説明

欠陥の検出装置、検出方法およびコンピュータを当該検出装置として機能させるためのプログラム

【課題】放射状に生じる直線状の欠陥を検出できる画像処理検査装置を提供する。
【解決手段】画像処理検査装置の演算部143は、検査領域に対応する画像データを取得する取得部203と、画像データを直交座標系から極座標系のデータに変換する極座標変換部204と、半径方向の直線を強調するフィルタ処理を実行するフィルタ処理部206と、半径方向に表示される直線の平滑化を行なう平滑化処理部208と、2値化基準に基づいて平滑化された画像データの2値化処理を行なう2値化処理部210と、2値化処理された画像データから、抽出基準を満足する画像データを欠陥の候補として抽出する抽出部212と、極座標系のデータを直交座標系に変換する直交座標変換部214と、直交座標系のデータに基づいて欠陥の候補の特徴量を算出する算出部216と、判定基準と特徴量とに基づいて欠陥の候補が欠陥であるか否かを判定する欠陥判定部218とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検査物を撮像した画像から欠陥を検出する技術に関する。本発明は、より特定的には、半導体ウェハ及び液晶パネルのマクロ検査において、放射状の欠陥を検出する技術に関する。
【背景技術】
【0002】
半導体ウェハや液晶基板の製造工程に関し、基板上にレジストを塗布し露光機によりレジストに回路パターンを転写して現像するリソグラフィ工程において、露光機上に異物が付着した場合、レジストの塗布量のムラがあった場合、あるいは基板表面に異物が付着した場合、正常に回路パターンが転写されないことがある。
【0003】
回路パターンが正確にレジストに転写されていないまま基板を現像し、次工程のエッチング工程で液晶基板をエッチングすると、修正不可能な欠陥が液晶基板に形成される。そのため、欠陥の有無の検査が、エッチング工程前に行なわれている。
【0004】
エッチング工程前の検査では、照明が基板の表面に当てられ、その干渉光、回折光、散乱光が目視により検査され、または基板をカメラで撮像されて生成された画像に基づく画像検査が行なわれる。特に、カメラで撮像されて生成された画像については、コンピュータによる画像処理を行ない、回路パターンが正確に転写されていない部分を欠陥として検出し、そして、画像の様子から欠陥の原因を特定する画像検査装置が、実用に供されている。
【0005】
当該装置が、欠陥を検出して分類する場合、画像内の濃淡の基準より高い部分や低い部分、濃淡勾配の高い部分、基準画像との差分の大きい部分などを抽出する。抽出された部分が連続している領域について、当該装置は、複数の特徴量を算出し、特徴量に基づきクラスタリング等の手法を用いて領域を分類し、欠陥の種類や擬似欠陥を特定する。
【0006】
欠陥を分類するために通常使用される特徴量には、粒子解析で用いられる計測値、たとえば、面積、最大最低濃度、平均濃度、濃度の標準偏差、最大最小フェレ径、最大フェレ径角度、最大最小フェレ径比率などがある。
【0007】
ところで、前述のリソグラフィ工程においては、レジストを塗布する際に、基板を回転させ基板中心にレジストを滴下し、遠心力により基板全面に均一に塗布するスピンコータがよく利用されている。
【0008】
スピンコータでレジストを塗布する際に、レジストの塗布量が少ない場合、あるいは粘度が高い場合、レジストは基板に均一に塗布されず、塗布されない領域や、塗布量の少ない領域が生じることがある。レジストの塗布が回転している基板に対して行なわれるため、塗布の欠陥は、スピンコータの回転中心から放射方向に伸びた線状に発生することが多い。
【0009】
欠陥の検出に関し、たとえば特開2003−168114号公報(特許文献1)は、検出した領域について、通常の粒子解析の計測値に加え、検出した領域を極座標変換し連結処理を行うことにより線欠陥を検出する欠陥分類装置を開示している。
【0010】
また、特開2004−219072号公報(特許文献2)は、エッチング工程前検査に用いることのできる欠陥検査装置を開示している。この装置は、複数縮小サイズ画像について、複数の方向の線強調フィルタ処理によって検出された領域について、線強調画像の濃度平均等の統計量を用いて線欠陥を検出する。
【特許文献1】特開2003−168114号公報
【特許文献2】特開2004−219072号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
ところで、半導体ウェハまたは液晶パネルに関し、コストダウンの要求が高まっているため、レジストの使用量を削減したいという要請がある。しかし、レジストの使用量を削減すると、前述のような放射方向の塗布不良が発生しやすくなる。そのため、欠陥にならない程度のレジストの使用量を見極める必要がある。
【0012】
欠陥にならない程度の塗布ムラは、欠陥になる塗布ムラに比べて、一般的に撮像した画像のコントラストが低い。このような塗布ムラを検出することが検査装置に求められている。
【0013】
しかしながら、特開2003−168114号公報に開示された欠陥分類装置によれば、濃淡値から予め検出された領域について連結処理が行なわれる。そのため、低コントラストの欠陥の場合、誤検出なく検出することができないという問題があった。
【0014】
また、特開2004−219072号公報に開示された技術によれば、フィルタ処理によって線強調された画像から、濃度の平均値、標準偏差等を用いて欠陥領域が抽出される。このような方法で低コントラストの線欠陥を検出した場合、コントラストの微小な変動により、検出領域が分断され、正確な検出ができない場合があった。また、コントラストの変動により実際の欠陥の強度とは異なる判定をしてしまうという問題があった。
【0015】
本発明は、上述の問題点を解決するためになされたものであって、その目的は、低コントラストな線状の欠陥を検出できる検出装置を提供することである。
【0016】
本発明の他の目的は、コントラストの変動があっても正確な強度で欠陥を検出できる放射状欠陥の検出装置を提供することである。
【0017】
本発明の他の目的は、低コントラストな線欠陥を検出できる放射状欠陥の検出方法を提供することである。
【0018】
本発明のさらに他の目的は、コントラストの変動があっても正確な強度で欠陥を検出できる放射状欠陥の検出方法を提供することである。
【課題を解決するための手段】
【0019】
上記の課題を解決するために、この発明のある局面に従う欠陥の検出装置は、予め定められた回転軸を中心に回転する間に処理が施された被検査物の撮影に基づいて生成されたデータの入力を受ける入力手段と、データから予め定められた検査領域に対応する画像データを取得する取得手段とを備える。画像データは、直交座標系で表わされている。この検出装置は、さらに、画像データを極座標系のデータに変換する第1の変換手段と、極座標系により表わされる画像データに対して、回転軸に対応する回転中心から半径方向の直線を平滑化する平滑化処理手段と、平滑化後の画像データを、直交座標系のデータに変換する第2の変換手段と、第2の変換後の直交座標系により表される画像データに基づいて、被検査物の表面における欠陥の候補を抽出する抽出手段と、直交座標系に変換後の画像データに基づいて、欠陥の候補の特徴量を算出する特徴量算出手段と、予め定められた判断基準と特徴量とに基づいて、欠陥の候補が欠陥であるか否かを判断する判断手段と、判断手段による判断の結果を出力する出力手段とを備える。
