力補償弁27a〜27hの目標補償差圧をメインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧の絶対圧PLSにより設定することにより、エンジン回転数に応じたアクチュエータスピードの制御が可能となる。また、上記のようにエンジン回転数検出弁装置30の流量検出弁30aの可変絞り部30cは、通過流量が増大するにしたがって前後差圧の上昇度合いが緩やかになるように構成されており、これによりエンジン回転数に応じたサチュレーション現象の改善が図れ、エンジン回転数を低く設定した場合に良好な微操作性が得られる。
【0040】
アンロード弁25のバネ25aの設定圧は、エンジン1が定格最高回転数にあるときのエンジン回転数検出弁装置30の差圧減圧弁30bで生成された絶対圧Pa(ロードセンシング制御の目標差圧)よりも高くなるように設定されている。
【0041】
また、本実施例の油圧駆動装置は、その特徴的な構成として、差圧減圧弁30bから出力された絶対圧Paを目標LS差圧としてLS制御弁35bの受圧部35dへ導く油路40に設けられた切換弁39と、パイロット油圧源33を切換弁39に接続する油路41に設けられ、パイロット油圧源33の圧油を減圧して絶対圧Pa’(第1規定値より低い第2規定値)を出力する減圧弁42とを備え、切換弁39の切り換えによって、差圧減圧弁30bで生成された絶対圧Paを目標LS差圧としてLS制御弁35bの受圧部35dへ導く第1油圧回路と、パイロット油圧源33の圧油を減圧弁42を介して生成された絶対圧Pa’を目標LS差圧としてLS制御弁35bの受圧部35dへ導く第2油圧回路の2つの回路を選択的に形成する構成となっている。
【0042】
また、油圧駆動装置は、走行用の操作レバー装置34b,34dのリモコン弁34b1,34b2及び34d1,34d2の吐出ポートに設けられ、走行操作用リモコン弁34b1,34b2及び34d1,34d2で生成された制御パイロット圧c,d,g,hのうち最も高い圧力を走行信号圧として信号油路38に出力するトーナメント形に組まれたシャトル弁37a,37b,37cを備え、シャトル弁37a,37b,37cから出力された走行信号圧は油路38を介して切換弁39の受圧部39aに導かれる。
【0043】
切換弁39は、位置Iと位置IIの2つの切り換え位置を有し、走行操作用の操作レバー装置34b,34dのいずれも操作されておらず、受圧部39aに走行信号圧が導かれていないときは位置Iにある。この位置Iでは第1油圧回路が形成され、差圧減圧弁30bで生成された絶対圧Paが目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。走行操作用の操作レバー装置34b,34dが操作され、受圧部39aに走行信号圧が導かれると、切換弁39は位置Iから位置IIに切り換わる。位置IIでは第2油圧回路が形成され、パイロット油圧源33の圧油を減圧弁42を介して生成された絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。
【0044】
図3に油圧ショベルの外観を示す。
【0045】
図3において、油圧ショベルは、上部旋回体300と、下部走行体301と、スイング式のフロント作業機302を備え、フロント作業機302は、ブーム306、アーム307、バケット308から構成されている。上部旋回体300は下部走行体301を旋回モータ5の回転によって旋回可能である。上部旋回体300の前部にはスイングポスト303が取り付けられ、このスイングポスト303にフロント作業機302が上下動可能に取り付けられている。スイングポスト303はスイングシリンダ9の伸縮により上部旋回体300に対して水平方向に回動可能であり、フロント作業機302のブーム306、アーム307、バケット308はブームシリンダ10、アームシリンダ11、バケットシリンダ12の伸縮により上下方向に回動可能である。下部走行体301は中央フレーム304を備え、この中央フレーム304にはブレードシリンダ7の伸縮により上下動作を行うブレード305が取り付けられている。下部走行体301は、走行モータ6,8の回転により左右の履帯310,311を駆動することによって走行を行う。
【0046】
上部旋回体300は運転室312を有し、運転室312内には走行用の操作レバー装置34b,34d(図3では片側のみ図示)、旋回用、ブーム用、アーム用、バケット用の操作レバー装置34a、34f〜34h(図3では一部のみ図示)、ブレード用の操作レバー装置34c(図8では図示せず)、スイング用の操作レバー装置34e(図3では図示せず)が設置されている。
【0047】
図4に、走行モータ6,8に供給される圧油の流量を制御する走行用のバルブセクション14,16における流量制御弁26b,26dの開口面積特性を示す。図中、Maが本実施の形態における流量制御弁26b,26dの開口面積特性であり、Mbが従来の開口面積特性である。
