説明

液晶駆動回路における電圧生成回路

【課題】 チャージポンプを用いて多種類の電圧値の電圧を生成する液晶駆動回路における電圧生成回路においてコンデンサの使用数を減らす。
【解決手段】 ソース線、ゲート線およびコモン電極を備えた液晶表示パネルを駆動するドライバに供給する駆動電圧に関して、選択期間における全期間において、ソース電圧およびコモン電圧を所望の電圧に維持するのではなく、選択期間の終了時を含む期間であって選択期間の終了時よりも前の所定期間において、ソース電圧およびコモン電圧を所望の電圧に維持するようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、チャージポンプを用いて入力電圧の電圧値とは異なる電圧を生成して出力する電圧生成回路に関し、特に、液晶駆動回路に適用するのに好適な電圧生成回路に関する。
【背景技術】
【0002】
TFT(Thin Film Transistor)を用いた液晶表示パネルを駆動する場合、画素毎に設けられているTFTのゲートをオンさせるためのゲートオン電圧VGH、TFTのゲートをオフさせるためのゲートオフ電圧VGL、TFTのソースに印加されるデータ電圧V、およびコモン電極に印加されるコモン電圧VCOMのそれぞれの電圧が必要である。また、液晶表示パネルを直流電圧で駆動すると寿命が短くなる等の理由で、一般に、液晶表示パネルを駆動する駆動方法として交流駆動が用いられる。そのために、コモン電圧VCOMとして正極性コモン電圧VCOMHおよび負極性コモン電圧VCOMLが必要になる。また、データ電圧Vとして低電位のデータ電圧VDLおよび高電位のデータ電圧VDHが必要になる。
【0003】
ゲートオン電圧VGHおよびゲートオフ電圧VGLは、それぞれの行(走査線)のTFTのゲートに接続されるそれぞれのゲート線を駆動するゲートドライバに供給される。また、正極性コモン電圧VCOMHおよび負極性コモン電圧VCOMLは、コモン電極を駆動するコモン電極ドライバに供給される。そして、データ電圧VDL,VDHは、それぞれの列のTFTのソースに接続されるそれぞれのソース線を駆動するソースドライバに供給される。なお、低電位のデータ電圧VDLおよび高電位のデータ電圧VDHは接地電位VSSに対して同極性であるから、ソースドライバには高電位のデータ電圧VDHに相当する電圧のみが供給され、ソースドライバがその電圧から低電位のデータ電圧VDLを生成するように構成されることもある。
【0004】
上記のように液晶駆動回路は複数種類の電圧を必要とするが、各電圧を生成するために、入力電圧VDDをチャージポンプで昇圧して各種類の電圧を生成し、生成した電圧を液晶駆動回路における各ドライバ(駆動回路)に供給する電圧生成回路(電源回路)が用いられる(例えば、特許文献1参照)。なお、液晶駆動回路が必要とする電圧を生成するために、電圧生成回路が入力電圧VDDを降圧することもあるが、説明を簡単にするために、以下、入力電圧VDDとは電圧値が異なる電圧を生成することを、「昇圧」と表現する。
【0005】
チャージポンプにおいて、まずチャージポンプに対する入力電圧によってフライングコンデンサ(キックコンデンサ)を充電するようにスイッチ素子が切り替えられ、その後、フライングコンデンサの低電位側を入力電圧に接続するとともにフライングコンデンサの高電位側をホールドコンデンサに接続するようにスイッチ素子が切り替えられる構造を有する。スイッチ素子は、所定周波数のクロック信号に従って切替制御される。そして、ホールドコンデンサが保持する電圧が、負荷(例えば、ゲートドライバ、ソースドライバ、コモン電極ドライバ)に印加される。
【0006】
【特許文献1】特開2003−295830号公報(段落0017−0019、図3)
【発明の開示】
【発明が解決しようとする課題】
【0007】
