説明

成膜方法、成膜装置

【要 約】
【課題】結晶性がよく耐エッチング性の高い保護膜を成膜する。
【解決手段】前処理室31の水分圧を測定し、制御装置65はその測定値から、真空槽32で放出されるH2Oガス量を予測し、成膜に適した必要量のH2Oガスが真空槽32に含有されるように、水の導入量を決定し、流量制御装置45は決定した導入量で水導入口55a、55bから水を導入する。搬送対象物60から放出されるH2Oガス量が変化しても、真空槽32には必要量のH2Oガスが含有されるから、保護膜14の膜質が均一になる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はプラズマディスプレイパネルの保護膜等の薄膜を成膜する成膜装置と、その成膜方法に関する。
【背景技術】
【0002】
従来から、プラズマディスプレイパネル(PDP)は表示装置の分野で広く用いられており、最近では、大画面で高品質かつ低価格のPDPが要求されている。
現在、PDPはガラス基板上に維持電極及び走査電極を形成した前面板と、ガラス基板上にアドレス電極を形成した背面板が貼りあわされた3電極面放電型が主流となっている。
【0003】
前面板と背面板の間には放電ガスが封入されており、走査電極とアドレス電極との間に電圧を印加して放電を発生させると、封入された放電ガスがプラズマ化し、紫外線が放出される。放射された紫外線が照射される位置に蛍光体を配置しておけば、紫外線によって蛍光体が励起され、可視光が放出される。
【0004】
一般に、維持電極及び走査電極上には、誘電体膜を形成し、さらにその上に、誘電体の保護と二次電子を放出させることを目的としてMgOまたはMgO系の金属酸化膜が、保護膜として形成されている。
【0005】
放電維持のために走査電極と維持電極に交流電圧を印加すると、放電ガスのプラズマ化により発生した陽イオンが走査電極側及び維持電極側に入射するが、維持電極及び走査電極とそれら電極上の誘電体膜は保護膜によって陽イオンから保護されている。
【特許文献1】特開2004−055180号公報
【特許文献2】特開2005−050803号公報
【特許文献3】特開2005−050804号公報
【特許文献4】特開2006−097077号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
MgO膜を含有する保護膜は(111)配向のピーク強度が高い程二次電子を放出しやすく、屈折率が高い程緻密で耐スパッタ性が高いと言われており、PDP用保護膜には、一般に次の特性が要求される。
【0007】
(1)結晶配向性が(111)であり、XRD(X Ray Diffraction、X線回折)での、(111)配向のピーク強度が1500cps以上であること。あるいは結晶配向性が制御できること。
(2)結晶配向性の分布、つまりXRDのピーク強度の分布が適切であること。
このため上記特許文献1(特開2004−055180号公報)に示すような蒸発ポイントの設置が必要となりMgOの使用効率が低下した場合もあった。
(3)充填率(膜密度)が82%以上であること(屈折率が約1.6以上であること)。
【0008】
結晶配向性を向上させるための成膜条件では、膜密度が低下する傾向にあり、膜密度を高くする成膜条件では、結晶配向性が低下する傾向にある。つまり、膜密度を満たす成膜条件と、結晶配向性を満たす成膜条件は相反する。従って、現状より更に特性の優れたPDP用保護膜を作成する際には、何れかの特性を重視した成膜条件にするか、双方の特性の中間的な保護膜を作成せざるを得ない。
【0009】
また、成膜時にはパネルをキャリアに保持させるため、キャリアにもMgOが付着する。MgO等の金属酸化物は吸湿性が高いため、キャリアが水を含む雰囲気(例えば大気)に曝されるとMgO膜が水を吸収し、吸収された水は真空槽内で放出される。
【0010】
一般に、成膜中は、真空槽の内部圧力を10-2Paオーダー(1×10-2Pa〜1×10-1Pa)と高真空にする。
そのため、キャリアに保持された搬送対象物を、真空槽に搬入する前に長時間加熱して脱ガス処理するか、吸湿性の高いMgOへの水分吸着を抑えるため、キャリアを大気に曝さない真空リターンないしは、水分を含んだ雰囲気に曝さないCDA(Clean Dry Air)雰囲気に保つ必要があり、装置コストないしはランニングコストがアップした。
【0011】
図3の直線Bは、膜厚500μmのMgO付ステンレスを曝した雰囲気の絶対湿度と、当該MgO付ステンレスからの放出ガス量との関係を示している。
同図のA点は、清浄なステンレスを大気(絶対湿度35000mg/m3)にさらした場合の放出ガス量(水の放出量)である。絶対湿度10000mg/m3の雰囲気にさらしたMgO付ステンレスからは、清浄なステンレスに比べ約20倍以上の放出ガスがある。
【0012】
清浄なステンレスと同等な放出ガス量に抑えるためには、MgO付ステンレスを約20〜30mg/m3の絶対湿度雰囲気にする必要がある。この絶対湿度は約−50℃の露点に相当する。キャリアが大気雰囲気を通過する間−50℃の露点雰囲気を保つためには、空気をドライ化する大掛かりな設備を必要とする。
【0013】