【0020】
好ましくは、平滑化処理手段は、極座標系により表わされる画像データに対して、半径方向の直線を強調するためのフィルタ処理を実行するフィルタ手段と、フィルタ処理後の画像データに基づいて、半径方向の直線の平滑化を行なう手段とを含む。抽出手段は、予め定められた二値化基準に基づいて、平滑化後の画像データの二値化処理を行なう二値化手段と、二値化処理後の画像データから、予め定められた抽出基準を満足する画像データを欠陥の候補として抽出する手段とを含む。第2の変換手段は、フィルタ処理後の画像データと、平滑化後の画像データとを、直交座標系のデータに変換する手段を含む。
【0021】
好ましくは、平滑化処理手段は、半径方向の直線の平滑化を行なった画像に対し、さらに半径方向の最大値フィルタ処理を実行する。
【0022】
好ましくは、判断手段は、特徴量に基づいて、欠陥の候補についての欠陥の程度を表わす欠陥強度を算出する強度算出手段と、判断基準と欠陥強度とに基づいて、欠陥の候補が欠陥であるか否かを判断する手段とを含む。
【0023】
好ましくは、検出装置は、直交座標系のデータに変換後の画像データに基づいて、欠陥の候補が予め定められた算出条件を満足するか否かを判断する条件判断手段と、欠陥の候補が算出条件を満足する場合に新たな特徴量を算出する手段とをさらに備える。
【0024】
好ましくは、特徴量算出手段は、欠陥の候補の濃度値の平均値と、濃度値の変化率とを算出する変化率算出手段を含む。強度算出手段は、平均値と変化率とに基づいて強度を算出する。
【0025】
好ましくは、特徴量算出手段は、直交座標系のデータに変換後のデータに基づいて、欠陥の候補の領域の幅を細くする細線化処理を行なう手段をさらに含む。変化率算出手段は、細線化処理後の欠陥の候補についての平均値と変化率とを算出する。
【0026】
この発明の他の局面に従うと、欠陥の検出方法が提供される。この検出方法は、予め定められた回転軸を中心に回転する間に処理が施された被検査物の撮影に基づいて生成されたデータの入力を受けるステップと、データから予め定められた検査領域に対応する画像データを取得するステップとを備える。画像データは、直交座標系で表わされている。この方法は、画像データを極座標系のデータに変換するステップと、極座標系により表わされる画像データに対して、回転軸に対応する回転中心から半径方向の直線を平滑化するステップと、平滑化後の画像データを、直交座標系のデータに変換するステップと、直交座標系に変換後の画像データに基づいて、被検査物の表面における欠陥の候補を抽出するステップと、直交座標系に変換後の画像データに基づいて、欠陥の候補の特徴量を算出するステップと、予め定められた判断基準と特徴量とに基づいて、欠陥の候補が欠陥であるか否かを判断するステップと、判断ステップによる判断の結果を出力するステップとを備える。
【0027】
この発明のさらに他の局面に従うと、コンピュータを欠陥の検出装置として機能させるためのプログラムが提供される。このプログラムは、コンピュータに、予め定められた回転軸を中心に回転する間に処理が施された被検査物の撮影に基づいて生成されたデータの入力を受けるステップと、データから予め定められた検査領域に対応する画像データを取得するステップとを実行させる。画像データは、直交座標系で表わされている。さらに、プログラムはコンピュータに、画像データを極座標系の画像データに変換するステップと、極座標系により表わされる画像データに対して、回転軸に対応する回転中心から半径方向の直線を平滑化するステップと、平滑化後の画像データを、直交座標系のデータに変換するステップと、直交座標系に変換後の画像データに基づいて、被検査物の表面における欠陥の候補を抽出するステップと、直交座標系に変換後の画像データに基づいて、欠陥の候補の特徴量を算出するステップと、予め定められた判断基準と特徴量とに基づいて、欠陥の候補が欠陥であるか否かを判断するステップと、判断ステップによる判断の結果を出力するステップとを実行させる。
【発明の効果】
【0028】
本発明によると、低コントラストな線状の欠陥を検出することができる。また、本発明によると、コントラストの変動があっても正確な強度で放射状に形成された欠陥を検出することができる。
【発明を実施するための最良の形態】
【0029】
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
【0030】
図1を参照して、本発明に係る画像処理検査装置140を備える検査システム100について説明する。図1は、検査システム100のシステム構成の概略を表わす図である。
【0031】
検査システム100は、照明部120と、撮像部130と、画像処理検査装置140と、ディスプレイ150とを含む。画像処理検査装置140は、画像入力部141と、記憶部142と、演算部143と、出力部144と、入力部145とを含む。
【0032】
検査システム100には、被検査基板110が搬入され、予め定められた位置に装着される。被検査基板110は、たとえば予め定められた回転軸を中心に回転駆動され、その間に予め定められた加工処理(たとえばレジストの塗布等)が行なわれている。たとえばレジストが塗布された場合には、その塗布は、回転軸の中心から外周方向に対して行なわれる。したがって、この場合、被検査基板110の表面には、回転軸の中心から放射状にレジストが塗布されている。
【0033】
照明部120は、画像処理検査装置140からの信号に基づいて、当該位置に装着された被検査基板110に対して、予め設定された強度を有する光を照射する。照射される光は、たとえば一般白色光である。撮像部130は、被検査基板110からの反射光を受光して撮影し、画像データとして画像処理検査装置140に出力する。撮像部130は、たとえばCCD(Charge Coupled Device)カメラにより実現される。
【0034】
撮像部130から出力された画像データは、画像入力部141を介して入力され、記憶部142において確保されている領域に格納される。記憶部142は、たとえばハードディスク装置、フラッシュメモリ等により実現される。記憶部142におけるデータの格納の態様は後述する。また、一時的にデータを格納することで処理の高速化を図るために、一時的に生成されるデータは、RAM(Random Access Memory)その他の揮発性のメモリに格納されてもよい。
【0035】
演算部143は、記憶部142に格納されている画像データと予め設定されているデータとに基づいて、予め定められた画像処理を実行する。演算部143は、いわゆるCPU(Central Processing Unit)と称される演算制御装置が予め準備されたプログラムを実行することにより実現される。あるいは、演算部143は、当該プログラムにより実現される処理を実行するために構成された回路、たとえばFPGA(Field Programmable Gate Array)等によって実現されてもよい。
【0036】
出力部144は、演算部143により生成されたデータをディスプレイ150に出力する。ディスプレイ150は、そのデータに基づいて画像を表示する。ディスプレイ150は、たとえば原画像と、画像処理に基づいて検出された放射状の塗布ムラが含まれる欠陥の画像とを表示する。
【0037】
入力部145は、外部から、データあるいは指示の入力を受ける。入力部145は、たとえばディスプレイ150の表面に装着されるタッチパネル、キーボード、マウスその他のポインティングデバイス等により実現される。
【0038】