【0048】
本実施の形態では、走行用の操作レバー装置34b,34dを操作した走行時には,後述する如く、走行用の圧力補償弁27b,27dの目標補償差圧が圧力PaからPa’に低減し、流量制御弁26b,26dの前後差圧が同様に減少し、そのままでは走行モータ6,8へ供給される圧油の流量が従来よりも減少してしまう。そこで、走行モータ6,8へ供給される圧油の流量を従来通りに確保するため、目標補償差圧(前後差圧)が減少する分、流量制御弁26b,26dの開口面積を大きく設定している。
【0049】
すなわち、本実施の形態における流量制御弁26b,26dの開口面積をAa、比較例である従来の流量制御弁の開口面積をAb、走行に必要な流量をQtとすると、
Qt=cAa√(2Pa’/ρ)=cAb√(2Pa/ρ)
c:流量係数
ρ:作動油の密度
の関係にあり、
Aa=Ab√(Pa/Pa’)
の関係が得られる。よって、本実施の形態における流量制御弁26b,26dの開口面積Aaは従来の流量制御弁の開口面積Abの√(Pa/Pa’)倍にする必要があり、流量制御弁26b,26dはそのような開口面積特性に設定されている。
【0050】
なお、走行用の流量制御弁26b,26dの開口面積を増やす代わりに、従来の流量制御弁にパラレルに補助的な流量制御弁を配置し、合計の通過流量を従来の流量制御弁の通過流量と同じになるようにしてもよい。また、走行モータ6,8へ供給される圧油の流量を従来と同じにしなくてもよい場合は、必要とする流量が得られるよう走行用の流量制御弁26b,26dの開口面積を設定すればよい。
【0051】
以上において、シャトル弁37a,37b,37cは走行モータ6,8が駆動される走行動作時かどうかを検出する走行検出装置を構成し、流量検出弁30a及び差圧減圧弁30bを含むエンジン回転数検出弁装置30と、切換弁39と、減圧弁42と、LS制御弁35bの受圧部35dは、その走行検出装置の検出結果に基づいて、走行動作時でないときはロードセンシング制御の目標差圧を第1規定値(絶対圧Pa)に設定し、走行動作時はロードセンシング制御の目標差圧を第1規定値より小さい第2規定値(絶対圧Pa’)に設定する設定変更装置を構成する。
【0052】
また、流量検出弁30a及び差圧減圧弁30bを含むエンジン回転数検出弁装置30と、切換弁39と、減圧弁42は、走行動作時でないときは第1規定値に対応する第1絶対圧(絶対圧Pa)を生成して信号圧力として出力し、走行動作時は第2規定値に対応する第2絶対圧(絶対圧Pa’)を生成して信号圧力として出力する信号圧力生成装置を構成し、ポンプ制御装置35は、信号圧力生成装置が出力する信号圧力をロードセンシング制御の目標差圧として設定し、メインポンプ2の押しのけ容積を制御する。
【0053】
更に、減圧弁42は、パイロット油圧源33の圧力を減圧して第2絶対圧(絶対圧Pa’)を生成して出力する減圧装置を構成し、切換弁39は、走行動作時でないときは第1絶対圧(絶対圧Pa)を信号圧力として出力し、走行動作時は第2絶対圧(絶対圧Pa’)を前記信号圧力として出力するよう切り換える切換装置を構成する。
【0054】
以上のように構成した本実施の形態の動作を説明する。
【0055】
油圧ショベルの走行以外の動作、例えばブーム上げを意図して、ブーム用の操作レバー装置34fの操作レバーを図示左方向に操作してリモコン弁34f1を動作させた場合、パイロット油圧源33の圧油に基づいて制御パイロット圧kが生成され、この制御パイロット圧kが流量制御弁26fの図示左端側の受圧部に導かれ、流量制御弁26fは図示左側の位置に切り換えられる。このとき、走行操作用の操作レバー装置34b,34dは操作されていないため、切換弁39は位置Iにあり、第1油圧回路が形成され、LS制御弁35bの受圧部35dヘ差圧減圧弁30bで生成された絶対圧Paが目標LS差圧として導かれる。これによりメインポンプ2の吐出圧Pdが最高負荷圧PLmaxよりも絶対圧Pa(目標LS差圧)だけ高くなるようにメインポンプ2の傾転量(押しのけ容積)が制御され、メインポンプ2から吐出された圧油が、上記のように切り換えられた流量制御弁26fを介してアクチュエータ10(ブームシリンダ)のボトム側に供給され、ブーム306(図3)が上げ方向に動作する。また、このとき、ブーム用の圧力補償弁27fの目標補償差圧は差圧減圧弁24の出力圧である絶対圧PLSにより設定される。この絶対圧PLSはメインポンプの吐出流量が不足状態にない(サチュレーションしていない)場合は、目標LS差圧である絶対圧Paに等しい(絶対圧PLS=Pa)。これによりブーム用の流量制御弁26fの前後差圧は絶対圧PLS(=Pa)に保持され、ブームシリンダ10のボトム側に流量制御弁26fの開口面積に応じた所定の流量が供給される。
【0056】