成膜室のガス分圧を測定し、O2、H2、H2Oなどのプロセスガス導入量にフィードバックする方法も提案されている。しかし、電子線で蒸着材料を蒸発させる場合、プロセスガスが分解されるため、分圧が正確に測定できないという問題があった。また、ガス分圧を測定し、制御する手段は一般に残留ガス分析計を使用するため高価である。
【課題を解決するための手段】
【0014】
上記課題を解決するため、本発明は、キャリアと、前記キャリアに配置された成膜対象物とを有する搬送対象物を、前処理室で予備加熱してから、前記前処理室から真空槽内に搬入し、設定量のH2Oガスを含有させた前記真空槽の内部空間で、蒸着材料の蒸気を発生させ、前記搬送対象物を、所定の成膜温度になるよう本加熱しながら、当該搬送対象物の前記成膜対象物に薄膜を形成する成膜方法であって、前記設定量のH2Oガスを前記真空槽の前記内部空間に含有させるのに必要なH2Oガスの必要導入量を予め求めておき、前記予備加熱の際、前記前処理室の水分圧を測定し、測定した水分圧から、前記搬送対象物が放出するH2Oガスの予測放出量を算出し、予め求めた前記必要導入量から、前記予測放出量を引いた導入量で、H2Oガスを前記真空槽に導入し、前記蒸着材料の蒸気を発生させる成膜方法である。
本発明は成膜方法であって、前記測定温度と前記成膜温度を同じにする成膜方法である。
本発明は成膜方法であって、前記蒸着材料に電子線を照射して蒸発させる成膜方法である。
本発明は、前記搬送対象物を、前記真空槽内の搬送経路を搬送して、前記蒸着材料が配置された蒸発源と対面する位置を通過させ、前記蒸着材料の薄膜を形成する成膜方法であって、前記搬送対象物が、前記搬送経路の前記蒸発源と対面する位置で静止した場合の、前記薄膜の成長速度が、40nm/秒以上になるように前記蒸着材料を蒸発させながら、前記搬送対象物を搬送する成膜方法である。
本発明は、成膜方法であって、前記真空槽の水分圧を1×10-1Paを超える圧力にして、前記蒸着材料の蒸気を発生させる成膜方法である。
本発明は成膜方法であって、前記蒸着材料として、MgOを用いる成膜方法である。
本発明は成膜方法であって、前記蒸着材料として、MgOを含有し、SrOとCaOのいずれか一方又は両方が添加された金属酸化物を用いる成膜方法である。
本発明は成膜方法であって、前記成膜対象物に薄膜を成膜した後、当該成膜対象物を前記キャリアから取り外し、当該キャリアに新たな前記成膜対象物を配置した搬送対象物を、前記予備加熱して水分圧を測定する成膜方法である。
本発明は成膜方法であって、前記前処理室の水分圧を測定した後、前記前処理室に水を導入し、前記前処理室の内部圧力と前記真空槽の内部圧力との差を小さくしてから、前記前処理室を前記真空槽に接続する成膜方法である。
本発明は、前処理室と、前記前処理室内の搬送対象物を予備加熱する第一の加熱手段と、前記前処理室に接続された真空槽と、前記真空槽内の前記搬送対象物を成膜温度に本加熱する第二の加熱手段と、前記真空槽の内部にH2Oガスを導入する水導入口と、前記真空槽に配置された蒸発源と、前記蒸発源の蒸着材料を蒸発させる蒸発手段とを有する成膜装置であって、前記前処理室の水分圧を測定する圧力測定装置と、前記水導入口からの導入量を変える流量調整装置と、前記圧力測定装置と、前記流量調整装置に接続された制御装置とを有し、設定量のH2Oガスを前記真空槽の前記内部空間に含有させるのに必要なH2Oガスの必要導入量を、前記制御装置に設定すると、前記制御装置は、前記圧力測定装置が測定した水分圧から、前記搬送対象物が放出するH2Oガスの予測放出量を算出し、設定された前記必要導入量から、前記予測放出量を引いた導入量を引いて、実際の導入量を決定し、前記流量調整装置は、前記制御装置が決定した前記導入量で、前記水導入口からH2Oガスを導入させる成膜装置である。
【0015】
本発明は上記のように構成されており、蒸着材料が金属酸化物の場合、該金属酸化物に電子線を照射して高温加熱すると、金属酸化物の蒸気が発生すると共に、金属酸化物の一部が還元され、金属が解離する。
例えば、酸化マグネシウム(MgO)の場合、電子ビームを照射するとMgが解離する反応(2MgO→2Mg+O2)が起こる。
【0016】
この時水を導入すれば、水は電子線で分解され、還元剤(水素)が発生するから、金属酸化物の還元(MgO+H2→Mg+H2O)がより低温で進行し、電子線パワーが同じでも解離金属の量が多くなる。解離金属は酸素又は水と接触し金属酸化物に戻る(Mg+O2→2MgO、Mg+H2O→MgO+H2)。
【0017】
解離せずに蒸発した金属酸化物の蒸気で保護膜が形成されるよりも、少なくとも一部が一旦解離した後酸化した酸化物が混入した方が、保護膜の(111)結晶配向性と、膜密度が高くなる。
結晶配向性がよいと保護膜の(111)ピーク強度が高くなり、また膜密度が高いと耐スパッタ性が向上し、保護膜の膜厚を削減できる。例えば、(111)ピーク強度が50%高く、かつ、膜密度が高いと、必要保護膜は30%〜50%削減可能である。
【発明の効果】
【0018】
搬送対象物毎に水分圧を測定してH2Oガス放出量を求めるから、真空槽の水含有量を正確に制御でき、膜質にばらつきが生じない。結晶配向性が良く、膜密度の高い保護膜が得られるからPDPの寿命が伸び、かつ、保護膜の薄膜化を実現できる。保護膜の薄膜化に伴い、蒸着材料の必要量が削減でき、製造コストが安価になる。真空槽のメンテナンス作業から短時間で成膜を再開できる。成膜速度が従来より速いから、製造時間が短縮され、しかも、CO、CO2等の不純物が混入し難い。