図2を参照して、本発明に係る検査システム100を実現する画像処理検査装置140について説明する。図2は、画像処理検査装置140の機能的構成を表わすブロック図である。
【0039】
画像処理検査装置140は、データの入力を受けるデータ入力部202と、データを格納する記憶部142と、後述する画像処理を実現するための演算部143と、演算部143により算出される結果を出力する結果出力部220とを備える。入力されるデータは、予め定められた回転軸を中心に回転する間に処理が施された被検査物の撮影により生成されたデータである。処理は、たとえば、基板にレジストを塗布する処理である。回転軸は、レジストを塗布する処理に使用される、いわゆるスピンコータにおける回転軸である。
【0040】
演算部143は、入力されたデータから、予め定められた検査領域に対応する画像データを取得する取得部203と、直交座標系により表わされている当該画像データを極座標系のデータに変換する極座標変換部204と、極座標系により表わされる画像データに対して半径方向の直線を強調するためのフィルタ処理を実行するフィルタ処理部206と、半径方向に表示される直線の平滑化を行なうための平滑化処理部208とを備える。
【0041】
演算部143はさらに、予め定められた2値化基準に基づいて平滑化された画像データの2値化処理を行なうための2値化処理部210と、2値化処理された画像データから、予め定められた抽出基準を満足する画像データを被検査物の表面における欠陥の候補として抽出する抽出部212と、極座標系により表わされるデータを直交座標系のデータに変換するための直交座標変換部214と、直交座標系により表わされたデータに基づいて当該欠陥の候補の特徴量を算出する算出部216と、予め定められた判定基準と算出された特徴量とに基づいて、当該欠陥の候補が欠陥であるか否かを判定する欠陥判定部218とを含む。
【0042】
好ましくは、算出部216は、直交座標系のデータに変換された画像データに基づいて当該欠陥の候補が予め定められた条件を満足するか否かを判断する。算出部216は、当該欠陥の候補がその条件を満足する場合に、特徴量を算出する。
【0043】
また、好ましくは、算出部216は、欠陥の候補の濃度値の平均値と、濃度値の変化率とを算出する。変化率は、以下の説明における変動係数に対応する。算出部216は、さらにその平均値と変化率とに基づいて特徴量を算出する。
【0044】
さらに、好ましくは、直交座標変換部214は、フィルタ処理された後の画像データと平滑化処理された後の画像データとを、直交座標系のデータに変換する。
【0045】
また、演算部143における処理は、上記の順序に限られない。一例として、本実施の形態の別の局面に従うと、直交座標変換部214は、平滑化処理部208によって平滑化された後の画像データを、当該直交座標系の画像データに変換する。抽出部212は、直交座標系によって表わされる当該画像データから、予め定められた抽出基準を満足する画像データを、被検査物の表面における欠陥の候補として抽出する。この場合の抽出基準は、直交座標系の画像データに関連するデータであって、たとえば、直交座標空間における欠陥候補の特徴量である。
【0046】
図3を参照して、画像処理検査装置140のデータ構造について説明する。図3は、記憶部142におけるデータの格納の一態様を表わす図である。
【0047】
外部から入力された画像データすなわち原画像データは、領域310に格納されている。画像処理の検査を行なうために予め設定された回転中心を表わす座標は、領域320に格納されている。この座標は、検査の対象となる領域における、被検査基板110に対して加工処理を行なった装置(たとえば、スピンコータ)の回転軸の座標を表わすものである。
【0048】
2値化処理の基準として予め設定された第1の閾値は、領域330に格納されている。欠陥の候補が欠陥であるか否かを判断するための第2の閾値は、領域340に格納されている。
【0049】
直交座標系により表わされた領域が処理の対象であるか否かを判断するための第1の条件は、領域350に格納されている。この条件は、たとえば、抽出された領域の長さ、長さと幅の比率、回転中心から当該領域の重心位置への角度と主軸角度との差が予め定められた値の範囲内にあるか否か等である。演算部143による各処理を実現するための検査プログラムは、領域360に格納されている。
【0050】
図4〜図6を参照して、被検査物の撮影により生成された画像データについて説明する。図4は、被検査物の画像420に関し、放射状に形成された塗布ムラを表わす図である。
【0051】
被検査画像420において、回転中心410は、被検査基板110に対する処理を行なうときに回転の基準とされた中心に対応する。被検査画像420は、放射状に形成された塗布ムラ430,440,450を含む。
【0052】
図5は、図4に示される撮像画像を極座標に変換した後の状態を表わす図である。極座標への変換は、図4に示される回転中心410を基準として行なわれる。この場合、画像は、回転中心410に対する角度と回転中心からの距離とに基づく座標により表現される。
【0053】
塗布ムラ530は、図4における塗布ムラ430に対応する。同様に、塗布ムラ540は、塗布ムラ440に対応する。また、塗布ムラ550は、塗布ムラ450に対応する。
【0054】
なお、直交座標系により表わされたデータを極座標系のデータに変換するための処理は、当業者にとって容易に理解できるものである。したがって、ここではその詳細な説明は繰り返さない。
【0055】
図6は、極座標に変換された画像に関し、放射状の塗布ムラの領域を抽出するために、直線を強調する処理を行なった後の画像を表わす図である。直線の強調は、直線と直交する方向の濃淡の変化(コントラスト)を求め、濃度の高い部分を予め定められた第1の閾値で2値化処理することにより行なわれる。
【0056】
領域630は、図5に示される塗布ムラ530に対応する。同様に、領域640は、塗布ムラ540に対応する。また、領域650は、塗布ムラ550に対応する。
【0057】
次に、図7を参照して、画像処理検査装置140の制御構造について説明する。図7は、演算部143が実行する処理の手順を表わすフローチャートである。画像処理検査装置140がコンピュータシステムによって実現される場合には、以下の処理は、コンピュータシステムに予め格納されているプログラムが実行されることにより実現される。あるいは、画像処理検査装置140が各処理を実行するための回路を組み合わせた装置のようにハードウェアとして構成される場合には、以下の処理は、各回路が作動することにより実現される。
【0058】
ここで、ステップS702〜S715までの処理によって、特徴量を算出するために必要な値が順次算出され、ステップS720以降の処理において、当該値に基づいて特徴量が算出される。
【0059】
ステップS702にて、演算部143は、予め定められた回転軸を中心に回転する間に処理が施された被検査物の撮影により生成されたデータの入力を受け、そして、そのデータから、予め定められた検査領域に対応する画像データを抽出する。この画像データは、たとえば図4に示されるように、直交座標系により表わされている。
【0060】
ステップS704にて、演算部143は、直交座標系により表わされている当該画像データを極座標系のデータに変換する。変換後のデータに基づいて表示される画像は、たとえば図5に示されるものとなる。
【0061】
