説明

成膜装置及び成膜方法

【課題】電池用極板に用いる活物質層等の電子ビーム蒸着における、輻射熱軽減を実現するための成膜装置を提供すると共に、これを用いた生産性、安定性に優れた成膜方法を提供すると共に、これを用いた成膜方法を提供すること。電池用途に限らず、広く真空成膜装置一般における熱負荷課題の解決を図る。
【解決手段】蒸発材料31を保持する容器32の上面の一部を遮蔽する遮蔽板37によって3以上の溶融面領域に分割された溶融領域に選択的に電子ビームが照射される蒸発機構によって成膜を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空中での成膜を行うための成膜装置および成膜方法に関する。
【背景技術】
【0002】
高機能デバイスの実現手段として、薄膜プロセスは広範囲で使用されており、産業構造の一翼を担うに至っている。薄膜設備には高性能化とともに高生産性、低コスト化が求められており、また環境エネルギーの観点から、薄膜プロセスの高効率化、低エネルギー化が推進されている。 代表的薄膜プロセスの一つである真空蒸着法において、生産性を向上するためには蒸発速度および膜堆積速度を高めることが有効である。特に電子ビーム蒸着法の場合、蒸発源に投入する電子ビームパワーを高くすることによって蒸発速度および膜堆積速度を高めることが出来る。
【0003】
例えば高容量負極活物質として開発が盛んなシリコン系材料の薄膜を電子ビーム蒸着法により形成する技術が開示されている(特許文献1)。しかし電子ビーム蒸着法などにより薄膜を形成する際に基板である集電体が高温になる。集電体は一般に圧延などにより加工硬化している金属箔が使用されている。このような金属箔が高温になると、再結晶により引張強さなどの機械的強度が大きく低下し、変形し易くなることが知られている。この課題を解決するため、基板である集電体を冷却することが開示されている(特許文献2)。
【0004】
しかし基板がうける熱負荷の構成要因としては、成膜材料が気相から固相に変化する際の熱エネルギーと、蒸発源からの輻射熱が大きな割合を占める。熱負荷の構成要因の割合は設備の構成配置とプロセス条件によって異なるが、たとえば基板である銅箔上にシリコン系材料を連続蒸着する際に銅箔が受ける熱負荷の中で、輻射熱の占める割合は例えば約50%である。従って銅箔の機械特性低下を防ぐためには輻射熱の低減が望まれていた。
【0005】
特許文献3には蒸気流が坩堝の幅方向に分割された開口部を通過して基板上に被着する情報記録媒体の製造装置が開示されている。図5に概念図を示す。この文献においては、容器32内に蒸発材料31が溶融状態で保持されている。容器32の上には整流板50が設置されている。さらに基板(図示せず)はこの容器の上方に設置されている。この構成によれば、容器の上方に分散する蒸気流成分のみが整流板50を通過して、それ以外の方向へ分散する蒸気流成分を坩堝に環流させることが出来るので、蒸発材料の高効率化を行うことが出来る。同時に蒸発源の直上に複数の遮蔽板を配列することになるので、輻射熱低減の効果もある。
【特許文献1】特開2005−29389号公報
【特許文献2】特開2004−95474号公報
【特許文献3】特開平9−16960号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし特許文献3の構成では基板が受ける輻射熱の大幅な軽減は期待できない。輻射熱は主に蒸発源の溶湯温度と溶湯の上面積によって決定されるが、特許文献3では、遮蔽板を複数設けることによって、蒸発源からの蒸気流は整流されるものの、溶湯の上面積は軽減されていない。そのため輻射熱の大半は直接あるいは遮蔽板に反射して基板に到達するためである。
【0007】
本発明は、前記従来の課題を解決するもので、電子ビーム蒸着法において基板が受ける
輻射熱軽減を実現するための成膜装置を提供することにより、電子ビーム蒸着による成膜装置および成膜方法一般における熱負荷課題の解決を図ることを目的とする。
【課題を解決するための手段】
【0008】
前記従来の課題を解決するために、本発明の成膜装置は、蒸発材料を保持する容器と、前記容器の上面の一部を遮蔽する遮蔽板と、前記容器に保持された蒸発材料とを有し、前記遮蔽板によって3以上の溶融面領域に分割された溶融領域に選択的に電子ビームが照射される蒸発機構を備えたものであり、熱輻射を軽減することが出来る。