【発明を実施するための最良の形態】
【0019】
図1の符号1はPDP(プラズマディスプレイパネル)の一例を示している。PDP1は、第一、第二のパネル10、20を有している。
第一のパネル10は第一のガラス基板11を有しており、第一のガラス基板11の表面には、維持電極15と、走査電極16がそれぞれ配置されている(図1では1本ずつ図示)。
【0020】
維持電極15と走査電極16は所定間隔を空けて交互に並べられている。維持電極15と走査電極16は互いに離間し、その表面と、維持電極15と走査電極16の間には誘電体膜12が形成されている。従って、維持電極15と走査電極16は互いに絶縁されている。
誘電体膜12の表面には保護膜14が全面にわたって配置されている。従って、各維持電極15上と各走査電極16上には保護膜14が位置する。
【0021】
第二のパネル20は第二のガラス基板21を有している。第二のガラス基板21表面上には、アドレス電極25が互いに平行に配置されており、アドレス電極25は互いに離間している。
アドレス電極25表面と、アドレス電極25間には誘電体層24(絶縁層)が配置され、アドレス電極25同士は絶縁されている。アドレス電極25間には、隔壁23がアドレス電極25の長手方向に沿って配置されている。
【0022】
互いに隣接する隔壁23間には、異なる色の蛍光色素を含有する蛍光体膜(赤色の蛍光体膜22Rと、緑色の蛍光体膜22Gと、青色の蛍光体膜22B)のいずれか1つが配置され、各アドレス電極25は誘電体層24を介し、いずれか1色の蛍光体膜22R、22G、22Bで覆われている。
【0023】
第一、第二のパネル10、20は、保護膜14が形成された面と、隔壁23が形成された側の面とが互いに対向し、アドレス電極25に対し、維持電極15と走査電極16が直交するように位置合わせされた状態で貼り合わされ、第一、第二のパネル10、20間の空間が封止されている。
【0024】
隔壁23は第二のパネル20の表面から高く突き出され、その先端が第一のパネル10の表面に当接している。従って、第一、第二のパネル10、20間の空間は隔壁23によって区分けされており、区分けされた各空間(発光空間29)に、封入ガス(例えばNeとXeの混合ガス)が充満している。
【0025】
次に、PDP1を点灯させる工程について説明する。
選択した走査電極16とアドレス電極25の間に電圧を印加すると、それらの電極が交差する発光セルで書き込み放電(アドレス放電)が起こり、その発光セルに壁電荷が蓄積する。
【0026】
選択した走査電極16と、該走査電極16に隣接する維持電極15との間に交流電圧を印加する。保護膜14はMgOからなる金属酸化物、SrOとCaOとからなる金属酸化物、又は、MgOとSrOとからなる金属酸化物を主成分とする。このような保護膜14は電子放出特性が高く、アドレス放電で壁電荷が蓄積された発光セルで保護膜14から電子が放電されて維持放電が起こり、封入ガスがプラズマ化し、紫外線が発生する。
【0027】
選択した走査電極16と、アドレス電極25とが交差する発光セルで紫外線の発光が起こるから、その発光セルに位置する蛍光体膜22R、22G、22Bに紫外線が入射すると、蛍光体膜22R、22G、22Bが励起され、赤、緑、青のいずれかの色の可視光が放出される。
【0028】
第一のガラス基板11と、誘電体膜12はそれぞれ透明である。保護膜14もMgOやSrO等透明な金属酸化物で構成され、その膜厚分布も±5%〜±10%と、透明性を損なわないようになっているから、第一のパネル10全体が透明になっている。従って、発光セルで放出された光(可視光)は、第一のパネル10を透過して外部に放出される。
【0029】
選択された走査電極16と、該走査電極16に隣接する維持電極15の間に、維持放電の時よりも弱い電圧を印加し、維持放電よりも弱い放電(消去放電)を起こすと、発光空間29内の壁電荷が中和され、発光セルが消灯する。
保護膜14は、第一、第二のパネル10、20間の空間に露出しており、発光セルが発光する時には、保護膜14がプラズマに曝される。
【0030】
保護膜14はMgOやSrO等、プラズマでエッチングされ難い材料で構成されている。しかも、本発明により成膜された保護膜14は、後述するように充填率が高いから、よりエッチングされ難く、誘電体膜12、維持電極15、走査電極16は保護膜14により保護され、PDP1は従来に比べて寿命が長い。
【0031】
次に、PDP1の製造に用いる本発明の成膜装置について説明する。
図2の符号3は成膜装置の一例であり真空槽32と、前処理室31と、後処理室33とを有しており、前処理室31と後処理室33は真空バルブ39a、39bを介して真空槽32に接続されている。
【0032】
真空槽32は成膜室34と材料室35とを有しており、材料室35は成膜室34の下方に配置され、成膜室34に接続されている。前処理室31と後処理室33は、成膜室34に接続されている。前処理室31と成膜室34には第一、第二の加熱手段59a、59bが取り付けられている。第一、第二の加熱手段59a、59bには、搬送対象物60の加熱温度が予め設定されている。
【0033】
後述する搬送対象物60は、成膜装置3の外部から、直接、又は他の処理室を介して前処理室31に搬入され、第一の加熱手段59aによって予備加熱され、予め設定された成膜温度に加熱された後、成膜室34に搬入され、第二の加熱手段59bにより成膜温度が維持される。