ステップS706にて、演算部143は、極座標系に変換されたデータに基づいて直線を強調するための処理を実行する。処理後のデータに基づいて表示される画像は、たとえば図6に示されるものとなる。
【0062】
ステップS708にて、演算部143は、強調処理が完了したデータに基づいて当該回転中心から半径方向の直線を平滑化するための処理を行なう。
【0063】
ステップS710にて、演算部143は、予め定められた2値化基準(図3における領域330)に基づいて平滑化後の画像データの2値化処理を行なう。ステップS712にて、演算部143は、極座標系により表わされている当該2値化後のデータを、直交座標系のデータに変換する。
【0064】
ステップS714にて、演算部143は、直交座標系に変換されたデータから予め定められた抽出基準に基づいて欠陥の候補である領域を抽出し、各領域に対し各々の領域を識別するためのラベルを付与するラベリング処理を実行する。ここでは、たとえばラベル付けされた領域として領域Ai(i:1〜n)が取得される。
【0065】
ステップS715にて、演算部143は予め設定されている第1の条件を準備する。すなわち、演算部143は、記憶部142の領域350から第1の条件を読み出して、当該プログラムが実行される領域に保存する。
【0066】
ステップS716にて、演算部143は、各々の領域Aiについて、i=1からi=nまで、以下の処理を反復する。ステップS718にて、演算部143は、領域Aiが予め定められた第1の条件に合致するか否かを判断する。領域Aiがその条件に合致する場合には(ステップS718にてYES)、処理はステップS720に移される。そうでない場合には(ステップS718にてNO)、処理はステップS716に戻され、次の領域Ai+1についての処理が繰り返される。
【0067】
ステップS720にて、演算部143は、領域Aiについての濃度値を算出し、さらに濃度値の平均値を算出し、標準偏差を算出する。濃度値の平均値と標準偏差とは、領域Aiの特徴量として、以下の処理において使用される。
【0068】
ステップS722にて、演算部143は、領域Aiに対して予め設定された細線化処理を行なう。演算部143は、この処理により生成された領域Liに対応する変動係数、たとえば、直交座標系に変換された直線が強調された画像の濃度値の変動係数を算出する。この変動係数は、領域Aiの特徴量となる。
【0069】
ステップS726にて、演算部143は、濃度値の平均値と標準偏差と変動係数とに基づいて、領域Aiの欠陥強度を算出する。たとえば演算部143は、領域Aiの長さと平滑化後の当該平均値の二乗と変動係数の二乗の積とにより、欠陥強度を算出する。
【0070】
ステップS728にて、演算部143は、領域Aiが欠陥であるか否かを判断する。この判断は、予め設定された第2の閾値(図3における領域340)に基づいて行なわれる。この判断の区分は、たとえば領域Aiを欠陥の記録として残さないレベル、記録に残すレベル、注意を促すレベル、不良と判断するレベルの4つのレベルを含む。この場合、各区分に対応する判断のための閾値が第2の閾値として用いられる。このような判断では、たとえば欠陥の記録として残さないレベル以外のレベルは、後述するように欠陥テーブルに格納される。このようにすると、たとえば被検査基板110の検査をバッチ処理とすることにより特定のロットについて行なった後、当該ロットについての検査の結果をまとめて分析することも可能になる。なお、判断の区分として、上記以外に他の区分が使用されてもよい。また、区分の数は上記のものに限られない。
【0071】
ステップS732にて、演算部143は、すべての領域の検査が終了したか否かを判断する。この判断は、たとえば各領域に付与されたラベルを用いて、処理の完了時にその処理が完了したラベルを逐次記録しておき、処理の前に付加されたラベルと処理が完了したラベルとを比較することにより行なわれる。すべての領域の検査が終了している場合には(ステップS732にてYES)、処理は終了する。そうでない場合には(ステップS732にてNO)、処理はステップS716に戻され、次の領域Aiの処理が行なわれる。
【0072】
次に、図8〜図15を参照して、画像処理検査装置140における画像の変化について説明する。図8は、予め定められた回転軸を中心に回転する間に処理が施された被検査物を撮像した画像から、検査の対象となる領域として予め指定された検査領域に応じて抽出された画像を表わす図である。図9は、図8に示される画像のデータを直交座標から極座標に変換した図を表わす。図10は、図9に示される画像のデータに対して平滑化処理を行なった後の図を表わす。
【0073】
図8に示されるように、抽出された画像には、放射状の塗布ムラを撮像した際に、様々な要因により斑状の模様880a,880bが映り込んでいる。このような模様は、光学的な影響で背景に映る場合がある。
回転中心810は、被検査物に対して処理を行なう装置における回転軸に対応する。被検査画像820において、斑状の背景に加えて、放射状に形成された3つの塗布ムラ830,840,850が撮影されている。この画像に対して、たとえば回転中心810を基準とした極座標変換が行なわれ、予め定められた抽出処理が実行されると、図9に示される画像が得られる。
【0074】
すなわち、極座標系に変換された画像は、回転中心810(たとえば、スピンコータの回転軸に相当)を原点とし、縦軸に半径方向、横軸に角度方向となる画像によって表現される。極座標系により表わされた画像に対し、背景方向(縦軸)の直線方向のエッジのみを強調する処理を行なうと、図9に示されるように、直線強調後の画像が得られる。
【0075】
ここで直線を強調する処理は、角度方向(縦軸)の濃度値の差分を算出することにより、その差分に従って予め設定された閾値に基づいて行なわれる。閾値として使用されるフィルタサイズは、解像度、検出する放射状の塗布ムラの大きさなどから予め定められるものである。
【0076】
図9において、画像930は、図8における塗布ムラ830に対応する。画像930は、塗布ムラ830に含まれる斑状の模様890により、遮断されている。同様に、画像940は、塗布ムラ840に対応する。画像950は、塗布ムラ850に対応する。
【0077】
直線強調後の画像に対して半径方向に平滑化処理を行なうと、図10に示される画像が得られる。ここで平滑化処理は、対象とする点と平滑化する方向の近傍の点の濃度値の平均値を対象とする点の濃度値とするものである。また近傍として用いられるデータは、塗布ムラを連結したい幅に応じて予め定められる。あるいはディスプレイ150に表示される画像に基づいて近傍のサイズを変更可能であってもよい。
【0078】
図10を参照して、画像1030,1040,1050は、それぞれ図9に示される画像を平滑化したものである。画像1030は、図9における画像930に対応する。同様に画像1040は、画像940に対応する。画像1050は、画像950に対応する。
【0079】
このようにして平滑化された画像に対して予め定められた閾値に基づいて2値化処理を行なうと、放射状に形成された塗布ムラの領域が抽出される(図11)。ここで2値化処理のための閾値は、たとえば放射状に形成された塗布ムラの平滑化後の画像の濃度値に基づいて定められる。
【0080】
図11に示されるように、3つの塗布ムラが、画像1130,1140,1150として抽出されている。画像1130は、図10に示される画像1030に対応する。この場合、平滑化処理によって、図10に示される画像において分割されていた領域が連結されている。同様に、画像1140は、画像1040に対応する。画像1040の凸部が平滑化されている。また、画像1150は、画像1050に相当する。画像1150も、画像1130と同様に、2値化処理のための閾値を用いた抽出によって、遮断されていた領域が結合された形で表示される。