以下、従来の電圧生成回路の問題点を説明する。図6は、チャージポンプを用いた電圧生成回路が生成する各種電圧の一例を示す説明図である。図6に示す例では、入力電圧VDDが接地電位VSSとともに電圧生成回路に入力される。電圧生成回路において、入力電圧VDDは電圧安定化されて電圧Vとされた後、2倍昇圧されて電圧DDVDHが生成される。さらに、電圧DDVDHが3倍昇圧されて電圧VGHが生成され、電圧DDVDHが3倍昇圧されるとともに極性が反転されて(すなわち−3倍される。)電圧VGLが生成される。また、電圧DDVDHが電圧安定化されて電圧VREGOUTおよび電圧VCOMHとされる。電圧VREGOUTはソースドライバに供給される。ソースドライバは、例えば、電圧VREGOUTをVDHとして用い、電圧VREGOUTからVDLを作成する。また、入力電圧VDDの極性が反転され(すなわち−1倍される。)、電圧VCLとされる。電圧VCLは電圧安定化されて電圧VCOMLとされる。
【0008】
図7は、図6に例示された各電圧を生成する電圧生成回路の構成例を示すブロック図である。図7に示す構成では、電圧安定化回路31が、入力電圧VDDを電圧安定化して電圧Vとする。第1昇圧回路41は、電圧Vを2倍昇して電圧DDVDHを生成する。第2昇圧回路42は、電圧DDVDHを3倍昇して電圧VGHを生成する。第3昇圧回路43は、第2昇圧回路42の出力電圧を−1倍して電圧VGLを生成する。第4昇圧回路44は、電圧Vを−1倍して電圧VCLを生成する。また、電圧安定化回路32は、電圧DDVDHを電圧安定化して電圧VREGOUTとする。電圧安定化回路33は、電圧DDVDHを電圧安定化して電圧VCOMHとする。そして、電圧安定化回路34は、電圧VCLを電圧安定化して電圧VCOMLとする。
【0009】
第1昇圧回路41、第2昇圧回路42、第3昇圧回路43および第4昇圧回路44は、それぞれ、スイッチ素子を内蔵し、フライングコンデンサC11、フライングコンデンサC21、フライングコンデンサC31およびフライングコンデンサC41を、入力される電圧に充電したり、入力される電圧をフライングコンデンサC11,C21,C31,C41の印加電圧に加算して出力したりする。
【0010】
また、第1昇圧回路41には、電圧DDVDHを保持するためのホールドコンデンサCが接続される。第2昇圧回路42には、電圧VGHを保持するためのホールドコンデンサCが接続される。第3昇圧回路43には、電圧VGLを保持するためのホールドコンデンサCが接続される。第4昇圧回路44には、電圧VCLを保持するためのホールドコンデンサCが接続される。また、電圧安定化回路32には、電圧VREGOUTを保持するためのホールドコンデンサCが接続される。電圧安定化回路33には、電圧VCOMHを保持するためのホールドコンデンサCが接続される。電圧安定化回路34には、電圧VCOMLを保持するためのホールドコンデンサCが接続される。
【0011】
図7に例示されているように、各電圧を生成する電圧生成回路には多数のコンデンサが用いられている。従って、部品点数が多くなっているとともに、基板上の実装面積もコンデンサに使われて基板サイズも大きくなる。その結果、電圧生成回路を組み込む液晶表示装置のコストが高くなり、また、小型化の阻害要因にもなる。
【0012】
そこで、本発明は、チャージポンプを用いて多種類の電圧値の駆動電圧を生成する液晶駆動回路における電圧生成回路においてコンデンサの使用数を減らすことを目的とする。
【課題を解決するための手段】
【0013】
本発明による液晶駆動回路における電圧生成回路は、複数のデータ電極と複数の走査電極とが交差するように配置された液晶表示パネルを駆動する液晶駆動回路で用いられ、チャージポンプを有する電圧生成回路であって、チャージポンプが、昇圧用クロック信号にもとづいて、フライングコンデンサを充電する期間と、フライングコンデンサの電圧を含む昇圧電圧を負荷側に供給する期間とを設定し、昇圧電圧を負荷側に供給する期間が選択期間における一部の期間であって選択期間の終了時、または開始時および終了時の双方を含むように、昇圧用クロック信号の周波数と位相を設定するクロック位相制御回路を備えたことを特徴とする。クロック位相制御回路がそのような制御を行うことによって、ホールドコンデンサを省略することができるようになる。
【0014】
電圧生成回路が、TFT液晶表示パネルを駆動する液晶駆動回路で用いられ電圧生成回路である場合には、クロック位相制御回路が、選択期間の開始時および終了時にゲート線に供給するゲート電圧が設定電圧になっているように昇圧用クロック信号の周波数と位相を設定する。