【0034】
成膜室34には搬送手段50が設けられており、搬送対象物60は成膜温度にされたまま、所定の搬送経路51を通って搬送され、成膜室34から後処理室33へ搬出される。搬送対象物60は後処理室33で冷却等の後処理された後、直接、又は他の処理室を通って成膜装置3の外部に取り出される。
【0035】
材料室35は搬送経路51の真下位置で成膜室34に接続されている。材料室35と成膜室34とが接続された部分には制限板38が配置されており、制限板38の搬送経路51の真下位置には放出口37が設けられている。
【0036】
材料室35の内部には、放出口37の真下位置に蒸発源36が配置されている。従って、蒸発源36は搬送経路51の真下に位置し、搬送対象物60は搬送経路51を移動する間に、蒸発源36と対面する。
【0037】
蒸発源36は坩堝(容器)を有しており、坩堝内には蒸着材料が配置される。材料室35には、加熱手段として電子銃(電子線発生装置)41が設けられている。真空槽32には真空排気系52bが接続されており、真空槽32内部を真空雰囲気にし、電子銃41を動作させると電子線(電子ビーム)42が、蒸発源36の蒸着材料に照射され、蒸着材料の蒸気が材料室35に放出される。
【0038】
制限板38と蒸発源36の間、即ち材料室35内部には第一の水導入口55aが配置されている。
第一の水導入口55aはH2Oガス供給系62に接続されている。H2Oガス供給系62は水を加熱してH2Oガス(気体状の水、即ち水蒸気)を発生させ、発生させたH2Oガスを第一の水導入口55aから材料室35内に放出させる。
【0039】
2Oガスは蒸発源36の近傍に放出されるから、少なくとも一部が電子線42で分解され、蒸着材料の蒸気はH2Oガスと、その分解物(H2、O2)に曝される。蒸着材料が金属酸化物の場合、蒸気の一部がH2で還元され、金属が解離する。
解離した金属は、蒸気が放出口37を通って搬送経路51に到達する間に、O2ガス又はH2Oガスと反応して金属酸化物となり、搬送経路51を移動する搬送対象物60に金属酸化物の膜(保護膜)が形成される。
【0040】
制限板38と搬送経路51の間、即ち成膜室34の内部に第二の水導入口55bを配置してもよい。この場合、成膜中の保護膜がH2Oガスに曝され、結晶性及び膜密度が向上する。
【0041】
2Oガス供給系62と、第一、第二の水導入口55a、55bの間には流量調整装置(マスフローコントローラ)45が設けられ、該流量調整装置45により、第一、第二の水導入口55a、55bから放出されるH2Oガスの流量(単位時間当たりのH2Oガスの体積)が変更可能になっている。
【0042】
前処理室31には、前処理室31内部の水分圧を測定する圧力測定装置66が接続されている。圧力測定装置66と、上述した流量調整装置45は、制御装置65に接続されている。圧力測定装置66は前処理室31内部の水分圧を測定し、測定値を制御装置65に伝達する。
【0043】
制御装置65は不図示の記憶装置を有しており、記憶装置には下記式(1)に示すような計算式が設定される。制御装置65は、圧力測定装置66が測定した水分圧P(Pa)と、真空排気系52aの有効排気速度S(m3/秒)とから、搬送対象物60から前処理室31内に放出されるH2Oガスの前処理放出量Q(単位時間当たりの放出量、即ち放出速度、単位Pa・m3/秒)を算出する。
【0044】
式(1)…Q=S×P
制御装置65は、前処理放出量Qから、搬送対象物60が真空槽32に搬入された時に、該搬送対象物60から放出されるH2Oガスの予測放出量qを求める。
制御装置65は予測水放出量qから水導入量を決定する。水導入量の決定方法の一例を説明すると、先ず、成膜に適した真空槽32内の成膜水分圧を求める。
【0045】
真空槽32内に搬送対象物60を配置せず、H2Oガスが第一、第二の水導入口55a、55bだけから供給される状態で、真空槽32の内部空間の水分圧が、決定した成膜水分圧となるH2Oガスの必要導入量(単位時間当たりの導入量、即ち導入速度、単位Pa・m3/秒)を求める。必要導入量は、成膜水分圧と、排気速度から算出できる。
【0046】
必要導入量は、洗浄後のキャリア47にガラス基板を配置した、放出ガスの少ない搬送対象物60を、真空槽32に搬入し、真空槽32内へのH2Oガスの導入量を変えて成膜を行い、成膜された各膜の特性を評価して、決定してもよい。要するに、必要導入量は、搬送対象物60からはH2Oガスが発生せず、水導入口55a、55bからだけ真空槽32内部にH2Oガスが供給される状態で決定する。
【0047】
制御装置65に必要導入量を設定すると、制御装置65は必要導入量から、予測放出量qを差し引いて実際の導入量(単位時間当たりの導入量、即ち導入速度、単位Pa・m3/秒)を決定し、流量調整装置45に伝達する。流量調整装置45は、第一、第二の水導入口55a、55bからのH2Oガスの流量(合計流量)を、制御装置65が決定した導入量にする。
【0048】
このように、搬送対象物60から真空槽32に放出される分、第一、第二の水導入口55a、55bからの導入量が少なくされるから、搬送対象物60から真空槽32内にH2Oガスが放出されたとしても、真空槽32内の水含有量を成膜に適した設定量にすることができる。
【0049】