【0081】
このようにして抽出された領域は、極座標系のデータにより表わされている。当該領域の面積、線あるいは幅は、直交座標系のデータにより表わされるものと異なるため、領域の特徴量を算出することはできない。そこで、演算部143は、抽出された領域の座標系と、直線を強調した後の画像との座標系とを、極座標系から直交座標系に変換する処理を行なう。演算部143は、直交座標系のデータに基づいて、領域の形状に関する長さ、幅、面積等の特徴量と、当該領域に対応する直線強調後の画像の濃度値の平均値、標準偏差等の特徴量とを算出する。
【0082】
ここで、図12〜図15を参照して、極座標系のデータから直交座標系のデータに変換した後の処理について説明する。図12〜図14は、極座標系により表わされていた画像を直交座標系に変換した図をそれぞれ表わす。図12は、抽出画像を表わし、図11に示される画像に対応する。
【0083】
図12に示される直交座標系により表わされた抽出画像が取得されると、演算部143は、ラベリング処理を実行する。ここではラベル付けされた領域Aiとして領域1230,1240,1250が識別される。このラベル付けにより、各領域がそれぞれ特定されることになるため、図7に示される処理においても、各々の領域についての処理(ステップS718〜ステップS732)が実行可能になる。
【0084】
図13は、直線方向(回転中心1310の半径方向)に強調された画像を表わし、図9に示される画像に対応する。図13に示される画像は、画像処理後の画像であり、前述の濃度値の変動係数を算出するために用いられる。
【0085】
図14は、平滑化後の画像を表わし、図10に示される画像に対応する。図14に示される画像は、濃度値と、濃度値の平均値と、標準偏差との算出に用いられる。この結果に基づいて領域1430〜1450の特徴量が、それぞれ算出される。
【0086】
図15を参照して、抽出された領域の細線化について説明する。図15は、直交座標系により表わされた放射状塗布ムラ領域を細線化することにより取得された画像を表わす。
【0087】
このような画像として表わされるデータが取得されると、演算部143は、当該データに対応する細線化領域における直線強調後の画像の濃度値の標準偏差を濃度の平均値で除した値(すなわち変動係数)を算出する。この値が、放射状に形成された塗布ムラの特徴量になる。直線領域の画像は、その領域のエッジが強調されている部分と、エッジが強調されていない部分とを含む。そのため、濃度値の変動が大きくなり、変動係数も大きくなる。したがって細線化領域に対応する直線強調後の画像の濃度値の変動係数を算出することにより、演算部143は、当該領域が斑状部分により強調された部分であるか否かを判定することができる。
【0088】
この方法によって、斑状部分の存在によって放射状に形成された塗布ムラが分断された場合にも、分断されていない状態での領域を検出することができる。また、エッジが強調された場合にも、当該領域が欠陥であるか否かを正確に判別することができる。
【0089】
次に、図16を参照して、画像処理検査装置140のデータ構造について、さらに説明する。図16は、画像処理検査装置140による検査の後に記憶部142に格納されるデータの一態様を表わす図である。
【0090】
記憶部142は、データを格納する領域1610〜領域1680を含む。領域を識別するための番号は、領域1610に格納されている。この番号は、たとえば前述のラベリング処理により予め設定された基準に基づいて自動的に付与された番号である。
【0091】
領域の直交座標における座標データは、領域1620に格納されている。この座標データは、当該領域を座標値に基づいて特定するためのものである。座標値は、たとえば回転中心から最も近い点のX座標およびY座標値であるが、これに限られない。たとえば中心から最も遠い点その他の点の座標値であってもよい。
【0092】
欠陥の候補が欠陥であるか否かを判断するために算出された欠陥強度は、領域1630に格納されている。その判定結果は、領域1640に格納されている。図16に示される例では、たとえば番号「1」の領域は、判定結果が不良(すなわち欠陥)と判定されたものである。
【0093】
欠陥強度を算出するために使用された各特徴量は、領域1660〜領域1680に格納されている。ここではたとえばm個の特徴量が格納されているが、欠陥強度の算出に用いられる特徴量の数は、検査の種類に応じて変更可能であってもよい。
【0094】
記憶部142に格納されているデータは、画像処理検査装置140に対するデータの出力指示に基づいて、あるいは予め定められた出力処理に基づいて外部に出力される。たとえばディスプレイ150は、検査結果のデータを表示領域に示す。あるいは、画像処理検査装置140が着脱可能な記録媒体あるいは外部へのデータ出力インターフェイスを備える場合には、画像処理検査装置140は、当該記録媒体に検査結果を書き込み、あるいは当該インターフェイスを介して予め定められた送信先にデータを送信する。
【0095】
なお、本発明に係る画像処理検査装置140は、上記の実施の形態に示される構成以外でも実現可能である。すなわち、画像処理検査装置140により実行される処理は、たとえば、当該処理のためのプログラムが格納されたコンピュータシステムによっても実現可能である。
【0096】
図17を参照して、本実施の形態に係る画像処理検査装置140を実現するコンピュータシステムについて説明する。図17は、コンピュータシステム1700のハードウェア構成を表わすブロック図である。
【0097】
コンピュータシステム1700は、相互にデータバスにより接続されたCPU1710と、指示の入力を受けるためのマウス1720およびキーボード1730と、入力されるデータあるいはプログラムに従って実行される処理によって生成されるデータを一時的に格納するRAM1740と、データを不揮発的に格納可能なハードディスク1750と、CD−ROM(Compact Disk-Read Only Memory)駆動装置1760と、モニタ1780と、通信IF(Interface)1790とを含む。CD−ROM駆動装置1760には、CD−ROM1762が装着される。
【0098】
画像処理検査装置140として機能するコンピュータシステム1700における処理は、各ハードウェアおよびCPU1710により実行されるソフトウェアによって実現される。このようなソフトウェアは、RAM1740あるいはハードディスク1750に予め記憶されている場合もあれば、CD−ROM1762その他の記憶媒体に格納されて流通している場合もある。記憶媒体に格納されているデータは、CD−ROM駆動装置1760その他の読取装置によりその記憶媒体から読み取られて、ハードディスク1750に一旦格納される。
【0099】
そのソフトウェアは、RAM1740あるいはハードディスク1750から読み出されて、CPU1710によって実行される。図17に示されるコンピュータシステム1700のハードウェア自体は、一般的なものである。したがって、本発明の本質的な部分は、RAM1740、ハードディスク1750、CD−ROM1762その他の記憶媒体に格納されたソフトウェアであるともいえる。なお、コンピュータシステム1700の各ハードウェアの動作は周知であるので、詳細な説明は繰り返さない。