【0015】
クロック位相制御回路が、少なくとも選択期間の終了時に、ソース線に供給するデータ電圧およびコモン電極に供給するコモン電圧が設定電圧になっているように昇圧用クロック信号の周波数と位相を設定することが好ましい。
【発明の効果】
【0016】
本発明によれば、液晶駆動回路における駆動回路に供給される各種電圧を生成する場合にコンデンサの使用数を減らすことができ、液晶駆動回路およびそれを用いた液晶表示装置のコストを低減することができる。
【発明を実施するための最良の形態】
【0017】
以下、本発明の実施の形態を図面を参照して説明する。図1は、チャージポンプを用いた電圧生成回路を有する液晶駆動回路を液晶表示パネル10とともに示すブロック図である。図1に示す例では、TFTがマトリクス状に配され、画素電極とコモン電極との間に液晶が挟持されたTFT型の液晶表示パネル10が用いられている。液晶表示パネル10を駆動する液晶駆動回路は、液晶表示パネル10における同列のTFTのソースに接続されるデータ電極としての各ソース電極(ソース配線)が繋がれたソースドライバ(データ電極ドライバ)12、液晶表示パネル10における同行のTFTのゲートに接続される走査電極としての各ゲート電極(ゲート配線)が繋がれたゲートドライバ(走査電極ドライバ)13、チャージポンプを用いた電源回路(電圧生成回路)14が設けられている。液晶表示パネル10において、各データ電極と各走査電極とは交差するように配置されている。
【0018】
また、この実施の形態では、ゲートドライバ13が内蔵するコモン電圧出力部131が、液晶表示パネル10のコモン電極(コモン配線)に正極性コモン電圧VCOMHまたは負極性電圧VCOMLを印加する。従って、電源回路14からゲートドライバ13に、正極性コモン電圧VCOMHおよび負極性電圧VCOMLを作成するための電圧が供給される。なお、コモン電圧出力部131は、ゲートドライバ13とは独立して設けられていてもよい。また、コモン電圧出力部131に対して正極性コモン電圧VCOMHおよび負極性電圧VCOMLを作成するための電圧が供給されるように構成されることもあるが、この実施の形態では、電源回路14からコモン電圧出力部131に、正極性コモン電圧VCOMHおよび負極性電圧VCOMLそのものが供給される場合を例にする。
【0019】
制御回路としてのコントローラ11は、駆動回路の外部から入力される画像データを一時記憶するフレームメモリ111を有し、ソースドライバ12およびゲートドライバ13に、フレームの開始を示す信号であるFLM(First Line Marker )信号を出力するとともに、各選択期間(1本のゲート線にオン電圧としての選択電圧が印加される期間)毎に、LP(Latch Pulse )信号を出力する。さらに、コントローラ11は、ソースドライバ12およびゲートドライバ13に、極性を示す信号であるM信号を出力する。M信号は、各フレーム(ゲートドライバ13が全てのゲート線について1回ずつ選択する場合の最初のゲートドライバ13の選択開始から最後のゲートドライバ13の選択終了までの期間)毎に出力される場合もあるが、この実施の形態では、1ライン毎に、すなわち、選択されるゲート線が切り替わる毎に、出力されるとする。なお、M信号が出力されるとは、具体的には、M信号の極性が反転することである。
【0020】
ゲートドライバ13は、カウンタを内蔵し、FLM信号が入力されるとカウンタをリセットし、LP信号が入力されるとカウンタの値を+1する。そして、カウンタの値が示すゲート線にTFTのゲートを導通状態にさせるための選択電圧を印加し、他のゲート線にTFTのゲートを遮断状態にさせるための非選択電圧を印加する。また、この実施の形態では、ゲートドライバ13は、M信号が正極性を示していれば正極性コモン電圧VCOMHをコモン線に印加し、M信号が負極性を示していれば負極性コモン電圧VCOMLをコモン線に印加することにする。
【0021】