前処理室31の水分圧測定条件は特に限定されないが、搬送対象物60毎に測定条件を変えると誤差が大きくなるので、測定条件、特に、水分圧を測定する時の搬送対象物60の温度(測定温度)を同じにすることが望ましい。
【0050】
測定温度は特に限定されないが、真空槽32内で成膜される時の温度(成膜温度)と同じにすると、温度差による影響を考慮しなくてよいから、真空槽32内で放出されるH2Oガスの予測放出量qがより正確に求められる。
【0051】
次に、実際にPDP用の保護膜14を製造する工程について説明する。
ここでは、第一のガラス基板11に電極(維持電極15と走査電極16)と、誘電体膜12とが形成された状態の第一のパネル10を成膜対象物とする。
その状態の第一のパネル10をキャリア47に配置し、第一のパネル10の電極が形成された面上にマスク69を配置し、搬送対象物60とする。
【0052】
前処理室31と後処理室33と真空槽32を真空排気系52a〜52cにより真空排気し、所定圧力の真空雰囲気を形成する。
前処理室31の真空雰囲気を維持しながら、前処理室31を真空槽32から遮断した状態で、搬送対象物60を前処理室31内に搬入し、搬送対象物60を予備加熱する。
【0053】
搬送対象物60が予め決めた測定温度になったら、前処理室31の水分圧を測定する。水分圧は搬送対象物60が前処理室31に滞在している間の平均から求めてもよいし、搬送対象物60が前処理室31に搬入されてから所定時間が経過した時に測定してもよい。
【0054】
水分圧を測定してから、前処理室31を真空槽32に接続して、搬送対象物60を真空槽32に搬入し、真空槽32を前処理室31から遮断する。搬送対象物60を加熱し、決められた成膜温度に維持しながら搬送する。
蒸発源36には蒸着材料として金属酸化物を配置しておく。該金属酸化物の蒸気を放出させながら、成膜対象物60を搬送し、第一のパネル10の表面に、金属酸化物の薄膜からなる保護膜14を形成する。
【0055】
上述したように、制御装置65は、前処理室31の水分圧から、H2Oガスの予測放出量qを求め、設定された必要導入量と、予測放出量qとから、H2Oガスの導入量を決定する。
流量調整装置45は、制御装置65が決定した導入量で、第一、第二の水導入口55a、55bからH2Oガスを供給するから、真空槽32内には成膜に適した量のH2Oガスが含有され、第一のパネル10の表面に結晶性が良く、膜密度が高い保護膜14が形成される。
【0056】
保護膜14形成後、搬送対象物60を真空槽32から後処理室33に搬出し、後処理室33で冷却等の後処理をした後、後処理室33又は他の処理室内で、成膜後の第一のパネル10を、マスク69とキャリア47から取り外す。成膜後の第一のパネル10と、上述した第二のパネル20とを貼り合わせれば、図1に示すようなPDP1が得られる。
【0057】
第一のパネル10を取り外したキャリア47には、新たな第一のパネル10を配置し、新たな第一のパネル10表面上に、成膜後の第一のパネル10から取り外したマスク69を配置し、新たな搬送対象物60とする。
【0058】
新たな搬送対象物60を、先の搬送対象物60と同様に予備加熱し、測定温度に達したら、前処理室31の水分圧を測定し、水放出量qを求める。
キャリア47とマスク69は先の成膜に用いたものを再利用しているから、保護膜14と同じ種類の薄膜が表面に形成されており、新たな搬送対象物60として成膜装置3に搬入されるまで間に水分を吸収している。従って、水放出量qは先の成膜より増大する。
【0059】
制御装置65は、搬送対象物60毎に水分圧を測定し、H2Oガス導入量を決定するから、搬送対象物60が変わっても、真空槽32内の水含有量は成膜に適した値になる。また、本発明では、成膜室34内は1×10-1Paを超える圧力で成膜する。
【0060】
従って、キャリア47及びマスク69を、新たな搬送対象物60として再び成膜装置3に搬入するまでの間に、水を含有する雰囲気(例えば大気)に曝しても、真空槽32のH2Oガス含有量は成膜に適した値となり、搬送対象物60毎に保護膜14の膜質にばらつきが生じない。従って、キャリア47やマスク69を成膜装置3に戻すのにCDA等のランニングコストの高い装置が不要である。
ないしは、供給するCDAの露天を上げる(例えば露天−50℃を−20℃にする)ことが出来、ランニングコストを削減できる。
【0061】
尚、キャリア47やマスク69に付着した膜が成長しすぎると、膜が剥離してダスト等の原因となる。従って、所定膜厚が付着したら(例えばMgO膜の場合200μm〜500μm)、第一のパネル10を取り外した後、クリーニングして膜を除去してから再利用する。
【0062】
真空槽32に導入するガスはH2Oガスに限定されない。水導入口55a、55bの他に、補助ガス導入口56を設け、補助ガス導入系43の補助ガスを、H2Oガスと一緒に真空槽32内へ導入して成膜を行ってもよい。
【0063】
蒸着材料の蒸気をH2Oガスと反応させるため、補助ガス導入口56の位置は、第一の水導入口55aよりも蒸発源36から遠く、かつ、第一の水導入口55aよりも搬送経路51に近くに配置する。
【0064】
また、第二の水導入口55bを設ける場合、成膜対象物上で成膜する保護膜14がH2Oガスに十分に曝されるように、補助ガス導入口56を、第二の水導入口55bよりも搬送経路51に遠く、かつ、第二の水導入口55bよりも蒸発源36に近い位置に配置する。