【0100】
以上のようにして、本発明に係る画像処理検査装置140によると、低コントラストな線状の欠陥を検出することができる。また、検出された領域を細線化した領域に対応する画像のデータに基づいて変動係数を算出して当該変動係数を特徴量とすることにより、フィルタ処理の結果不連続な部位が連結された場合であっても、本来連続している領域との区別が可能になるため、誤検出を防止することができる。
【0101】
また、コントラストの変動があっても、放射状に形成された欠陥の強度を算出することができるため、画像から抽出された欠陥の候補が真の欠陥であるか否かを正確に判断することができる。その結果、放射状の欠陥の検出精度を向上させることができる。
【0102】
<変形例>
以下、本発明の実施の形態の変形例について説明する。なお、本変形例に係る画像処理検査装置は、前述の画像検査装置140が有する機能により実現可能である。そこで、この画像検査装置も、図2に示される画像検査装置140の構成を適宜参照して説明する。
【0103】
図18を参照して、本変形例に係る画像検出装置の制御構造について説明する。図18は、画像処理検査装置140を実現する演算部143が実行する処理の手順を表わすフローチャートである。なお、前述の処理(図7)と同一の処理には同一のステップ番号を付してある。したがって、それらの説明はここでは繰り返さない。
【0104】
ステップS1810にて、演算部143は、ステップS706において特定方向の線が強調された画像に基づいて、連結処理を実行することにより、連結後の画像データを導出する。より具体的には、演算部143は、被検査画像の縦方向(回転中心から外周に向かう半径方向)に対して、その半径方向の線を平滑化するための処理と、平滑化後の画像について、当該画像を構成する複数の部分領域の各々において、その平滑化された線を連結することにより、各部分領域における線の最大値を算出する。
【0105】
すなわち、当該平滑化処理は、半径方向を平滑化するためのフィルタを用いて、予め規定された抽出基準を満足する画像(線)を抽出する処理と、角度の座標値ごとに複数の画像が存在する場合に各画像を結合することにより結合により得られた画像の半径座標の最大値および最小値を座標値ごとに算出する。たとえば、角度の座標値(たとえば、θ)に2つの画像(第1の画像および第2の画像)が含まれている場合には、以下のようにして最大値が算出される。ここで、一例として、第1の画像の半径方向の範囲を、座標値(R(1)、R(2))とする。また、第2の画像の半径方向の範囲を、座標値(R(3)、R(4))とする。この場合、座標値の大小関係を、R(1)<R(2)<R(3)<R(4)とする。この場合、連結処理が行なわれると、座標値(θ)における平滑化後の画像の座標値は、(R(1)、R(4))となる。
【0106】
ステップS1820にて、演算部143は、連結処理が実行された後の画像の座標を極座標から直交座標に変換する。ステップS1830にて、演算部143は、予め設定された2値化基準(たとえば、図3における領域330)に基づいて、直交座標系の画像データに変換されたデータの2値化処理を実行する。その後、演算部143は、図7において詳述したようにステップS716以降の処理を実行する。
【0107】
次に、図19から図21を参照して、本変形例に係る画像検査装置の欠陥検出処理の推移について説明する。図19(A)〜図19(H)は、欠陥検出処理の第1のパターンにおける画像の推移を表わす図である。
【0108】
[第1のパターン]
図19(A)に示される被検査物の画像1910は、被検査物の撮影によって得られた画像である。
【0109】
画像1910は、回転中心1920と、放射状に形成された3つの塗布ムラ1930,1932,1934を含む。画像1910に対して極座標変換処理(ステップS1950)が実行されると、図19(B)に示される画像が得られる。なお、極座標変換処理は、図18におけるステップS704の処理に相当する。
【0110】
図19(B)に示されるように、極座標系に変換された後の画像は、角度と半径とを座標軸として表わされる。この画像に対して、エッジ強調処理(ステップS1952)が実行されると、半径方向(すなわち、回転中心1920を基準とした方向)にエッジが強調された画像が得られる(図19(C))。なお、エッジ強調処理は、図18におけるステップS706の処理に相当する。
【0111】
半径方向が強調された画像(図19(C))に対して平滑化処理(ステップS1954)が実行されると、図19(D)に示されるように、半径方向が平滑化された画像が得られる。なお、この場合の平滑化処理は、図18に示される連結処理(ステップS1810)に相当する。すなわち、平滑化処理は、縦方向(半径方向に相当)の画像をフィルタ処理することと、フィルタ処理後の画像を特定の横方向の座標値(角度)ごとに、最大の範囲(最小値と最大値)を算出することとを含む。
【0112】
当該平滑化によって得られた画像(図19(D))に対して2値化処理が実行されると(ステップS1956)、図19(E)に示される画像が抽出される(抽出画像)。なお、2値化処理(ステップS1956)は、図18におけるステップS1830の処理に相当する。直交座標変換がこの抽出画像に対して実行されると(ステップS1958)、極座標系によって表わされていた画像データは、直交座標系の画像データに変換される(図19(F))。この画像は、回転中心1920と、ラベル付けされた3つの領域1970,1972,1974とを含む。これらの領域1970,1972,1974は、被検査物の画像1910(図19(A))に示されるように、放射線状の塗布ムラ1930,1932,1934に対応する。
【0113】
一方、直交座標変換が、2値化処理を行なうことなく、図19(D)に示される平滑化後の画像に対して実行されると(ステップS1960)、図19(G)に示される画像が得られる。この画像は、図19(A)に示される画像に映っている斑状の模様を含む。
【0114】
また、直交座標変換が図19(C)に示される画像に対して実行されると(ステップS1962)、図19(H)に示される画像が得られる。この処理の流れは、平滑化処理(ステップS1954)および2値化処理(ステップS1956)を含まないため、フィルタ処理が行なわれる前の画像が、導出されることになる。
【0115】
演算部143は、図19(E)に示される画像によって特定されるデータに対応する図19(D)の画像データを用いて、極座標系における特徴量を算出する。また、演算部143は、図19(F)の画像に含まれる領域に対応する図19(G)あるいは図19(H)の画像データに基づいて特徴量を算出する。
【0116】
[第2のパターン]
図20(A)から(G)は、演算部143が第2のパターンとして実行する処理における画像の推移を表わす図である。
【0117】
演算部143は、最初に、図20(A)に示されるような被検査領域を抽出し、その領域を被検査画像1910とする。画像1910は、図19(E)に示されるものと同様に、回転中心1920と、放射線状に形成された塗布ムラ1930,1932,1934を含む。演算部143が極座標変換を実行すると(ステップS2010)、極座標系に変換された画像データが取得される(図20(B))。演算部143がエッジ強調処理を実行すると(ステップS2020)、半径方向に強調された画像が取得される(図20(C))。なお、エッジ強調処理(ステップS2020)は、図18におけるステップS706の処理に相当する。