また、ブーム上げとアームクラウドの複合操作ように、油圧ショベルの走行以外の動作であって、複数のアクチュエータを同時駆動する複合操作を意図して、複数の操作レバー装置を操作した場合は、メインポンプの吐出流量の不足する状態(サチュレーション)が生じ得る。メインポンプの吐出流量の不足する状態が生じた場合は、メインポンプ2の吐出圧力が下がり気味となるため、差圧減圧弁24の出力圧である絶対圧PLSは目標LS差圧としての絶対圧Paより低くなり(絶対圧PLS<Pa)、この絶対圧PLSの低下による目標補償差圧の低下が複合操作に係わる全ての圧力補償弁(例えばブーム用の圧力補償弁27fとアーム用の圧力補償弁27g)に生じるため、複数の流量制御弁(例えばブーム用の流量制御弁26fとアーム用の流量制御弁26g)の開口面積比に応じた流量比が保たれ、操作レバー装置のレバー操作量割合に応じた円滑な複合操作を行うことができる。
【0057】
一方、例えば油圧ショベルの走行直進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作してリモコン弁34b2,34d2を動作させた場合は、パイロット油圧源33の圧油に基づいて制御パイロット圧d,hが生成され、この制御パイロット圧d,hが流量制御弁26b,26dの図示右端側の受圧部に導かれ、流量制御弁26b,26dは図示右側の位置に切り換えられる。これと同時に、リモコン弁34b2,34d2の制御パイロット圧d,hがトーナメント形に組まれたシャトル弁37a,37b,37cに導かれ、制御パイロット圧d,hのうち最も高い圧力が油路38を介して走行信号圧として切換弁39の受圧部39aへ導かれ、切換弁39は位置Iから位置IIに切換られる。これにより油路40が閉じられ油路41が連通して、第2油圧回路が形成され、LS制御弁35bの受圧部35dヘパイロット油圧源33の圧油を減圧弁42で減圧して生成した絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。減圧弁42で生成した絶対圧Pa’は差圧減圧弁30bで生成された絶対圧Paよりも低い圧力に設定されており、その結果、ロードセンシング制御の目標差圧(目標LS差圧)が絶対圧Paから絶対圧Pa’に低下する。
【0058】
図5に、そのときの制御パイロット圧d,h(走行パイロット圧)と目標LS差圧の変化の関係を示す。図中、丸数字の1は走行用の操作レバー装置の中立時(走行用リモコン弁中立時)であり、丸数字の2は走行用の操作レバー装置の操作時(走行用リモコン弁操作時)である。リモコン弁の中立時は、走行パイロット圧はタンク圧相当のP0にあり、目標LS差圧は差圧減圧弁30bで生成された絶対圧Paにある。絶対圧Paは例えば2Mpa程度である。リモコン弁の操作時は、走行パイロット圧はP0からP1に上昇し、これと同時に目標LS差圧は絶対圧Paから減圧弁42の出力圧である絶対圧Pa’に低下する。リモコン弁をフル操作した場合、走行パイロット圧P1は例えば4MPa程度であり、絶対圧Pa’は例えば0.7Mpa程度である。
【0059】
ロードセンシング制御の目標差圧が絶対圧Pa’に低下した場合は、ロードセンシング制御の目標差圧が絶対圧Paである場合に比べて、LS制御弁35bは開き気味となって、パイロット油圧源33の圧力がLS制御傾転アクチュエータ35cに多めに導かれ、メインポンプ2の傾転角が減り、メインポンプ2の吐出流量が減る。メインポンプ2の吐出流量が減ることで、メインポンプ2の吐出圧力が低めとなり、メインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧が目標LS差圧に対応する絶対圧Pa’に低下する。
【0060】
メインポンプ2から吐出された圧油は、上記のように切り換えられた流量制御弁26b,26dを介して走行モータ6,8に供給され、下部走行体301の履帯310,311(図3)が駆動され、走行が行われる。また、このとき、走行用の圧力補償弁27b,27dの目標補償差圧は差圧減圧弁24の出力圧である絶対圧PLSにより設定され、アクチュエータが走行モータ6,8である場合は、通常、メインポンプの吐出流量は不足状態にならない(サチュレーションしない)ため、絶対圧PLSは目標LS差圧である絶対圧Pa’に等しくなり(絶対圧PLS=Pa’)、走行用の流量制御弁26b,26dの前後差圧は絶対圧PLS(=Pa’)に保持され、走行モータ6,8に流量制御弁26b,26dの開口面積に応じた所定の流量が供給される。これにより走行用の流量制御弁26b,26dの開口面積比(走行直進を意図した場合は1:1の開口面積比)に応じた流量比が保たれ、走行負荷圧の変動に係わらず、安定した直進走行を行うことができる。また、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが改善される。
【0061】