ソースドライバ12は、LP信号が入力されると、データ信号をラッチするとともに、ラッチしているデータ信号に応じたデータ電圧をソース線に印加する。ゲートドライバ13はLP信号に同期してゲート線に選択電圧を印加するので、ソースドライバ12は、ゲート線への選択電圧の印加に同期して各ソース線にデータ電圧を印加することになる。このとき、M信号が正極性を示していれば、正極性のコモン電圧に対応するデータ信号(低電位のデータ電圧VDL)を印加し、M信号が負極性を示していれば、負極性のコモン電圧に対応するデータ信号(高電位のデータ電圧VDH)を印加する。
【0022】
電源回路14は、図6に示されたような各種電圧を生成する。なお、図6に示す例では、電圧VREGOUTおよび電圧VCOMHは、電圧DDVDHと同電位である。ただし、安定化回路を介して電圧VREGOUTおよび電圧VCOMHが生成されるので、それらの電圧の電圧値は、電圧DDVDHからやや低下した値になる。また、電圧VCOMLは、電圧VCLと同電位である。ただし、安定化回路を介して電圧VCOMLが生成されるので、その電圧の電圧値は、電圧VCLからやや低下した値になる。
【0023】
図2は、電源回路14の構成例を示すブロック図である。第1昇圧回路41、第2昇圧回路42、第3昇圧回路43、第4昇圧回路44、電圧安定化回路31、電圧安定化回路32、電圧安定化回路33および電圧安定化回路34の構成は、図7に示された構成と同じである。すなわち、第1昇圧回路41、第2昇圧回路42、第3昇圧回路43および第4昇圧回路44は、それぞれ、チャージポンプを有し、入力電圧を所定の電圧値の電圧に昇圧する。また、電圧安定化回路31、電圧安定化回路32、電圧安定化回路33および電圧安定化回路34は、例えばボルテージフォロワで構成される。
【0024】
また、電源回路14は、クロック位相制御回路51を有する。クロック位相制御回路51には、M信号の周波数の2倍の周波数のクロック信号が入力され、クロック位相制御回路51は、入力されたクロック信号の位相を、M信号の位相に対して所定量ずらして出力する(図3参照)。クロック信号の位相をM信号の位相に対してずらすとは、具体的には、クロック信号の立上がりタイミングを、M信号の立上がりタイミングおよび立下がりタイミングからずらすことを意味する。または、クロック位相制御回路51には、高い周波数のクロック信号が入力され、クロック位相制御回路51は、入力されたクロック信号を分周して、M信号の周波数の2倍の周波数のクロック信号を作成し、さらに、そのクロック信号の位相を、M信号の位相に対して所定量ずらして出力する。
【0025】
クロック位相制御回路51は、作成したクロック信号を昇圧用クロック信号として、第1昇圧回路41、第2昇圧回路42、第3昇圧回路43および第4昇圧回路44に対して出力する。
【0026】
つまり、クロック位相制御回路51は、所望の周波数の昇圧用クロック信号を作成するともに、所望の昇圧開始タイミング(出力電圧が所望の電圧値に立上がるタイミングすなわち負荷に設定電圧を供給し始めるタイミング)に応じて昇圧用クロック信号の位相をずらすように制御する。この例では、昇圧用クロック信号の所望の周期(所望の周波数の逆数)は、LP信号の周期(選択期間の開始時から次の選択期間の開始時までの周期)と同じである。なお、昇圧用クロック信号の周波数および位相の基準となる信号はM信号でなくてもよく、例えばLP信号を利用して昇圧用クロック信号の周波数と位相を決めるようにしてもよい。
【0027】
第1昇圧回路41、第2昇圧回路42、第3昇圧回路43および第4昇圧回路44は、それぞれ、入力電圧によってフライングコンデンサC11,C21,C31,C41を充電するようにスイッチ素子が切り替えられ、その後、フライングコンデンサC11,C21,C31,C41の低電位側を入力電圧に接続するとともにフライングコンデンサC11,C21,C31,C41の高電位側を負荷(例えば、ゲートドライバ、ソースドライバ、コモン電極ドライバ)に接続するようにスイッチ素子が切り替えられるチャージポンプを内蔵している。
【0028】
図2に示す構成において、図7に示された構成と異なる点は、ホールドコンデンサC〜Cが取り付けられていないことである。図3のタイミング図および図4の回路図を参照してホールドコンデンサC〜Cを取り付けなくてもよい理由を説明する。