【0118】
演算部143が、半径方向が強調された画像データに基づいて平滑化処理(ステップS2030)を実行すると、平滑化後の画像データが得られる(図20(D))。平滑化処理2030は、図18における連結処理(ステップS1810)に相当する。平滑化処理によって得られた画像データに対して演算部143が直交座標変換を実行すると(ステップS2040)、図20(E)に示されるような画像が得られる。
【0119】
ステップS2050として、演算部143が、その画像に対して2値化処理を実行すると、直交座標系において領域が抽出された画像が得られる(図20(F))。この画像は、回転中心1920と、ラベル付けされた領域1970,1972,1974を含む。
【0120】
一方、ステップS2060として、演算部143が、図20(C)に示される画像に対応するデータに基づいて直交座標変換を実行すると、図20(G)に示される画像が得られる。この場合、平滑化処理(ステップS2030)が行なわれていないため、フィルタ処理および縦方向の連結処理が行なわれなかった画像が得られる。この画像は、斑状の模様のようなノイズを含むことになる。
【0121】
演算部143は、図20(F)の領域に対する図20(E)あるいは(G)に示される画像に基づいて特徴量を算出する。
【0122】
上記の第2のパターンによる処理は、極座標の特徴が不要である場合に適用するのが好ましい。この場合、直交変換する画像が減るため、演算に要するステップが少なくなり、演算結果を得るまでの時間が短くなり、あるいは、演算に要するコストが削減され得る。
【0123】
[第3のパターン]
検出の対象となる欠陥が極座標の特徴量のみで絞り込める場合には、第3のパターンとして、演算部143は、以下のような処理を実行してもよい。この場合、直交座標系に変換されたデータに基づいて算出される特徴量の個数が減るため、算出のための負荷が低減され得る。
【0124】
図21(A)から(I)は、第3のパターンにおける画像の推移を表わす図である。図21(A)に示されるように、演算部143は、被検査領域を抽出し(ステップS702)、その抽出された領域を画像1910として取得する。画像1910は、前述のように回転中心1920と、回転中心1920から放射状に形成された塗布ムラ1930,1932,1934を含む。
【0125】
演算部143が画像1910に対して極座標変換を実行すると(ステップS2110)、図21(B)に示される画像が得られる。この画像は、回転中心1920を起点とした角度と半径方向の長さ等によって表わされる。演算部143が、図21(B)に示される極座標系の画像に対してエッジ強調処理を実行すると(ステップS2120)、図21(C)に示される画像が得られる。ここで、エッジ強調処理(ステップS2120)は、図18におけるステップS706の処理に相当する。
【0126】
演算部143が、図21(C)に示される画像に対して平滑化処理を実行すると(ステップS2130)、図21(D)に示される画像が得られる。この平滑化処理(ステップS2130)は、図18における連結処理(ステップS1810)に相当する。
【0127】
演算部143が、図21(D)に示される画像に基づいて2値化処理を実行する(ステップS2140)と、図21(E)に示される画像が抽出される(抽出画像)。この処理は、図18における2値化処理(ステップS1830)に対応する。
【0128】
演算部143は、図21(E)に示される領域に対応する図21(D)の領域に基づいて、極座標系における特徴量を算出する。演算部143は、その特徴量に応じて抽出された領域を絞り込む(ステップS2150)。この絞り込みにより、図21(F)に示される画像が抽出される。
【0129】
その後、演算部143が、図21(F)に示される画像に基づいて直交座標変換を実行すると(ステップS2160)、直交座標系で表わされた画像が抽出される(図21(G))。
【0130】
一方、演算部143が、図21(D)に示される平滑化後の画像データに基づいて直交座標変換処理を実行すると(ステップS2170)、図21(H)に示される平滑化処理が行なわれた後の画像データが導出される。
【0131】
また、演算部143が、図21(C)に示される線方向が強調された後の画像データに基づいて直交座標変換を実行すると(ステップS2180)、図21(I)に示される画像データが算出される。
【0132】
演算部143は、図21(G)のラベル付けされた領域に対応する図21(H)または(I)の画像データに基づいて特徴量を算出する。
【0133】
以上のようにして、本変形例に係る画像検査装置は、検査画像を極座標変換した後、半径方向に平滑化する。これにより、放射状に発生した欠陥が強調される。その後、画像検査装置は、直交座標変換を再度実行し、直交空間で特徴量を算出する。画像検査装置は、その特徴量に基づいて欠陥を判断する。画像検査装置は、画像データを極座標系の画像データに変換することにより、より少ない処理ステップ(低い計算コスト)で、放射状の欠陥のみを強調することができる。画像検査装置は、画像データの座標系を極座標系から直交座標系に再び変換する。これにより、画像検査装置は、実際の画像サイズに相関のある特徴量を算出できるため、欠陥であるか否かの判定がより正確になる。本変形例に係る画像検査装置は、平滑化後に細線化処理を実行し、細線化領域に対応する変動係数を算出する。画像検査装置は、その変動係数を特徴量の1つとして使用する。その結果、欠陥の検出の精度が向上し得る。
【0134】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【産業上の利用可能性】
【0135】
本発明は、液晶パネル作成時のマクロ画像から欠陥を検出する画像検査装置に適用可能である。また、本発明は、画像上で窪みのように見える部分を検出する画像検査装置にも適用可能である。
【図面の簡単な説明】
【0136】
【図1】本発明に係る画像処理検査装置140を備える検査システム100の構成を表わすブロック図である。
【図2】画像処理検査装置140の機能的構成を表わすブロック図である。
【図3】画像処理検査装置140の記憶部142におけるデータの格納の一態様を表わす図である。
【図4】被検査物の画像420について放射状に形成された塗布ムラを表わす図である。
【図5】図4に示される撮像画像を極座標に変換した後の状態を表わす図である。
【図6】極座標に変換された画像について放射状の塗布ムラの領域を抽出するために、直線を強調する処理を行なった後の画像を表わす図である。
【図7】画像処理検査装置140の演算部143が実行する処理の手順を表わすフローチャートである。
【図8】被検査物を撮像した画像から、検査の対象となる領域として予め指定された検査領域に応じて抽出された画像を表わす図である。
【図9】図8に示される画像を極座標系により表わした図である。
【図10】図9に示される画像のデータに対して平滑化処理を行なった後の状態を表わす図である。
【図11】平滑化された画像に対して予め定められた閾値に基づいて2値化処理を行なうことにより抽出された塗布ムラの領域を表わす図である。
【図12】極座標系により表わされていた画像を直交座標系により表わした図(その1)である。
【図13】極座標系により表わされていた画像を直交座標系により表わした図(その2)である。
【図14】極座標系により表わされていた画像を直交座標系により表わした図(その3)である。