油圧ショベルの走行旋回を意図して、走行用の操作レバー装置34b,34dの操作レバーの操作量を違えて操作した場合、油圧ショベルの走行後進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作した場合も、走行直進を意図して走行用の操作レバー装置34b,34dの操作レバーを操作した場合と同様であり、絶対圧PLSがPaからPa’へと低くなり、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下し、この低下した流量制御弁26b,26dの前後差圧で圧油が走行モータ6,8に供給され、意図する走行を行うことができる。また、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが改善される。
【0062】
以上のように本実施の形態によれば、走行以外のアクチュエータ動作では、ロードセンシング制御の目標差圧として絶対圧Paが設定されるため、従来通り、必要な最大流量を供給して必要なアクチュエータ速度を得ることができ、かつ圧力補償弁27a,27c,27e〜27hによる流量制御弁26a,26c,26e〜26hの前後差圧の制御で、複合操作時に負荷圧の異なる各アクチュエータに流量制御弁の開口面積比に応じた流量を分配することができる。また、走行動作時は、ロードセンシング制御の目標差圧が絶対圧Paから絶対圧Pa’に低下してメインポンプ2の吐出流量が減るため、絶対圧PLSが低くなり、それに応じて圧力補償弁27b,27dにより制御される走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下し、コントロールバルブ4の内部圧損が低減する。その結果、走行動作時のエネルギロスが低減し、エネルギー効率の向上が可能となる。
<第2の実施の形態>
図6に本発明の第2の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。本実施の形態におけるコントロールバルブの部分は図2に示されるものと同じである。
【0063】
本実施の形態は、第2の油圧回路における減圧弁42をパイロット作動形減圧弁43に変更したものである。
【0064】
図6において、本実施例の油圧駆動装置は、前述した切換弁39と、パイロット油圧源33を切換弁39に接続する油路41に設けられ、パイロット油圧源33の圧油を減圧して絶対圧Pa’を出力するパイロット作動形減圧弁43とを備え、切換弁39の切り換えによって、差圧減圧弁30bで生成された絶対圧Paを目標LS差圧としてLS制御弁35bの受圧部35dへ導く第1油圧回路と、パイロット油圧源33の圧油をパイロット作動形減圧弁43を介して生成された絶対圧Pa’を目標LS差圧としてLS制御弁35bの受圧部35dへ導く第2油圧回路の2つの回路を選択的に形成する構成となっている。
【0065】
パイロット作動形減圧弁43はバネの設定(バネ力)を弱めるように作用する受圧部43aを有し、受圧部43aは、トーナメント形に組まれたシャトル弁37a,37b,37cから出力された走行信号圧を切換弁39の受圧部39aに導く油路38に油路38aを介して接続され、受圧部43aに走行操作用リモコン弁34b1,34b2及び34d1及び34d2からの走行信号圧を導いている。また、受圧部43aはタンクTに絞り要素43bを介して接続されている。
【0066】
上記以外の構成は、第1の実施形態と同じである。
【0067】
以上のように構成した本実施の形態の動作を説明する。
【0068】
例えば油圧ショベルの走行直進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作してリモコン弁34b2,34d2を動作させた場合は、パイロット油圧源33の圧油に基づいて制御パイロット圧d,hが生成され、この制御パイロット圧d,hが流量制御弁26b,26dの図示右端側の受圧部に導かれ、流量制御弁26b,26dは図示右側の位置に切り換えられる。これと同時に、リモコン弁34b2,34d2の制御パイロット圧d,hがトーナメント形に組まれたシャトル弁37a,37b,37cに導かれ、制御パイロット圧d,hのうち最も高い圧力が油路38を介して走行信号圧として切換弁39の受圧部39aへ導かれ、切換弁39は位置Iから位置IIに切換られる。これにより油路40が閉じられ油路41が連通して、第2油圧回路が形成され、LS制御弁35bの受圧部35dヘパイロット油圧源33の圧油をパイロット作動形減圧弁43で減圧して生成した絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。パイロット作動形減圧弁43で生成した絶対圧Pa’は差圧減圧弁30bで生成された絶対圧Paよりも低い圧力に設定されており、目標LS差圧が絶対圧Paから絶対圧Pa’に低下する。その結果、LS制御弁35b及びLS制御傾転アクチュエータ35cによって制御されるメインポンプ2の吐出流量が減り、メインポンプ2の吐出圧力が低めとなり、メインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧が絶対圧Pa’に低下する。これにより差圧減圧弁24の出力圧である絶対圧PLSがPa’に低下し、走行用の圧力補償弁27b,27dの目標補償差圧もPa’に低下し、走行用の流量制御弁26b,26dの前後差圧はその低下した絶対圧Pa’に保たれる。