【0029】
図3では、第1昇圧回路41の場合を例にする。クロック位相制御回路51が出力する昇圧用クロック信号の周波数は、M信号の周波数の2倍である(図3(C),(D)参照)。そして、図3に示す例では、昇圧用クロック信号の立上がりタイミングは、M信号の立上がりタイミングまたは立下がりタイミングに対して、ほぼ1/4周期(90°)ずれている。
【0030】
図4は、第1昇圧回路41の構成例と作用を説明するための回路図である。第1昇圧回路41は、フライングコンデンサC11の一端に第1のスイッチ素子411が接続され、フライングコンデンサC11の他端に第2のスイッチ素子412が接続されたチャージポンプを含む。第1のスイッチ素子411は、フライングコンデンサC11の一端を、入力電圧(この場合にはV)に接続するのか出力側に接続するのか切り替える。第2のスイッチ素子412は、フライングコンデンサC11の他端を接地電位VSSに接続するのか入力電圧に接続するのか切り替える。なお、図4には、ホールドコンデンサCが存在しないことが破線で示されている。
【0031】
昇圧用クロック信号がローレベルである期間では、図4(A)に示すように、第1のスイッチ素子411は、フライングコンデンサC11の一端を入力電圧に接続し、第2のスイッチ素子412は、フライングコンデンサC11の他端を接地電位VSSに接続して、フライングコンデンサC11の電位を入力電圧と等しくする。また、昇圧用クロック信号がハイレベルである期間では、図4(B)に示すように、第1のスイッチ素子411は、フライングコンデンサC11の一端を出力側に接続し、フライングコンデンサC11の他端を入力電圧に接続して、入力電圧を2倍昇圧した電圧を出力する。
【0032】
従って、第1昇圧回路41は、図3(B)に示すような波形の電圧を出力する。なお、図3(B)において、破線は第1昇圧回路41の入力電圧(この場合にはV)を示し、実線が出力電圧DDVDHを示す。また、ソースドライバ12は、出力電圧DDVDHが電圧安定化回路32で安定化された電圧VREGOUTを高電位のデータ電圧VDHとし、電圧VREGOUTを例えば抵抗で分圧してデータ電圧VDLとする。また、正極性コモン電圧VCOMHは出力電圧DDVDHが電圧安定化回路33で安定化された電圧であるから、データ電圧VDH、データ電圧VDLおよび正極性コモン電圧VCOMHの波形は、電圧DDVDHの波形と相似である。つまり、データ電圧VDH、データ電圧VDLおよび正極性コモン電圧VCOMHの立上がりタイミング、立下がりタイミングおよび極性は、図3(B)に示す電圧DDVDHの立上がりタイミング、立下がりタイミングおよび極性と同じである。
【0033】
図3(E)に示すように、第2昇圧回路42が出力するVGHも、電圧DDVDHの波形と相似である。なお、図3(B),(E)は理想的な電圧波形を示し、実際には、出力電圧DDVDHおよび正極性コモン電圧VCOMHは、立下がり時に垂直に立下がるのではなく、徐々に電圧が低下していく。
【0034】
図3(A)には、選択期間においてコモン電極に正極性コモン電圧VCOMHが印加される場合の一般的な電圧波形例が示されている。図3(A)において、実線は所望のソース電圧(データ電圧VDL)を示し、破線は所望のゲート電圧を示し、一点鎖線は所望のコモン電圧(正極性コモン電圧VCOMH)を示す。所望の各電圧は、液晶表示パネル10のソース線、ゲート線およびコモン電極に供給すべきあらかじめ決められた電圧(設定電圧)である。
【0035】
