説明

熱伝導性成形体とその用途

【課題】高い熱伝導性を有し、特に電子部品用放熱部材として好適な熱伝導性成形体を提供する。
【解決手段】六方晶窒化ホウ素粉末(A)の平均粒子径が20〜50μmであり、酸化アルミニウム粉末(B)の平均粒子径が0.5〜5μmであり、(A):(B)の配合割合が体積比で7:3〜9:1の熱伝導性フィラー40〜70体積%含有してなるシリコーン樹脂組成物を積層したシリコーン積層体を、積層方向から切断した熱伝導性成形体。六方晶窒化ホウ素粉末(A)の平均粒子径が20〜50μmであり、窒化アルミニウム粉末(B)の平均粒子径が0.5〜5μmであり、(A):(B)の配合割合が体積比で7:3〜9:1の熱伝導性フィラー40〜70体積%含有してなるシリコーン樹脂組成物を積層したシリコーン積層体を、積層方向から切断した熱伝導性成形体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱伝導性に優れた熱伝導性成形体とその用途に関するものであり、特に電子部品用放熱部材として使用した際に、トランジスタ、サイリスタ、CPU(中央処理装置)等の発熱性電子部品を損傷させることなく、電子機器に組み込むことができる熱伝導性成形体に関するものである。
【背景技術】
【0002】
トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に除去することが重要な問題となっている。従来、このような除熱方法としては、発熱性電子部品を電気絶縁性の放熱シートを介して放熱フィンや金属板に取り付け、熱を逃がすことが一般的に行われており、その放熱シートとしてはシリコーンゴムに熱伝導性フィラーを分散させたものが使用されている。
【0003】
近年、電子部品内の回路の高集積化に伴いその発熱量も大きくなっており、従来にも増して高い熱伝導性を有する放熱シートが求められてきている。
【0004】
熱伝導性材料の熱伝導性を向上させるには、これまで酸化アルミニウム粉末、窒化ホウ素粉末、窒化アルミニウム粉末といった高い熱伝導性を示すフィラーをポリマーへ含有する手法が一般的であった。さらに六方晶窒化ホウ素粉末をポリマー中で熱流方向と平行に配向させることで高熱伝導化を行うという手法も提案されているが高価格の窒化ホウ素粉末のみを使用することで価格が非常に高いという問題があった(特許文献1〜7)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平11−60216号公報
【特許文献2】特開2003−60134号公報
【特許文献3】特開2008−293911号公報
【特許文献4】特開2009−24126号公報
【特許文献5】特開2002−299533号公報
【特許文献6】特開2009−054663号公報
【特許文献7】特開2010−260225号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、高い熱伝導性を有し、特に電子部品用放熱部材として好適な熱伝導性成形体を提供することである。
【課題を解決するための手段】
【0007】
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)六方晶窒化ホウ素粉末(A)の平均粒子径が20〜50μmであり、酸化アルミニウム粉末(B)の平均粒子径が0.5〜5μmであり、(A):(B)の配合割合が体積比で7:3〜9:1の熱伝導性フィラー40〜70体積%含有してなるシリコーン樹脂組成物を積層したシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体。
(2)六方晶窒化ホウ素粉末(A)の平均粒子径が20〜50μmであり、窒化アルミニウム粉末(B)の平均粒子径が0.5〜5μmであり、(A):(B)の配合割合が体積比で7:3〜9:1の熱伝導性フィラー40〜70体積%含有してなるシリコーン樹脂組成物を積層したシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体。
(3)シリコーン樹脂が質量平均分子量15000〜30000(C)と質量平均分子量400000〜600000(D)のビニル基をもつオルガノポリシロキサンであり、その体積比が(C):(D)=7:3〜5:5であることを特徴とする前記(1)または(2)に記載の熱伝導性成形体。
(4)前記(1)乃至(3)のいずれか一項に記載の熱伝導性成形体を用いた電子部品用放熱部材。
【発明の効果】
【0008】
本発明によれば、高熱伝導性を示す熱伝導性成形体を提供することができる。
【発明を実施するための形態】
【0009】
以下、本発明について詳細に説明する。
本発明で使用される熱伝導性フィラーとしては、酸化アルミニウム、窒化ホウ素、窒化アルミニウムをあげることができる。これらのうち、窒化ホウ素は鱗片状粒子の長さ方向の熱伝導性が極めて高く、その特徴をうまく利用すれば高熱伝導性を付与することができるので、本発明には特に好適なものである。また、その窒化ホウ素粒子としては、粉末X線解析法による黒鉛指数(GI)が2.5以下の高結晶性のものが望ましい。
【0010】
本発明で使用する平均粒子径が20〜50μmである窒化ホウ素粒子は平均粒子径が20〜50μmである必要があり、さらに平均粒子径は30〜40μmの範囲のものが好ましい。平均粒子径が50μmより大きくなる粒子と粒子が接触した際のすき間が大きくなり、熱伝導性が減少する傾向にある。反対に平均粒子径が20μmより小さくなるとシリコーン樹脂への六方晶の充填性が悪くなる傾向にあり、熱伝導性が減少する傾向にある。