【0065】
補助ガスは特に限定されないが、蒸着材料が金属酸化物の場合、O2ガスと、O3ガスと、Arガスとからなるガス群のうち、一種類以上を用いることができる。
補助ガスとしてO2ガスと又はO3ガスを用いると、解離した金属が酸化されやすくなると考えられるが、本発明者等の実験によれば、H2Oガスだけで蒸着を行った場合と、H2OガスとO2ガスの両方で蒸着を行った場合とを比較しても、保護膜14の膜質に差は無かった。
補助ガスを用いると、水分圧だけでなく、補助ガスの分圧も成膜に適した必要量に制御した方が望ましいから、H2Oガスだけを用いた方が真空槽32の内部雰囲気の制御が容易である。
【0066】
尚、搬送対象物60を、前処理室31から真空槽32に搬入する際と、真空槽32から後処理室33に搬出する際、圧力差を小さくすることが望ましい。
具体的には、前処理室31と後処理室33にガス導入系61、63と、真空計(全圧測定装置)67a、67bを接続し、ガス導入系61、62と、真空計67a、67bを制御装置65に接続する。
【0067】
真空槽32の全圧は予め決められている。制御装置65は、真空計67a、67bが測定する前処理室31及び後処理室33の全圧と、真空槽32の全圧との差が小さくなるように、ガス導入系61、63から圧力調整ガスを導入するか、真空排気系52a、52cの排気速度を上げ、圧力制御を行う。
【0068】
圧力制御された前処理室31及び後処理室33を、真空槽32に接続し、搬送対象物60の搬出入を行えば、真空槽32の圧力変動が少なくなる。圧力制御は、真空槽32の圧力変動が約10%以内程度にすればよいが、より望ましくは、真空計67a、67bで測定される全圧を、真空槽32の全圧と等しくする。
搬送対象物60からの水放出量を正確に予測するためには、圧力制御は、水分圧を測定した後であって、搬送対象物60を真空槽32に搬入する直前に行う。
【0069】
圧力調整ガスは、真空槽32の導入するガスと同じ種類のものを用いることが望ましい。例えば、真空槽32にH2Oガスと補助ガスを導入する場合には、圧力調整ガスとして、H2Oガスと補助ガスのいずれか一方又は両方を用いる。
【0070】
搬送対象物60から放出されるガスの殆どはH2Oガスである。真空槽32に導入されるガスがH2Oガスだけであり、前処理室31に残留する他のガスの存在が無視できる程小さい場合には、真空計67aを圧力測定装置として制御装置65に接続し、真空計67aが測定する全圧を水分圧として、水放出量を予測してもよい。この場合、分圧計を真空計67aと別に設ける必要がなく、しかも、真空計67aは分圧計よりも安価なので、成膜装置3のコストが下がる。
【0071】
真空槽32内の水導入量の調整は、流量調整装置45を用いる場合に限定されない。制御装置65を真空排気系52bに接続しておき、予測放出量qの分、真空槽32の排気速度を増加させ、真空槽32のH2Oガス含有量を設定量にしてもよい。
【0072】
本発明に用いる蒸着材料は特に限定されないが、PDP1用の保護膜14を成膜する場合には、MgOからなる金属酸化物、又は、MgOを含有し、SrOとCaOのいずれか一方又は両方が添加された金属酸化物を用いる。
蒸着材料は金属酸化物に限定されず、上述した金属酸化物を主成分とし、Caと、Alと、Siと、Mnと、Euと、Tiとからなる群より選択される少なくとも1種類の添加剤を添加することもできる。
【0073】
MgOを含有する金属酸化物の保護膜14は、(111)配向であって、充填率(膜密度)が高いものが望ましい。そのような膜を得るためには、真空槽32内にH2Oガスを導入し、かつ、成膜速度を速くする。水の導入量は多量であれば特に限定されないが、200sccm以上が望ましい。
【0074】
真空槽に水を多量に導入しても、成膜速度が従来と同じ(40nm/秒未満)であると、(111)結晶配向のピーク強度が低く、実用レベルに達しなかったので、本発明は、真空槽に水を導入し、かつ、成膜速度を40nm/秒以上(より望ましくは140nm/秒以上)にすることが必須である。
【0075】
搬送対象物60を蒸発源36に対して移動させながら成膜する場合、搬送経路51の蒸発源36と対面する位置を静止させた時に、40nm/秒以上の成膜速度(静的成膜速度)で保護膜14が成長するような放出速度で蒸着材料を蒸発させながら、搬送対象物60を移動させる。
【0076】
搬送経路51のうち、蒸発源36と対面する場所を成膜位置とすると、第一のパネル10の搬送方向の一端が成膜位置に到達し、該一端が成膜位置を通過し終わるのに要する時間(滞在時間)に、静的成膜速度を乗じれば、おおよそ保護膜14の膜厚になる。即ち、保護膜14の膜厚が決まっている場合は、膜厚から静的成膜速度を除した値が滞在時間となる。
【0077】
図2のような装置で、動的成膜速度(成膜対象物が1分間に1m移動する間に成膜される膜厚)を設定する場合、動的成膜速度から静的成膜速度を算出することができる。
【0078】
静的成膜速度を換算する時の係数は、使用する成膜装置により異なる。例えば係数は2.12であり、静的成膜速度をRs、動的成膜速度をRdとすると、静的成膜速度Rsは下記数式(2)で表される。
【0079】
式(2)…Rs(Å/秒)=Rd(Å・m/秒)×2.12