画素が駆動される場合、ゲートがオンしている間、ソース線に供給されるデータ電圧によって、画素容量と蓄積容量(補助容量)が充電される。すなわち、データ信号に応じたデータ電圧が画素に書き込まれる。そして、ゲートがオフ状態にされている非選択期間では、画素容量と蓄積容量とによってデータ電圧が保持される。すると、選択期間におけるある程度の期間(図3に示す例では1選択期間の半分の期間)において画素容量と蓄積容量とにデータ電圧を供給することによって画素容量と蓄積容量とを充電し、かつ、ゲートがオフするときのデータ電圧が所望の電圧値(データ電圧として意図されている電圧値、すなわち正極性コモン電圧VCOMHがコモン電極印加されるべき期間ではVDL、負極性コモン電圧VCOMLがコモン電極印加されるべき期間ではVDH)になっていれば、選択期間における全期間において図3(A)に示すような波形の電圧が液晶表示パネル10に供給されなくても、画素容量と蓄積容量とに所望のデータ電圧を書き込むことができる。また、コモン電圧についても、同様に、選択期間におけるある程度の期間コモン電極に所望の電圧が印加され、かつ、ゲートがオフするときの電圧が所望の電圧値になっていればよい。
【0036】
なお、ソース線およびコモン電極にはスルーレート(入力電圧に対して実際の印加電圧の立上がり遅れ)があるので、ゲートがオフするタイミング(図3におけるA参照)すなわち選択期間の終了時の前の所定期間において、継続して、ソース線に対して所望のデータ電圧が供給され、コモン電極に対して所望のコモン電圧が供給されている必要がある。つまり、クロック位相制御回路51は、少なくとも、選択期間の終了時には、ソース線およびコモン電極における電圧が所望の電圧値になっているように、昇圧用クロック信号の位相を設定する。図3に示す例では、ゲートがオフするタイミングの前で、選択期間の1/4の期間において、それらの所望の電圧値が維持されている。また、ゲート電圧については、選択期間の開始時と終了時の双方において所望のゲート電圧になっていることが好ましい。
【0037】
以上のことから、図2に示されたようなホールドコンデンサがない電圧生成回路14は、図3(B),(E)に例示したような各電圧を、ソースドライバ12、ゲートドライバ13(コモン電圧出力部131を含む。)に供給するのであるが、上述した理由により、所望の電圧を画素に書き込むことができる。この場合、フライングコンデンサC11,C21,C31,C41が負荷側に接続されたときに、それらが一種のホールドコンデンサの役割を果たしていることになる。
【0038】
なお、図3に示す波形例は一例であって、ゲート電圧、ソース電圧(データ電圧)およびコモン電圧について、選択期間におけるある程度の期間、ソース線、ゲート線およびコモン電極に所望の電圧が印加され、かつ、ゲートがオフするときの電圧が所望の電圧値になっていれば、図3に例示したタイミングで各電圧を制御しなくても、選択期間において所望の電圧を画素に書き込むことができる。
【0039】
図5は、比較例を示す説明図である。図5(A)には、図3(A)に相当する一般的な電圧波形が示され、図5(B)には、比較例としての第1昇圧回路41の出力電圧波形が示されている。図5に示す比較例では、ゲートがオフ状態にされるとき(図5におけるA参照)に、第1昇圧回路41の出力である電圧DDVDHが所望の電圧値になっていないので電圧DDVDHから作成される正極性コモン電圧VCOMHおよびデータ電圧VDLは所望の電圧値にならない。なお、データ電圧VDLはソースドライバ12において、電圧DDVDHにもとづく電圧VREGOUTから作成されるとする。
【0040】
図5に示すような電圧波形が用いられる場合には、図3に示された場合とは異なり、ゲートがオフするときの電圧が所望の電圧値になっていないので、所望の電圧を画素に書き込むことができない。
【0041】
以上に説明したように、上記の実施の形態では、選択期間におけるある程度の期間、ソース線およびコモン電極に所望の電圧が印加され、かつ、ゲートがオフするときの電圧が所望の電圧値になるように制御することによって、図7に示されたホールドコンデンサC〜Cを削除することができる。
【0042】
なお、全てのホールドコンデンサC〜Cを削除するのではなく、そのうちの一部を削除するようにしてもよい。例えば、上記のように理論的は削除可能であるが、スルーレートが大きいなどの理由で実際に削除すると表示品位が落ちるような場合には、スルーレートが大きい箇所についてはホールドコンデンサを残すようにする。
【0043】