【図15】直交座標系により表わされた放射状塗布ムラ領域を細線化することにより取得された画像を表わす図である。
【図16】画像処理検査装置140による検査の後に記憶部142に格納されるデータの一態様を表わす図である。
【図17】画像処理検査装置140を実現するコンピュータシステムのハードウェア構成を表わすブロック図である。
【図18】本変形例に係る画像検出装置140を実現する演算部143が実行する処理の手順を表わすフローチャートである。
【図19】本変形例に係る画像検査装置の欠陥検出処理の推移を表わす図(その1)である。
【図20】本変形例に係る画像検査装置の欠陥検出処理の推移を表わす図(その2)である。
【図21】本変形例に係る画像検査装置の欠陥検出処理の推移を表わす図(その3)である。
【符号の説明】
【0137】
100 検査システム、110 被検査基板、120 照明部、130 撮像部、140 画像処理検査装置、141 画像入力部、142 記憶部、143 演算部、144 出力部、145 入力部、150 ディスプレイ、202 データ入力部、203 取得部、204 極座標変換部、206 フィルタ処理部、208 平滑化処理部、210 2値化処理部、212 抽出部、214 直交座標変換部、216 算出部、218 欠陥判定部、220 結果出力部、1700 コンピュータシステム、1710 CPU、1720 マウス、1730 キーボード、1740 RAM、1750 ハードディスク、1760 CD−ROM駆動装置、1762 CD−ROM、1780 モニタ、1790 通信IF。

【特許請求の範囲】
【請求項1】
予め定められた回転軸を中心に回転する間に処理が施された被検査物の撮影に基づいて生成されたデータの入力を受ける入力手段と、
前記データから予め定められた検査領域に対応する画像データを取得する取得手段とを備え、前記画像データは、直交座標系で表わされており、
前記画像データを極座標系のデータに変換する第1の変換手段と、
前記極座標系により表わされる画像データに対して、前記回転軸に対応する回転中心から半径方向の直線を平滑化する平滑化処理手段と、
前記平滑化後の画像データを、前記直交座標系のデータに変換する第2の変換手段と、
前記第2の変換後の前記直交座標系により表される画像データに基づいて、前記被検査物の表面における欠陥の候補を抽出する抽出手段と、
前記直交座標系に変換後の画像データに基づいて、前記欠陥の候補の特徴量を算出する特徴量算出手段と、
予め定められた判断基準と前記特徴量とに基づいて、前記欠陥の候補が欠陥であるか否かを判断する判断手段と、
前記判断手段による判断の結果を出力する出力手段とを備える、欠陥の検出装置。
【請求項2】
前記平滑化処理手段は、
前記極座標系により表わされる画像データに対して、半径方向の直線を強調するためのフィルタ処理を実行するフィルタ手段と、
前記フィルタ処理後の画像データに基づいて、前記半径方向の直線の平滑化を行なう手段とを含み、
前記抽出手段は、
予め定められた二値化基準に基づいて、前記平滑化後の画像データの二値化処理を行なう二値化手段と、
前記二値化処理後の画像データから、予め定められた抽出基準を満足する画像データを前記欠陥の候補として抽出する手段とを含み、
前記第2の変換手段は、前記フィルタ処理後の画像データと、前記平滑化後の画像データとを、前記直交座標系のデータに変換する手段を含む、請求項1に記載の欠陥の検出装置。
【請求項3】
前記平滑化処理手段は、前記半径方向の直線の平滑化を行なった画像に対し、さらに半径方向の最大値フィルタ処理を実行する、請求項2に記載の欠陥の検出装置。
【請求項4】
前記判断手段は、
前記特徴量に基づいて、前記欠陥の候補についての欠陥の程度を表わす欠陥強度を算出する強度算出手段と、
前記判断基準と前記欠陥強度とに基づいて、前記欠陥の候補が欠陥であるか否かを判断する手段とを含む、請求項2に記載の欠陥の検出装置。
【請求項5】
前記直交座標系のデータに変換後の画像データに基づいて、前記欠陥の候補が予め定められた算出条件を満足するか否かを判断する条件判断手段と、
前記欠陥の候補が前記算出条件を満足する場合に新たな特徴量を算出する手段とをさらに備える、請求項4に記載の欠陥の検出装置。
【請求項6】
前記特徴量算出手段は、前記欠陥の候補の濃度値の平均値と、前記濃度値の変化率とを算出する変化率算出手段を含み、
前記強度算出手段は、前記平均値と前記変化率とに基づいて前記強度を算出する、請求項4に記載の欠陥の検出装置。
【請求項7】
前記特徴量算出手段は、前記直交座標系のデータに変換後のデータに基づいて、前記欠陥の候補の領域の幅を細くする細線化処理を行なう手段をさらに含み、
前記変化率算出手段は、前記細線化処理後の前記欠陥の候補についての前記平均値と前記変化率とを算出する、請求項6に記載の欠陥の検出装置。
【請求項8】
予め定められた回転軸を中心に回転する間に処理が施された被検査物の撮影に基づいて生成されたデータの入力を受けるステップと、
前記データから予め定められた検査領域に対応する画像データを取得するステップとを備え、前記画像データは、直交座標系で表わされており、
前記画像データを極座標系のデータに変換するステップと、
前記極座標系により表わされる画像データに対して、前記回転軸に対応する回転中心から半径方向の直線を平滑化するステップと、
前記平滑化後の画像データを、直交座標系のデータに変換するステップと、
前記直交座標系に変換後の画像データに基づいて、前記被検査物の表面における欠陥の候補を抽出するステップと、
前記直交座標系に変換後の画像データに基づいて、前記欠陥の候補の特徴量を算出するステップと、
予め定められた判断基準と前記特徴量とに基づいて、前記欠陥の候補が欠陥であるか否かを判断するステップと、
前記判断ステップによる判断の結果を出力するステップとを備える、欠陥の検出方法。
【請求項9】
コンピュータを欠陥の検出装置として機能させるためのプログラムであって、前記プログラムは前記コンピュータに、
予め定められた回転軸を中心に回転する間に処理が施された被検査物の撮影に基づいて生成されたデータの入力を受けるステップと、
前記データから予め定められた検査領域に対応する画像データを取得するステップとを実行させ、前記画像データは、直交座標系で表わされており、
さらに、前記プログラムは前記コンピュータに、
前記画像データを極座標系の画像データに変換するステップと、
前記極座標系により表わされる画像データに対して、前記回転軸に対応する回転中心から半径方向の直線を平滑化するステップと、
前記平滑化後の画像データを、直交座標系のデータに変換するステップと、
前記直交座標系に変換後の画像データに基づいて、前記被検査物の表面における欠陥の候補を抽出するステップと、
前記直交座標系に変換後の画像データに基づいて、前記欠陥の候補の特徴量を算出するステップと、
予め定められた判断基準と前記特徴量とに基づいて、前記欠陥の候補が欠陥であるか否かを判断するステップと、
前記判断ステップによる判断の結果を出力するステップとを実行させる、プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2008−209134(P2008−209134A)
【公開日】平成20年9月11日(2008.9.11)
【国際特許分類】
【出願番号】特願2007−43989(P2007−43989)
【出願日】平成19年2月23日(2007.2.23)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】