【0069】
このようにして本実施の形態においても、走行用の流量制御弁26b,26dの開口面積比に応じた流量比が保たれ、安定した直進走行を行うことができるとともに、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが低減する。
【0070】
また、本実施の形態では、パイロット作動形減圧弁43の受圧部43aに走行操作用リモコン弁34b2,34d2の走行信号圧を導き、その圧力がバネの設定(バネ力)を弱める方向に働いて減圧するとともに、受圧部43aの出側に設けられた絞り43bの作用で、受圧部43aに作用する走行信号圧が緩やかにバネの設定(バネ力)を弱めるため、走行操作開始時のロードセンシング制御の目標差圧の減少を緩やかにし、走行操作性を向上することができる。
【0071】
以上のように本実施の形態によれば、第1の実施の形態と同様の効果(走行動作時のエネルギロスの改善)が得られるとともに、走行操作開始時のロードセンシング制御の目標差圧の急激な変化を抑え、走行操作性を向上することができる。
<第3の実施の形態>
図7に本発明の第2の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。本実施の形態におけるコントロールバルブの部分は図2に示されるものと同じである。
【0072】
本実施の形態は、第2の油圧回路における減圧弁42を分圧回路44に変更したものである。
【0073】
図7において、本実施例の油圧駆動装置は、前述した切換弁39と、パイロット油圧源33を切換弁39に接続する油路41に設けられ、パイロット油圧源33の圧油を減圧して絶対圧Pa’を出力する分圧回路44とを備え、切換弁39の切り換えによって、差圧減圧弁30bで生成された絶対圧Paを目標LS差圧としてLS制御弁35bの受圧部35dへ導く第1油圧回路と、パイロット油圧源33の圧油を分圧回路44を介して生成された絶対圧Pa’を目標LS差圧としてLS制御弁35bの受圧部35dへ導く第2油圧回路の2つの回路を選択的に形成する構成となっている。
【0074】
分圧回路44は、油路41に位置する固定絞り要素44aと、固定絞り要素44aの下流側から分岐した油路44cに位置する可変絞り要素44bとを有し、可変絞り要素44bの下流側はタンクTに接続され、固定絞り要素44aと可変絞り要素44bとで分圧した中間圧を絶対圧Pa’として出力する構成となっている。また、可変絞り要素44bの絞り径(開口面積)によりタンクTへ放出する流量が決まり、固定絞り要素44aと可変絞り要素44bによる分圧の割合が決まり、中間圧(出力圧である絶対圧Pa’)が決まる。可変絞り要素44bは例えばセットスクリューなどの操作部を備え、外部から作業員がその操作部をドライバー等で操作することにより可変絞り要素44bの絞り径(開口面積)を変更し、分圧の割合を調整し、出力圧(絶対圧Pa’)を変更することができる。
【0075】
上記以外の構成は、第1の実施形態と同じである。
【0076】
以上のように構成した本実施の形態の動作を説明する。
【0077】
例えば油圧ショベルの走行直進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作してリモコン弁34b2,34d2を動作させた場合は、パイロット油圧源33の圧油に基づいて制御パイロット圧d,hが生成され、この制御パイロット圧d,hが流量制御弁26b,26dの図示右端側の受圧部に導かれ、流量制御弁26b,26dは図示右側の位置に切り換えられる。これと同時に、リモコン弁34b2,34d2の制御パイロット圧d,hがトーナメント形に組まれたシャトル弁37a,37b,37cに導かれ、制御パイロット圧d,hのうち最も高い圧力が油路38を介して走行信号圧として切換弁39の受圧部39aへ導かれ、切換弁39は位置Iから位置IIに切換られる。これにより油路40が閉じられ油路41が連通して、第2油圧回路が形成され、LS制御弁35bの受圧部35dヘパイロット油圧源33の圧油を分圧回路44で分圧して生成した絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれる。分圧回路44で生成した絶対圧Pa’は差圧減圧弁30bで生成された絶対圧Paよりも低い圧力に設定されており、目標LS差圧が絶対圧Paから絶対圧Pa’に低下する。その結果、LS制御弁35b及びLS制御傾転アクチュエータ35cによって制御されるメインポンプ2の吐出流量が減り、メインポンプ2の吐出圧力が低めとなり、メインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧が絶対圧Pa’に低下する。これにより差圧減圧弁24の出力圧である絶対圧PLSがPa’に低下し、走行用の圧力補償弁27b,27dの目標補償差圧もPa’に低下し、走行用の流量制御弁26b,26dの前後差圧はその低下した絶対圧Pa’に保持される。