【0009】
また、本発明の成膜装置は、前記溶融面領域の少なくとも1ヶ所に前記蒸発材料を供給することができる。
【0010】
また本発明の製造方法は、容器に保持され、溶融状態にある材料に電子ビームを照射して蒸着を行う成膜方法において、前記材料が前記容器の上面の一部を遮蔽する遮蔽板によって3以上の溶融面領域に分割された溶融領域に選択的に電子ビームを照射することを特徴とするものである。
【発明の効果】
【0011】
本発明によれば、蒸発源の表面を小さくすることにより基板が受ける輻射熱の大幅な軽減が可能となる。その結果、基板に対する熱負荷が小さい蒸発機構を備えた成膜装置を構成することができる。
【0012】
また本発明によれば、材料供給を簡単に行うことができる。さらに蒸発物の環流による蒸発変動も生じにくい、遮蔽板に付着した材料が液滴となって蒸発源溶湯内に環流する際の蒸発源温度の変化も起きにくい。そのうえスプラッシュが飛散するといった課題を解決できるため、生産性、安定性に優れた成膜装置を構成することができる。
【発明を実施するための最良の形態】
【0013】
以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。
【0014】
(実施の形態)
図1は本発明の成膜装置の一例を示す上面図および断面図である。図1(a)では成膜目的に応じて選択された蒸発材料31は溶融状態で、容器32に保持されている。容器32の上面の一部は遮蔽板37によって遮蔽されている。蒸発材料31は、電子ビーム41による加熱で溶湯状態となる。この図において溶融面表面は遮蔽板37によって3以上の溶融面領域38に分割されている。また蒸発材料31は遮蔽板37によって分割された溶融面領域以外の部分でつながっている。これによって溶融面領域38の液面レベルを均一にすることが出来る。
【0015】
このようは構成をとることにより、電子ビーム蒸着法において基板が受ける輻射熱軽減を実現する。本発明の構成で熱負荷が低減できるメカニズムは次のように考えられる。輻射熱はシュテファンボルツマンの式で表されるように、温度の4乗、および面積に比例する。また、本発明の構成では遮蔽板によって溶融面領域の面積が低下する。溶融面面積の低下は輻射熱の軽減方向に作用するが、溶融面面積が低下した分、溶融面の単位面積あたりの蒸発速度を高める必要があるので、分割前に比べて溶融面領域の温度は高温とする必要がある。しかしながら、溶融面領域からの蒸発材料の蒸発速度は溶融面温度にきわめて敏感であり、必要な温度上昇はわずかである。従って本発明の構成によれば、温度の4乗に比例する輻射熱上昇を補って余りある輻射熱の低減が可能となる。
【0016】
蒸発材料に高純度を必要としたり、坩堝材との反応を防ぐのが困難であったりする場合
には、図1(a)のように水冷金属ハース33を用いるのが有効である。この中では熱伝導性、加工性、コストの点から水冷銅ハースがもっとも適している場合が多い。銅材料には無酸素銅を用いることがさらに好ましいが、コスト要求に応じて一般の銅材を用いることもある。また、少ない電子ビームパワーで蒸発材料の溶解蒸発をするために図1(b)のような坩堝34を用いるのが有効である。坩堝に用いる材料はアルミナ、マグネシア、ジルコニア、イットリア、窒化ボロン、カーボン、その他の耐高温の材料を用いることができ、高温の蒸発材料と接触するため、高温下での化学的安定性に係る材料の相性を考慮して蒸発材料に応じて選定される。また、坩堝を金属製などの坩堝ケース35に入れて保持することが出来る。また、坩堝ケース35と坩堝34間の固定と熱伝導性を安定させるために、坩堝ケースと坩堝の間に充填剤36を用いることも有効である。充填剤36には坩堝に用いる材料からなる粉体などを用いることが出来る。
【0017】