【0011】
本発明で使用する平均粒子径が0.5〜5μmである酸化アルミニウム粉末は平均粒子径が0.5〜5μmである必要があり、さらに平均粒子径は0.7〜2μmの範囲のものが好ましい。平均粒子径が5μmより大きくなると六方晶窒化ホウ素粒子と接する酸化アルミニウム粒子の数が減少し、熱伝導性が減少する傾向にある。反対に平均粒子径が0.5μmより小さくなると酸化アルミニウム粉末の充填性が悪くなり、熱伝導性が減少する傾向にある。
【0012】
本発明で使用する平均粒子径が0.5〜5μmである窒化アルミニウム粉末は平均粒子径が0.5〜5μmである必要があり、さらに平均粒子径は0.7〜2μmの範囲のものが好ましい。平均粒子径が5μmより大きくなると窒化ホウ素粉末凝集体と接する酸化アルミニウム粒子の数が減少し、熱伝導性が減少する傾向にある。反対に平均粒子径が0.5μmより小さくなると酸化アルミニウム粉末の充填性が悪くなり、熱伝導性が減少する傾向にある。
【0013】
本発明の熱伝導性成形体における熱伝導性フィラーの含有率は、全体積中の40〜70体積%、特に50〜60体積%であることが望ましい。熱伝導性フィラーの含有率が40体積%未満では熱伝導性成形体の熱伝導性が減少する傾向にある。また70体積%を越えると、成形体の機械的強度が損なわれる傾向にある。
【0014】
本発明における平均粒子径は、島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った熱伝導性材料の粉末の溶液をスポイドを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。このようにして吸光度が安定になった時点で測定を行う。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算する。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。なお、平均粒子径は粒子の平均直径である。
【0015】
本発明のシリコーン樹脂としては、シリコーンゴムを用いる。シリコーンゴムは柔軟性、形状追随性、電子部品に接触させる際の発熱面への密着性、更には耐熱性が優れているので最適である。
【0016】
シリコーンゴムの種類としては、ミラブル型シリコーンが代表的なものであるが、総じて所要の柔軟性を発現させることが難しい場合が多いので、高い柔軟性を発現させるためには付加反応型シリコーンが好適である。付加反応型液状シリコーンの具体例としては、一分子中にビニル基とH−Si基の両方を有する一液反応型のオルガノポリシロキサン、または末端あるいは側鎖にビニル基を有するオルガノポリシロキサンと末端あるいは側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンなどである。例えばモメンティブ・パフォーマンス・マテリアルズ社製、商品名「XE14−B8530A/B」がある。
【0017】
本発明で使用される付加反応型シリコーンとして、質量平均分子量10000〜30000と質量平均分子量400000〜600000のビニル基をもつオルガノポリシロキサンが好ましく、特に質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンと質量平均分子量450000〜550000のビニル基を含有したシリコーン系樹脂を用いることが好ましい。質量平均分子量が10000より小さくなると樹脂組成物を形成することが困難となり、質量平均分子量が30000より大きくなると熱伝導性フィラーの充填性が悪くなり、ともに熱伝導性が低減する傾向にある。また質量平均分子量が400000より小さくなると樹脂組成物の形成が困難となり、質量平均分子量が600000より大きくなると熱伝導性フィラーの充填性が悪くなり、熱伝導性が低減する傾向にある。
【0018】
本発明で使用される質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンと質量平均分子量450000〜550000のビニル基をもつオルガノポリシロキサンの配合割合は6:4〜5:5が好ましく、5.5:4.5〜5.8:4.2であることがさらに好ましい。質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンの割合が5より小さくなると、シリコーン樹脂の粘度が高くなり、熱伝導性フィラーを充填しにくくなるため、熱伝導性は減少する傾向にある。また質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンの割合が6より大きくなると、質量平均分子量15000〜25000のビニル基をもつオルガノポリシロキサンと質量平均分子量450000〜550000のビニル基をもつオルガノポリシロキサンが相分離を起こし、シリコーン樹脂に熱伝導性フィラーを含有しにくくなり、熱伝導性は減少する傾向にある。
【0019】
東ソー社製の高温サイズ排除クロマトグラフィーHLC−8121GPC/HTを用い、測定用カラムとしてはTSK−GEL MultiporeHXL−M、ガードカラムとしてはTSK−guardcolumnMPを用いた。展開溶液としてはテトラヒドロフラン(THF)を用い、カラム温度40℃、流量1.0ml/min、送液圧力36kg/cmにて測定を実施した。分子量は標準ポリスチレン換算の質量平均分子量である。