【0078】
このようにして本実施の形態においても、走行用の流量制御弁26b,26dの開口面積比に応じた流量比が保たれ、安定した直進走行を行うことができるとともに、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが改善される。
【0079】
また、本実施の形態では、分圧回路42は、可変絞り要素44bの絞り径(開口面積)を変更することで減圧量を大きくすることができ、出力圧である絶対圧Pa’を自由に調整することができる。
【0080】
以上のように本実施の形態によれば、第1の実施の形態と同様の効果(走行動作時のエネルギロスの低減)が得られるとともに、絶対圧Pa’の値の調整及び設定が容易となり、設計の自由度を増すことができる。
<第4の実施の形態>
図8に本発明の第4の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。本実施の形態におけるコントロールバルブの部分は図2に示されるものと同じである。
【0081】
本実施の形態は、第2の油圧回路における減圧弁42の機能を流量検出弁30aに持たせ、第1の油圧回路に第2の油圧回路の機能も持たせたものである。
【0082】
図8において、流量検出弁30aは可変絞り部30cが開く方向に作用する受圧部30hを有し、シャトル弁37a,37b,37cから出力された走行信号圧が信号油路45を介して流量検出弁30aの受圧部30hに導かれる。受圧部30hに導かれた走行信号圧は、流量検出弁30aの可変絞り部30cが開く方向に作用するため、それに応じて流量検出弁30aの可変絞り部30cの前後差圧が低下し、差圧減圧弁30bはその減圧した前後差圧を絶対圧Pa’として出力する。絶対圧Pa’は目標LS差圧として油路40を介してLS制御弁35bの受圧部35dへ導かれる。
【0083】
上記以外の構成は、第1の実施形態と同じである。
【0084】
以上のように構成した本実施の形態の動作を説明する。
【0085】
例えば油圧ショベルの走行直進を意図して、走行用の操作レバー装置34b,34dの操作レバーを図示右方向に操作してリモコン弁34b2,34d2を動作させた場合は、パイロット油圧源33の圧油に基づいて制御パイロット圧d,hが生成され、この制御パイロット圧d,hが流量制御弁26b,26dの図示右端側の受圧部に導かれ、流量制御弁26b,26dは図示右側の位置に切り換えられる。これと同時に、リモコン弁34b2,34d2の制御パイロット圧d,hがトーナメント形に組まれたシャトル弁37a,37b,37cに導かれ、制御パイロット圧d,hのうち最も高い圧力が油路45を介して走行信号圧として流量検出弁30aの受圧部30hに導かれ、可変絞り部30cの開口面積が増加し、それに応じて可変絞り部30cの前後差圧が低下する。可変絞り部30cの前後差圧が減少することで、差圧減圧弁30bで生成される絶対圧Paは絶対圧Pa’に減圧され、絶対圧Pa’が目標LS差圧としてLS制御弁35bの受圧部35dへ導かれ、目標LS差圧が絶対圧Paから絶対圧Pa’に低下する。
【0086】
図9に、走行用の操作レバー装置の中立時(走行用リモコン弁中立時)と走行用の操作レバー装置の操作時(走行リモコン弁操作時)の目標LS差圧の変化を示す。図中、横軸はエンジン回転数である。走行用リモコン弁の中立時は、目標LS差圧はエンジン回転数が上昇するとともに上昇し、定格回転数Nrateにおいて差圧減圧弁30bの出力圧である絶対圧Paとなる(エンジン回転数検出弁装置30の機能)。走行用リモコン弁操作時は、走行用リモコン弁中立時に比べエンジン回転数上昇時の途中から目標LS差圧の上昇割合は小さくなり、定格回転数Nrateにおいて目標LS差圧はPaより低いPa’となる(流量検出弁30aに走行信号圧を導いたことによる効果)。
【0087】
走行用リモコン弁操作時に目標LS差圧が絶対圧Paから絶対圧Pa’に低下すると、差圧減圧弁24の出力圧である絶対圧PLSがPa’に低下し、走行用の圧力補償弁27b,27dの目標補償差圧もPa’に低下し、走行用の流量制御弁26b,26dの前後差圧はその低下した絶対圧Pa’に保持される。
【0088】
このようにして本実施の形態においても、走行用の流量制御弁26b,26dの開口面積比に応じた流量比が保たれ、安定した直進走行を行うことができるとともに、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが改善される。
【0089】
また、本実施の形態では、前述した実施の形態のように特別な減圧手段や切替弁を設けることなく、流量検出弁30aに走行信号圧(制御圧力)を導くだけで