以上は、第一のパネル10を搬送しながら成膜する場合について説明したが、蒸発源36と第一のパネル10の位置関係を変えずに成膜してもよい。例えば、真空槽32内に基板ホルダを配置し、該基板ホルダに第一のパネル10を保持させて蒸発源36と対面させ、保護膜14を形成させる。
【0080】
基板ホルダは蒸発源36に対して固定してもよい。また、第一のパネル10が平面内で回転するよう基板ホルダを回転させれば、膜厚分布が良くなる。
第一のパネル10と蒸発源36の位置関係を変えない場合、第一のパネル10上に、40nm/秒以上の成膜速度で保護膜14が成長するよう、蒸着材料の蒸発量を制御する。
【0081】
蒸発量は、例えば電子線42の照射面積を変えることで制御する。電子線42のパワー密度(W/cm2)を変えて制御してもよいが、パワー密度が高くなりすぎるとスプラッシュと呼ばれる金属酸化物の突沸が起こり、成膜対象物が汚染される原因となる。
【0082】
加熱手段は電子銃42に限定されず、金属酸化物を蒸発可能であって、かつ、水を分解可能なものであれば、プラズマガンを用いることもできる。しかし、プラズマガンで金属酸化物を蒸発させると、金属酸化物が過剰に解離し、保護膜中に未酸化の金属(例えばMg)が混入する虞がある。未酸化の金属は発火の虞があるので、本発明では電子銃41を用い、電子線42で金属酸化物を蒸発させる。
【0083】
電子銃41は特に限定されないが、蒸発速度の制御性と安定性の点を考慮すると、ピアス式電子銃が適している。
保護膜14の膜厚分布が不均一になると、光学特性が落ち、第一のパネル10には適さないので、膜厚分布が目標膜厚(例えば800nm)の±5%〜±10%になるように、電子線42の揺動波形を決定する。
【0084】
保護膜14を成膜する際の真空槽32の内部圧力(成膜圧力)は、H2Oガスのみで、成膜を行ったところ、成膜圧力が5×10-2Pa以上(例えば0.2Pa、0.3Pa等)と高くても、保護膜の不純物濃度(特にCを含有する不純物)、膜密度、(111)結晶配向等は劣化せず、しかも、結晶配向性の強度分布が従来よりも改善された。
【0085】
また、成膜を続けると、真空槽32の内壁面に蒸着材料が付着し、発塵の原因となるため、真空槽32は定期的に清掃する必要がある。成膜圧力が5×10-2Pa未満と低い場合、清掃後に真空槽32内部を長時間(5〜6時間)真空排気する必要があった。成膜圧力が5×10-2Pa以上、より望ましくは1×10-1Paを超えれば、清掃後に真空槽32内部を長時間真空排気する必要が無いから、メンテナンス後の復帰が早い。
【0086】
真空槽32に導入するガスがH2Oガスのみの場合には、成膜圧力は水分圧と略等しい。従って、メンテナンス後の復帰を早めるためには、真空槽32内の水分圧が1×10-1Paを超えることが望ましい。
【0087】
尚、この場合の水分圧は、電子ビームの照射を開始する前の圧力である。電子ビームを照射すると、水が酸素と水素に分解され、真空槽32内の水分圧は、照射開始前の1/10以下になる。
蒸発源36は静止させてもよいが、蒸発源36を搬送経路51の真下位置で、搬送経路51と平行な平面内で回転させてもよい。
【0088】
真空槽に導入するH2Oガスの純度が悪いと膜質が悪くなるので、H2Oガスは純水(波長210nm〜400nmの吸光度0.01以下、不揮発物5ppm以下)を用いることが望ましい。特に、水に有機物が含まれると放電特性が悪くなる原因となるので、全有機炭素量は4ppb以下が望ましい。
【0089】
以上は、3電極AC型PDPの第一のパネル10に保護膜14を形成する場合について説明したが、本発明はこれに限定されず、保護膜14は第二のパネル20だけに成膜してもよいし、第一、第二のパネル10、20の両方に成膜してもよい。第二のパネル20に保護膜14を成膜する場合は、少なくとも各アドレス電極25上に保護膜14を配置する。
【実施例】
【0090】
<結晶配向性と膜密度>
図2の成膜装置3を用い、形成した保護膜の(111)強度と充填率の関係を図4のE1〜E4に示す(実施例)。代表的な成膜条件を下記表1に示し、材料室35に導入した水(H2Oガス)の分析結果を下記表2に示す。
【0091】
【表1】

【0092】
【表2】

【0093】
比較例として、H2Oを導入しないで酸素のみを導入して形成した保護膜の(111)強度と充填率の関係を図4のC1〜C3に示す。
尚、充填率(膜密度)は屈折率から求めた。屈折率はエリプソメータで測定した。屈折率をn、充填率(膜密度)をp、空間の屈折率をnv、バルクの屈折率をnsとすると、屈折率nは下記数式(3)で表される。
【0094】
数式(3)…n=(1−p)nv+pns
空間の屈折率nvは通常は空気で1であり、バルクの屈折率はMgO単結晶の場合は1.73であるから、MgOの充填率pは、屈折率から下記数式(4)で求められる。
数式(4)…p=(n−1)/0.73
図4から分かるように、(111)ピーク強度3000CPSのMgO膜の充填率は、比較例では88.7%であったのに対し、実施例のMgO膜では91.1%になり約2.4ポイント改善された。
【0095】
また、充填率90%を得るためのMgO膜の(111)強度は、比較例が2450CPSだったのに対し、実施例は3800CPSであり、約50%以上向上した。
【0096】