【0020】
本発明のシリコーン樹脂に使用される付加反応型液状シリコーンは、アセチルアルコール類、マレイン酸エステル類などの反応遅延剤、十〜数百μmのアエロジルやシリコーンパウダーなどの増粘剤、難燃剤、顔料などと併用することもできる。
【0021】
本発明の樹脂組成物は、付加反応型液状シリコーンに窒化ホウ素粉末と、酸化アルミニウム粉末又は窒化アルミニウムを添加し、自転・公転ミキサーであるシンキー社製「あわとり練太郎」を用いて混合することで製造することができる。
【0022】
平均粒子径20〜50μmである六方晶窒化ホウ素粉末と平均粒子径0.5〜5μmである酸化アルミニウム粉末の配合割合は7:3〜9:1である必要があり、さらに配合割合は7.5:2.5〜8.5:1.5の範囲のものが好ましい。平均粒子径20〜50μmである六方晶窒化ホウ素粉末の割合が7より小さくなると、フィラーの充填性が悪くなる傾向にある。反対に平均粒子径20〜50μmである六方晶窒化ホウ素粉末の割合が9より大きくなると、フィラーが緻密に充填しづらくなり、熱伝導性が減少する傾向にある。
【0023】
平均粒子径20〜50μmである六方晶窒化ホウ素粉末と平均粒子径0.5〜5μmである窒化アルミニウム粉末の配合割合は7:3〜9:1である必要があり、さらに配合割合は7.5:2.5〜8.5:1.5の範囲のものが好ましい。平均粒子径20〜50μmである六方晶窒化ホウ素粉末の割合が7より小さくなると、フィラーの充填性が悪くなる傾向にある。反対に平均粒子径20〜50μmである六方晶窒化ホウ素粉末の割合が9より大きくなると、フィラーが緻密に充填しづらくなり、熱伝導性が減少する傾向にある。
【0024】
本発明のシリコーン樹脂組成物を積層したシリコーン積層体とは、熱伝導性フィラーとシリコーンゴムの混合物を厚さ1〜6mmに薄板化し、その薄板を厚さ方向へ10〜100枚積層し、10〜100mmの厚さにしたものである。
【0025】
本発明の熱伝導性成形体の製造方法の一例を示す。付加反応型液状シリコーン及び熱伝導性フィラーを室温下で混合して、シリコーン樹脂組成物のコンパウンドを調整した。このコンパウンドをピストン式又はスクリュー式の押し出し機で押し出して、未硬化の薄板(グリーンシート)に仮成形した後、それを積層し加熱硬化させた後、積層方向から所望の幅に切断する方法があげられる。
【0026】
熱伝導率は、ASTM E−1461も準拠した樹脂組成物の熱拡散率、密度、比熱を全て乗じて算出した(熱伝導率=熱拡散率×密度×比熱)。熱拡散率は、試料を幅10mm×10mm×厚み1mmで、加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザー(NETSCH社製 LFA447 Nanoflash)を用い、25℃で測定を行った。密度はアルキメデス法により求めた。比熱はDSC(リガク社製 ThemoPlus Evo DSC8230)を用いて求めた。
【0027】
本発明の熱伝導性成形体は、発熱性電子部品又は熱熱性電子部品の搭載された回路基板と冷却装置との間に挟みこんで使用されるものであるが、冷却装置にあらかじめ貼り付け一体化するなどして電子部品用放熱部材として供給することも可能である。冷却装置としては、例えばヒートシンク、放熱フィン、金属又はセラミックスのケース等があげられ、またはそのセラミックスとしては窒化アルミニウム、窒化ホウ素、炭化珪素、窒化珪素、酸化アルミニウム等があげられる。
【0028】
また、上記電子部品用放熱部材が使用される電子機器としては、パーソナルコンピューター、家庭用ゲーム機、電源、自動車、プロジェクター等をあげることができる。
【実施例】
【0029】
実施例1〜30 比較例1〜18
熱伝導性フィラーとして表1に示される六方晶窒化ホウ素粉末5種類、酸化アルミニウム粉末5種類、窒化アルミニウム粉末5種類、付加反応型シリコーンとして、表2にしめされるD液5種類(白金触媒を含有したビニル基を有するオルガノポリシロキサン)、E液5種類(H−Si基を有するオルガノポリシロキサン及びビニル基を有するオルガノポリシロキサン)、F液5種類(ビニル基を有するオルガノポリシロキサン)を室温下で表3〜7に示す配合(体積%)で、自転・公転ミキサーであるシンキー社製「あわとり練太郎」を用いて、回転速度2000rpmで10分混合して、シリコーン樹脂組成物のコンパウンドを作製した。
【0030】
このコンパウンドをスリット(1mm×60mm)付きダイスの固定されたシリンダー構造金型内に充填し、ピストンで圧力をかけながらスリットから押し出して、シリコーン樹脂組成物の未硬化の薄板(グリーンシート)を作製した。
【0031】
厚さ1mm、幅60mm、長さ120mmのグリーンシート25枚から縦横の長さが50mmの正方形となるようにカッターでグリーンシートを切り出した。そして、正方形のグリーンシート同士の各角を合わせつつ、50mmの高さになるまで50層積層した。その後、乾燥機を用いて150℃で22時間加熱硬化させて、シリコーン積層体を作製した。この1辺の長さが50mmの立方体であるシリコーン積層体をカッターでグリーンシートを重ねた面に対して垂直であり、その辺に対して平行に刃を下ろしながら切断し、本発明のシート状熱伝導性成形体(1mm)を作製した。
【0032】
上記で得られたシート状熱伝導性成形体について、10mm×10mmに裁断し、熱伝導率を測定した。それらの結果を表3〜7に示す。
【0033】
【表1】