絶対圧Paから絶対圧Pa’に変更することができるので、信号圧力生成装置(設定変更装置)を少ない部品点数で構成することができる。
【0090】
以上のように本実施の形態によれば、第1の実施の形態と同様の効果(走行動作時のエネルギロスの低減)が得られるとともに、信号圧力生成装置(設定変更装置)少ない部品点数で構成することができ、油圧駆動装置の製造コストを低減することができる。
<第5の実施の形態>
図10に本発明の第5の実施形態に係わる建設機械の油圧駆動装置の構成を示す、図1と同様な図である。本実施の形態におけるコントロールバルブの部分は図2に示されるものと同じである。
【0091】
本実施の形態は、第2の油圧回路における減圧弁42及び切換弁39の機能を電気制御を用いて実現し、かつ第1の油圧回路に第2の油圧回路の機能も持たせたものである。
【0092】
図10において、本実施例の油圧駆動装置は、シャトル弁37a,37b,37cから出力された走行信号圧を検出する圧力センサ46と、制御装置47と、電磁比例減圧弁48とを備えている。制御装置47は圧力センサ46の検出信号を入力し、走行信号圧がタンク圧P0からリモコン弁操作時の圧力P1に上昇したかどうかを監視し、走行信号圧がP0からP1に上昇すると走行動作時であると判断し、制御用の電気信号を電磁比例減圧弁48に出力する。電磁比例減圧弁48は圧減圧弁30bから出力された絶対圧PaをLS制御弁35bの受圧部35dへ導く油路40に配置され、制御装置47から制御用の電気信号を入力すると作動し、差圧減圧弁30bから出力された絶対圧Paを絶対圧Pa’に減圧して出力する。
【0093】
上記以外の構成は、第1の実施形態と同じである。
【0094】
このように構成した本実施の形態においても、走行用の操作レバー装置の操作時(走行リモコン弁操作時)は、目標LS差圧が絶対圧Paから絶対圧Pa’に低下し、走行用の圧力補償弁27b,27dの目標補償差圧もPa’に低下するため、走行用の流量制御弁26b,26dの開口面積比に応じた流量比が保たれ、安定した直進走行を行うことができるとともに、走行用の流量制御弁26b,26dの前後差圧が絶対圧Pa’に低下するため、コントロールバルブ4の内部圧損が低減され、走行動作時のエネルギロスが低減される。
【0095】
また、本実施形態においては、制御装置47と電磁比例減圧弁48を用いて第2規定値である絶対圧Pa’を生成するため、制御装置47の演算処理により制御用の電気信号を任意に変更することができ、絶対圧Pa’を自由に調整することができる。
<その他の実施の形態>
以上の実施の形態は本発明の精神の範囲内で種々の変更が可能である。例えば、上記実施の形態では、差圧減圧弁24の出力圧(ポンプ圧Pdと最高負荷圧PLmaxとの差圧の絶対圧PLS)を圧力補償弁27a〜27hの受圧部28a〜28hに導いて目標補償差圧を設定したが、圧力補償弁27a〜27hに対向する受圧部を設け、これらの受圧部にポンプ圧Pdと最高負荷圧PLmax個別に導いて目標補償差圧を設定してもよい。
【0096】
また、上記実施の形態では、第1規定値として、差圧減圧弁30bが出力するエンジンの回転数に依存する圧力を絶対圧Paを用いたが、走行動作時はエンジン回転数を一定にして走行するのが通常であるため、パイロット油圧源33の圧力を減圧して絶対圧Paを生成し、その絶対圧Paを第1規定値として用いてもよい。
【0097】
更に、上記実施の形態では、建設機械が油圧ショベルである場合について説明したが、走行モータを備えた建設機械であれば、油圧ショベル以外建設機械(例えば油圧クレーン、ホイール式ショベル等)に本発明を適用し、同様の効果を得ることができる。
【符号の説明】
【0098】
1 エンジン
2 メインポンプ
2a 供給油路
3 パイロットポンプ
3a 供給油路
5〜12 アクチュエータ
5 旋回モータ
6,8 走行モータ
7 ブレードシリンダ
9 スイングシリンダ
10 ブームシリンダ
11 アームシリンダ
12 バケットシリンダ
13〜20 バルブセクション
21 信号油路
22a〜22g シャトル弁
23 メインリリーフ弁
24 差圧減圧弁
25 アンロード弁
25a バネ
26a〜26h 流量制御弁(メインスプール)
27a〜27h 圧力補償弁
30 エンジン回転数検出弁装置
30a 流量件巣津弁
30b 差圧減圧弁
30c 可変絞り部
30e 油路
30f 絞り要素
30h 受圧部
31 パイロット油路
32 パイロットリリーフ弁
33 パイロット油圧源
34a〜34h 走行用操作レバー装置
34b1,34b2及び34d1,34d2 走行用リモコン弁
35 ポンプ制御装置
35a 馬力制御傾転アクチュエータ
35b LS制御弁
35c LS制御傾転アクチュエータ
35d,35e 受圧部
37a〜37c シャトル弁
38 油路
38a 油路
39 切換弁
39a 受圧部
40 油路
41 油路
42 減圧弁
43 パイロット作動形減圧弁
43a 受圧部
43b 絞り要素