以上の結果から、本発明によれば、高膜密度(充填率)と、高い(111)配向性を兼ね備えた保護膜14が形成されることがわかる。充填率が高い程、放電ガスのプラズマに対する耐エッチング性が高いから、本発明により保護膜が成膜されたPDPは寿命が長い。
【0097】
<水導入量と(111)半値幅の関係>
水の導入量を変えて保護膜を成膜した。保護膜の(111)配向ピークの半値幅を求めた。半値幅と水導入量との関係を図5に示す。図5の横軸は水導入量(sccm)、縦軸は半値幅を示しており、半値幅が小さい程結晶性が良いことを示す。本発明によれば、従来よりも、半値幅が40%位改善されており、本発明により成膜された保護膜は結晶性が良いことが確認された。
【図面の簡単な説明】
【0098】
【図1】PDPの一例を説明するための模式的な斜視図
【図2】本発明の成膜装置の一例を示す断面図
【図3】絶対湿度と放出ガス量の関係を表すグラフ
【図4】(111)強度と充填率の関係を示すグラフ(比較例)
【図5】水導入量と(111)半値幅の関係を示すグラフ(実施例)
【符号の説明】
【0099】
3……成膜装置 31……前処理室 32……真空槽 36……蒸発源 41……電子銃 45……流量調整装置 47……キャリア 55a、55b……水導入口 59a、59b……第一、第二の加熱手段 60……搬送対象物 65……制御装置 66……圧力測定装置

【特許請求の範囲】
【請求項1】
キャリアと、前記キャリアに配置された成膜対象物とを有する搬送対象物を、前処理室で予備加熱してから、前記前処理室から真空槽内に搬入し、
設定量のH2Oガスを含有させた前記真空槽の内部空間で、蒸着材料の蒸気を発生させ、前記搬送対象物を、所定の成膜温度になるよう本加熱しながら、当該搬送対象物の前記成膜対象物に薄膜を形成する成膜方法であって、
前記設定量のH2Oガスを前記真空槽の前記内部空間に含有させるのに必要なH2Oガスの必要導入量を予め求めておき、
前記予備加熱の際、前記前処理室の水分圧を測定し、測定した水分圧から、前記搬送対象物が放出するH2Oガスの予測放出量を算出し、
予め求めた前記必要導入量から、前記予測放出量を引いた導入量で、H2Oガスを前記真空槽に導入し、前記蒸着材料の蒸気を発生させる成膜方法。
【請求項2】
前記測定温度と前記成膜温度を同じにする請求項1記載の成膜方法。
【請求項3】
前記蒸着材料に電子線を照射して蒸発させる請求項1又は請求項2のいずれか1項記載の成膜方法。
【請求項4】
前記搬送対象物を、前記真空槽内の搬送経路を搬送して、前記蒸着材料が配置された蒸発源と対面する位置を通過させ、前記蒸着材料の薄膜を形成する請求項1乃至請求項3のいずれか1項記載の成膜方法であって、
前記搬送対象物が、前記搬送経路の前記蒸発源と対面する位置で静止した場合の、前記薄膜の成長速度が、40nm/秒以上になるように前記蒸着材料を蒸発させながら、前記搬送対象物を搬送する成膜方法。
【請求項5】
前記真空槽の水分圧を1×10-1Paを超える圧力にして、前記蒸着材料の蒸気を発生させる請求項1乃至請求項4のいずれか1項記載の成膜方法。
【請求項6】
前記蒸着材料として、MgOを用いる請求項1乃至請求項5のいずれか1項記載の成膜方法。
【請求項7】
前記蒸着材料として、MgOを含有し、SrOとCaOのいずれか一方又は両方が添加された金属酸化物を用いる請求項1乃至請求項5のいずれか1項記載の成膜方法。
【請求項8】
前記成膜対象物に薄膜を成膜した後、当該成膜対象物を前記キャリアから取り外し、
当該キャリアに新たな前記成膜対象物を配置した搬送対象物を、前記予備加熱して水分圧を測定する請求項1乃至請求項7のいずれか1項記載の成膜方法。
【請求項9】
前記前処理室の水分圧を測定した後、
前記前処理室に水を導入し、前記前処理室の内部圧力と前記真空槽の内部圧力との差を小さくしてから、前記前処理室を前記真空槽に接続する請求項1乃至請求項8のいずれか1項記載の成膜方法。
【請求項10】
前処理室と、
前記前処理室内の搬送対象物を予備加熱する第一の加熱手段と、
前記前処理室に接続された真空槽と、
前記真空槽内の前記搬送対象物を成膜温度に本加熱する第二の加熱手段と、
前記真空槽の内部にH2Oガスを導入する水導入口と、
前記真空槽に配置された蒸発源と、
前記蒸発源の蒸着材料を蒸発させる蒸発手段とを有する成膜装置であって、
前記前処理室の水分圧を測定する圧力測定装置と、
前記水導入口からの導入量を変える流量調整装置と、
前記圧力測定装置と、前記流量調整装置に接続された制御装置とを有し、
設定量のH2Oガスを前記真空槽の前記内部空間に含有させるのに必要なH2Oガスの必要導入量を、前記制御装置に設定すると、
前記制御装置は、前記圧力測定装置が測定した水分圧から、前記搬送対象物が放出するH2Oガスの予測放出量を算出し、
設定された前記必要導入量から、前記予測放出量を引いた導入量を引いて、実際の導入量を決定し、
前記流量調整装置は、前記制御装置が決定した前記導入量で、前記水導入口からH2Oガスを導入させる成膜装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−1512(P2010−1512A)
【公開日】平成22年1月7日(2010.1.7)
【国際特許分類】
【出願番号】特願2008−159645(P2008−159645)
【出願日】平成20年6月18日(2008.6.18)
【出願人】(000231464)株式会社アルバック (1,740)
【Fターム(参考)】