また、例えば、図2に示す構成において、ゲートオン電圧VGHおよびゲートオフ電圧VGLの生成に関するホールドコンデンサC,C,Cを残して選択期間全体に亘ってゲートオン電圧VGHおよびゲートオフ電圧VGLが正規の値(所望の値)に維持されるようにし、データ電圧およびコモン電圧の生成に関する他のホールドコンデンサを削除して、クロック位相制御回路51が、少なくとも選択期間の終了時に、ソース線に供給するデータ電圧およびコモン電極に供給するコモン電圧が設定電圧になっているように昇圧用クロック信号の周波数と位相を設定するようにしてもよい。また、ゲートオン電圧VGHおよびゲートオフ電圧VGLの生成に関するホールドコンデンサC,Cを削除し、データ電圧およびコモン電圧の生成に関する他のホールドコンデンサを残して選択期間全体に亘ってデータ電圧およびコモン電圧が正規の値(所望の値)に維持されるようにし、クロック位相制御回路51が、選択期間の開始時および終了時に、ゲートオン電圧VGHおよびゲートオフ電圧VGLが正規の値(所望の値)になっているように昇圧用クロック信号の周波数と位相を設定するようにしてもよい。
【0044】
また、図3にはライン反転駆動を行う場合を例示されたが、フレーム反転駆動を行う場合でも、選択期間におけるある程度の期間、ソース線、ゲート線およびコモン電極に所望の電圧が印加され、かつ、ゲートがオフするときの電圧が所望の電圧値になっていれば、フレーム反転駆動を行う場合にも本発明を適用することができる。
【産業上の利用可能性】
【0045】
本発明は、チャージポンプを用いて昇圧を行う電圧生成回路のコストを低減するために好適に適用され、特に、液晶駆動回路に適用されるのに適する。
【図面の簡単な説明】
【0046】
【図1】液晶駆動回路を液晶表示パネルとともに示すブロック図。
【図2】電源回路の構成例を示すブロック図。
【図3】第1昇圧回路の動作を説明するための説明図。
【図4】第1昇圧回路の構成例を示す回路図。
【図5】本発明の比較例を示す説明図。
【図6】電圧生成回路が生成する各種電圧の一例を示す説明図。
【図7】ホールドコンデンサを有する電圧生成回路の構成例を示すブロック図。
【符号の説明】
【0047】
10 液晶表示パネル
12 ソースドライバ
13 ゲートドライバ
14 電源回路(電圧生成回路)
31〜34 安定化回路
41 第1昇圧回路
42 第2昇圧回路
43 第3昇圧回路
44 第4昇圧回路
51 クロック位相制御回路
〜C ホールドコンデンサ
11,C21,C31,C41 フライングコンデンサ

【特許請求の範囲】
【請求項1】
複数のデータ電極と複数の走査電極とが交差するように配置された液晶表示パネルを駆動する液晶駆動回路で用いられ、チャージポンプを有する電圧生成回路であって、
チャージポンプは、昇圧用クロック信号にもとづいて、フライングコンデンサを充電する期間と、フライングコンデンサの電圧を含む昇圧電圧を負荷側に供給する期間とを設定し、
昇圧電圧を負荷側に供給する期間が選択期間における一部の期間であって選択期間の終了時、または開始時および終了時の双方を含むように、昇圧用クロック信号の周波数と位相を設定するクロック位相制御回路を備えた
ことを特徴とする液晶駆動回路における電圧生成回路。
【請求項2】
TFT液晶表示パネルを駆動する液晶駆動回路で用いられ電圧生成回路であって、
クロック位相制御回路は、選択期間の開始時および終了時にゲート線に供給するゲート電圧が設定電圧になっているように昇圧用クロック信号の周波数と位相を設定する
請求項1記載の液晶駆動回路における電圧生成回路。
【請求項3】
クロック位相制御回路は、少なくとも選択期間の終了時に、ソース線に供給するデータ電圧およびコモン電極に供給するコモン電圧が設定電圧になっているように昇圧用クロック信号の周波数と位相を設定する
請求項2記載の液晶駆動回路における電圧生成回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−276457(P2006−276457A)
【公開日】平成18年10月12日(2006.10.12)
【国際特許分類】
【出願番号】特願2005−95513(P2005−95513)
【出願日】平成17年3月29日(2005.3.29)
【出願人】(000103747)オプトレックス株式会社 (843)
【Fターム(参考)】