44 分圧回路
44a 固定絞り要素
44b 可変絞り要素
44c 油路
45 信号油路
46 圧力センサ
47 制御装置
48 電磁比例減圧弁
300 上部旋回体
301 下部走行体
302 フロント作業機
303 スイングポスト
304 中央フレーム
305 ブレード
306 ブーム
307 アーム
308 バケット

【特許請求の範囲】
【請求項1】
エンジンと、
このエンジンにより駆動される可変容量型のメインポンプと、
このメインポンプから吐出された圧油により駆動される走行用の油圧モータを含む複数のアクチュエータと、
前記メインポンプから前記複数のアクチュエータに供給される圧油の流量を制御する走行用の流量制御弁を含む複数の流量制御弁と、
前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、
前記メインポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるようメインポンプの押しのけ容積をロードセンシング制御するポンプ制御装置とを備え、
前記複数の圧力補償弁は、前記流量制御弁の前後差圧が前記メインポンプの吐出圧と前記複数のアクチュエータの最高負荷圧との差圧に保持されるようにそれぞれの流量制御弁の前後差圧を制御する建設機械の油圧駆動装置において、
前記走行モータが駆動される走行動作時かどうかを検出する走行検出装置と、
前記走行検出装置の検出結果に基づいて、前記走行動作時でないときは前記ロードセンシング制御の目標差圧を第1規定値に設定し、前記走行動作時は前記ロードセンシング制御の目標差圧を前記1規定値より小さい第2規定値に設定する設定変更装置とを備えることを特徴とする建設機械の油圧駆動装置。
【請求項2】
請求項1の建設機械の油圧駆動装置において、
前記設定変更装置は、
前記走行動作時でないときは前記第1規定値に対応する第1絶対圧を生成して信号圧力として出力し、前記走行動作時は前記第2規定値に対応する第2絶対圧を生成して信号圧力として出力する信号圧力生成装置を有し、
前記ポンプ制御装置は、前記信号圧力生成装置が出力する前記信号圧力を前記ロードセンシング制御の目標差圧として設定し、前記メインポンプの押しのけ容積を制御することを特徴とする建設機械の油圧駆動装置。
【請求項3】
請求項2の建設機械の油圧駆動装置において、
前記信号圧力生成装置は、
前記メインポンプを駆動する前記エンジンの回転数に依存する圧力を前記第1絶対圧として生成して出力する差圧減圧弁と、
パイロット油圧源の圧力を減圧して前記第2絶対圧を生成して出力する減圧装置と、
前記走行動作時でないときは前記第1絶対圧を前記信号圧力として出力し、前記走行動作時は前記第2絶対圧を前記信号圧力として出力するよう切り換える切換装置とを有することを特徴とする建設機械の油圧駆動装置。
【請求項4】
請求項3の建設機械の油圧駆動装置において、
前記減圧装置は、前記パイロット油圧源の圧力を減圧して前記第2絶対圧を生成し出力する減圧弁であることを特徴とする建設機械の油圧駆動装置。
【請求項5】
請求項2の建設機械の油圧駆動装置において、
前記信号圧力生成装置は、
前記エンジンにより駆動されるパイロットポンプと、
前記パイロットポンプの吐出油が通過する油路に設置され、通過流量に応じて前後差圧を変化させる流量検出弁と、
前記流量検出弁の前後差圧を前記第1絶対圧として生成して出力する差圧減圧弁とを有し、
前記流量検出弁は、前記走行動作時に制御圧力が導かれて前記流量検出手段の可変絞り部を開く方向に作用する受圧部を有し、
前記差圧減圧弁は、前記走行動作時でないときは、前記受圧部に前記制御圧が導かれていない前記流量検出弁の前後差圧を前記第1絶対圧として生成して出力し、前記走行動作時は、前記受圧部に前記制御圧が導かれた前記流量検出弁の前後差圧を前記第2絶対圧として生成して出力することを特徴とする建設機械の油圧駆動装置。
【請求項6】
請求項2の建設機械の油圧駆動装置において、
前記信号圧力生成装置は、
前記走行検出装置の検出信号を入力し、この検出信号に基づいて前記走行動作時かどうかを判断し、前記走行動作時に制御用の電気信号を出力する制御装置と、
前記制御装置から前記制御用の電気信号が出力されていないときは、前記第1絶対圧を生成して出力し、前記制御装置から前記制御用の電気信号が出力されたときは、前記第2絶対圧を生成して出力する電磁比例減圧弁とを有することを特徴とする建設機械の油圧駆動装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−247301(P2011−247301A)
【公開日】平成23年12月8日(2011.12.8)
【国際特許分類】
【出願番号】特願2010−118594(P2010−118594)
【出願日】平成22年5月24日(2010.5.24)
【出願人】(000005522)日立建機株式会社 (2,611)
【Fターム(参考)】