【0034】
【表2】



【0035】
【表3】

【0036】
【表4】



【0037】
【表5】



【0038】
【表6】



【0039】
【表7】



【0040】
表3〜表7の実施例と比較例から、本発明の熱伝導性成形体は、優れた熱伝導性を示している。


【特許請求の範囲】
【請求項1】
六方晶窒化ホウ素粉末(A)の平均粒子径が20〜50μmであり、酸化アルミニウム粉末(B)の平均粒子径が0.5〜5μmであり、(A):(B)の配合割合が体積比で7:3〜9:1の熱伝導性フィラー40〜70体積%含有してなるシリコーン樹脂組成物を積層したシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体。
【請求項2】
六方晶窒化ホウ素粉末(A)の平均粒子径が20〜50μmであり、窒化アルミニウム粉末(B)の平均粒子径が0.5〜5μmであり、(A):(B)の配合割合が体積比で7:3〜9:1の熱伝導性フィラー40〜70体積%含有してなるシリコーン樹脂組成物を積層したシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体。
【請求項3】
シリコーン樹脂が質量平均分子量15000〜30000(C)と質量平均分子量400000〜600000(D)のビニル基をもつオルガノポリシロキサンであり、その体積比が(C):(D)=7:3〜5:5であることを特徴とする請求項1または2に記載の熱伝導性成形体。
【請求項4】
請求項1乃至請求項3のいずれか一項に記載の熱伝導性成形体を用いた電子部品用放熱部材。


【公開番号】特開2012−201106(P2012−201106A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−71196(P2011−71196)
【出願日】平成23年3月28日(2011.3.28)
【出願人】(000003296)電気化学工業株式会社 (1,539)
【Fターム(参考)】