遮蔽板37は高温にさらされるので水冷金属とすることが有効であり、前述の水冷金属ハース33の場合と同様の理由によって水冷銅を用いることが簡便である。遮蔽板37が蒸発材料31の溶湯と接液することで蒸発材料の湯面温度が低下することを軽減するためには図2のように遮蔽板37を耐高温材39と水冷金属材40の2重構造として、接液部側に耐高温材39を配し、反対側に水冷金属材40を配することも有効である。このような構造とすることによって、蒸発材料31の溶湯温度が遮蔽板37によって低下することが少なくした状態で、蒸発源からの輻射熱を小さくすることが出来る。耐高温材39には坩堝34に用いるのと同様の材料を用いることが出来、具体的にはアルミナ、マグネシア、ジルコニア、イットリア、窒化ボロン、カーボン、その他の耐高温の材料を用いることが出来る。
【0018】
電子ビーム源は様々な構成のものを用いることが出来る。小形の180度偏向型電子銃、270度偏向型電子銃を一台または複数用いることも出来るが、幅広の成膜には直進型の電子銃もしくはこれに90度程度の偏向コイル42を組み合わせたものが電子ビームを幅広く操作することが出来るので適している。
【0019】
遮蔽板によって分割された溶融面領域38の面積を小さくすることが本発明の目指すところであり、溶融面領域38の面積は容器開口部の50%以下とすることが望ましい。溶融面領域38の分割を3以上とすることは、分割された溶融面領域38に入射する電子ビーム41のパワー調整を行うことで、溶融面領域37の分割による成膜幅方向43の膜厚分布が発生するのを防止することが出来るので有効である。分割された溶融面領域38の形状が小さい方が輻射熱を小さくできるので、電子ビームの絞りを良くしておくことは重要である。分割された溶融面領域38の形状は、例えば円形、楕円、矩形、多角形やそれらの組み合わせ形状その他である。
【0020】
一部の溶融面にはその上方に差し向けられた供給材料44が配されている。供給材料44を容器32中に供給する方法は様々であり、供給材料44の形状も使用する蒸発材料の種類によって適宜選択され、ワイヤー状、粒状、ペレット状、棒状などの形の供給材料44を用いることが出来る。固体供給の場合にはこれらの供給材料を容器32に供給し、溶解状態にある蒸発材料31と溶解混合させる。溶解供給の場合には、移動方向46に沿って移動する供給材料44は電子ビーム41によって溶解され、液体となって溶融状態の蒸発材料31を保持する容器32中に滴下混合する。固体供給に比べて溶解供給の方が供給材料44が高温になるので、材料の供給による蒸発源温度変化を小さくするには溶解供給の方が好ましい。
【0021】
本発明の成膜装置を用いて電池極板を形成する場合について、図3および図4を用いて簡単に述べる。図3及び図4で、真空槽2は、真空ポンプ1によって減圧排気されている。真空槽2の真空度は例えば0.0005〜0.2Paの範囲で適宜選択される。真空槽
2の中には、蒸発源9と、基板20の搬送系が設置されている。搬送される基板20の幅は例えば100〜1000mmの範囲で適宜選択される。搬送される基板20は例えば銅、ニッケル、チタン、SUS、アルミニウムから選択される。基板20の重量厚みは例えば3〜50ミクロンの範囲で適宜選択される。必要に応じて、基板20の表面に凹凸を設けたものを使用することも可能である。基板搬送系は、巻き出しロール8、搬送ローラー5、キャン6、巻き取りロール3、テンション検出機構(図示せず)等から構成されている。搬送系の一部、例えば駆動用モーター等は真空槽2の外に配置し、回転導入端子を介して駆動力を真空槽2中に導入しても良い。巻き出しロール8から巻出された基板20は基板搬送系に沿って搬送される。搬送速度は例えば0.05〜100m/分の範囲から適宜選択される。蒸発源9とキャン6の間には開口部を有する遮蔽板10が設置されており、蒸発源9から飛来した粒子の一部が開口部を経由して基板20上に付着して活物質層を形成する。成膜は図3のように基板20がキャン6に沿った状態で行っても良く、また図4のように搬送系の途上で行っても良く、そのほかの方式も適宜選択される。成膜を施された基板4は巻き取りロール3に巻き取られる。成膜厚みは例えば3〜30ミクロンの範囲で適宜選択され、前記成膜厚みを一回の基板搬送中に完了してもよく、繰り返し搬送で分割して形成しても良い。キャン6は冷媒の循環機構によって冷却されている。蒸発源9は先に述べたように、蒸発材料31を保持する容器32と、前記容器の上面の一部を遮蔽する遮蔽板37とを有し、前記遮蔽板37によって3以上に分割された溶融面領域38に選択的に電子ビーム41が照射される蒸発機構を備えている。容器32の大きさは、例えば基板走行方向45の内寸が例えば50〜300mmの範囲で適宜選択され、成膜幅方向の内寸が例えば基板幅の1〜3倍の範囲で適宜選択され、深さ方向の内寸が例えば30〜200mmの範囲で適宜選択される。遮蔽板37による、容器32の上面開口部の遮蔽率は例えば50〜95%の範囲で適宜選択される。電子ビーム41の加速電圧は例えば−6〜−40kVの範囲から適宜選択される。基板20として銅箔を用い、蒸発源9に保持する蒸発材料としてシリコンを用いることでリチウムイオン2次電池の負極板を形成することが出来る。成膜時にガス導入管11より酸素ガスを導入してシリコン酸化物薄膜とすることも出来る。
【0022】
シリコン系材料はリチウムの吸蔵量が多く、高容量負極として有望であるが、リチウムの吸蔵放出時に大きな膨張収縮を発生するので、集電体である銅箔に大きな応力がかかりやすく、これによって極板の変形が生じると、繰り返し充放電特性が低下するが、本発明の成膜装置及び成膜方法によれば成膜時の熱負荷による銅箔の機械特性低下を軽減できるので、高容量負極の実現に有効である。
【0023】
また、リチウムイオン2次電池以外にも、磁気記録媒体、太陽電池、コンデンサ等においても基板材料、蒸発材料、その他成膜条件を適宜変更することで本発明の成膜装置による輻射熱の低減が可能である。
【産業上の利用可能性】
【0024】
本発明にかかる成膜装置及び成膜方法によれば、幅広高速電子ビーム蒸着に代表される、蒸発源の熱輻射を軽減することが出来る。その結果、基板への熱負荷を軽減できるので、広く電子ビーム蒸着法による成膜装置及び成膜方法として有用である。
【図面の簡単な説明】
【0025】
【図1】本発明の、成膜装置の一例を示す概念図、(a)水冷金属ハースを用いる場合の図、(b)坩堝を用いる場合の図
【図2】本発明の、成膜装置の一例を示す概念図、(a)水冷金属ハースを用いる場合の図、(b)坩堝を用いる場合の図
【図3】本発明の、成膜装置の一例を示す概念図
【図4】本発明の、成膜装置の一例を示す概念図
【図5】従来の、成膜装置の一例を示す概念図
【符号の説明】
【0026】
1 真空ポンプ
2 真空槽
3 巻き取りロール
4 電子銃
5 搬送ローラー
6 キャン
8 巻き出しロール
9 蒸発源
10 遮蔽板
11 ガス導入管
20 基板
31 蒸発材料
32 容器
33 水冷金属ハース
34 坩堝
35 坩堝ケース
36 充填剤
37 遮蔽板
38 溶融面領域
39 耐高温材
40 水冷金属材
41 電子ビーム
42 偏向コイル
43 成膜幅方向
44 供給材料
45 基板走行方向
50 整流板

【特許請求の範囲】
【請求項1】
蒸発材料を保持する容器と、前記容器の上面の一部を遮蔽する遮蔽板と、前記容器に保持された蒸発材料とを有し、前記遮蔽板によって3以上の溶融面領域に分割された溶融領域に選択的に電子ビームが照射される蒸発機構を備えた成膜装置。
【請求項2】
前記遮蔽板により、前記容器上面開口部の50%以上が遮蔽されていることを特徴とする請求項1記載の成膜装置。
【請求項3】
前記溶融面領域の少なくとも1ヶ所に前記蒸発材料を供給することを特徴とする請求項1記載の成膜装置。
【請求項4】
容器に保持され、溶融状態にある材料に電子ビームを照射して蒸着を行う成膜方法において、
前記材料が前記容器の上面の一部を遮蔽する遮蔽板によって
3以上の溶融面領域に分割され、
前記溶融面領域に選択的に電子ビームを照射することで
前記材料が溶解されることを特徴とする成膜方法。
【請求項5】
前記材料としてシリコンを用い、銅箔基板に成膜を行うことにより、電池用極板を製造する請求項4記載の成膜方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2008−195979(P2008−195979A)
【公開日】平成20年8月28日(2008.8.28)
【国際特許分類】
【出願番号】特願2007−29993(P2007−29993)
【出願日】平成19年2月9日(2007.2.9)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】