説明

特定の減衰および位相シフトを与える材料を堆積させる方法

【課題】特定の位相シフトと減衰の特性を有する材料を局所的に堆積させる方法を提供すること。
【解決手段】本発明はハーフトーン型位相シフト・フォトマスクの修復に特に応用可能である。修復される領域の透過率および位相の制御が可能である。好ましい実施形態では、修復領域を透過する光の位相は堆積材料の厚さを制御することによって制御され、修復領域の透過率は修復領域への不純物の導入を制御することによって制御される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、材料を透過する光に特定の減衰および位相シフトを与え、かつ減衰型位相シフト・マスクへの使用に特に適した材料の制御された堆積のための方法に関する。
【背景技術】
【0002】
集積回路の製造の或る工程はリソグラフィの使用を必要とする。回路が上に形成される半導体基板は、通常では、放射に晒されると溶解度を変えるフォトレジストのような材料でコーティングされる。放射源と半導体基板の間に位置決めされたマスクまたはレチクルのようなリソグラフィの媒体が影を投影して放射に晒される基板の領域を制御する。曝露の後、曝露領域または非曝露領域のどちらかからフォトレジストが除去されてウェハ上にフォトレジストのパターン化された層を残し、それがその後に続くエッチングまたは拡散処理中にウェハの複数の部分を保護する。
【0003】
本明細書ではマスクという用語は概して、曝露放射のタイプに関係なく、かつマスクの画像が基板全体にわたって一度印刷されるかまたは段階的に印刷されるかに関係なく、いずれかのリソグラフィツールに関する。マスクは通常では石英のような基板上でパターン化されたクロムまたはモリブデンのケイ化物のような吸収材料の層を有する。
【0004】
半導体製造業者が集積回路のサイズを小さくすることを試みるとき、半導体基板の表面に転写されるパターンはさらに小さくかつさらに複雑になる。極めて小さい寸法の従来式のマスクに伴う1つの問題は、回折が原因で暗くあるべき領域に光が漏れることである。パターンの線幅がサブミクロンの寸法に達するときにこの問題は特に深刻である。これらの寸法では、デバイスの線幅は従来式の光源、およびパターンを転写するために不透明領域と透明領域を有するバイナリ・フォトマスクがウェハ上に正確に模様を印刷することが不可能となる程に狭い。
【0005】
この問題を克服するための1つの方法は位相シフト・マスクを使用することであり、これはサブミクロンの設計のためにフォトレジスト上への光の効果を際立たせることが可能である。位相シフト・マスクはマスクを通過する光の一部分の位相を変化させ、それにより、位相シフト波のピークが非位相シフト波の谷と一致し、それらの波が事実上相殺し合って一層暗い暗領域を作り出す。位相シフトされた光は位相シフトされていない光と弱め合うように干渉すると言われている。
【0006】
位相シフト・フォトマスクは、石英上でパターン化された不透明のクロムに加えて複雑な三次元(3D)のレチクル増強構造を有することが可能であり、それがマスクの多様な領域を通過する光の位相を変える手段を提供する。3Dレチクル構造に対する変形例はレベンソン型位相シフタ(通常では石英基板内のエッチングされた領域)、および通常では石英基板上のケイ化モリブデン酸窒化物(「MoSiON」)もしくは酸化クロムの半透明の層のようなハーフトーン型シフタを含む。
【0007】
いずれかのタイプのフォトマスクが作製されるとき、欠陥を有することが普通である。半導体製造法用の進んだレチクルのセットのコストは100万ドルに近くなる可能性が高いので、フォトマスク内の欠陥を修復することが可能な方法を有することが望ましい。通常の(非位相シフト型の)フォトマスクについては、本質的に2つの欠陥のタイプ、すなわち不透明と透明がある。白欠陥は不透明でなければならない領域から吸収材が無くなっている領域であり、黒欠陥は透明でなければならない領域に堆積した吸収材を有する領域である。通常のマスクに見受けられる白および黒の欠陥に加えて、位相シフト・フォトマスクはエッチングされた基板自体に、基板材料が過剰に存在する隆起、基板内のくぼみもしくは穴、あるいはハーフトーン型位相シフト材料の欠落といった欠陥を有する可能性もある。
【0008】
図1は通常のハーフトーン型位相シフト材料の部分100を示しており、石英基板104上のMoSiONのようなハーフトーン型位相シフト材料の線102のパターンを有する。MoSiONは入射光の約6パーセントを通し、MoSiON線を通る通過を伴わないで石英基板を通過する光と比較すると入射光の位相を約180度変化させる。光の回折が原因で、MoSiON線の下の影領域はすべての入射光を遮断するクロム線の下の影領域よりも実際には暗い。図2はフォトリソグラフ法でマスク100を通って投影する光から結果として生じる明領域202と暗領域204のパターン200を示している。基板上のマスクによって作り出されるこのパターンはマスクの「空間像」と称される。
【0009】
図3は、石英基板306上でMoSiONの線304を含むパターンを有するが、欠陥、すなわちMoSiON材料の欠落領域308を伴ったマスク302を示している。マスクの欠陥自体がパターンの一部として転写される可能性があり、フォトマスクが使用される前に修復されなければならない。
【0010】
フォトリソグラフィのマスクの欠陥を修復するために、従来では集束イオンビーム・システム(FIB)のような荷電粒子ビームシステムが使用されてきた。集束イオンビーム・システムはよく知られており、例えば、本発明の譲受者であるFEI Company,Hillsboro,Oregonに譲渡される「Method and Apparatus for Repairing Lithography Masks Using a Charged Particle Beam System」の米国特許第6,709,554号に述べられている。適切な集束イオンビーム・システムはFEI Companyから入手可能なModel Accura850+を含む。
【0011】
通常、フォトマスク内の欠陥を修復するためにFIBシステムが使用されるとき、液体金属のイオン源から出るガリウムイオンの精密に集束されたビームがフォトマスクの表面全域にわたって最初に走査されて表面の画像を形成する。画像の各点での強度は基板上の対応する点でイオンビームによってたたき出される二次電子の電流によって決定される。画像上で欠陥が識別され、その後、余分な材料を粉にして飛ばすかまたは前駆物質ガスを分解して半透明材料欠落部に堆積させるかのどちらかによって欠陥を修復するためにイオンビームが欠陥領域へと向けられる。前駆物質ガスは極めて特異的な特性を有する必要があり、すなわち、それらは表面に吸着してイオンビームの存在下でのみ分解し、堆積されるべき材料と真空チャンバから除去されるであろう揮発性の副生成物を形成しなければならない。FIB堆積法を使用して堆積することが可能な材料の数は極めて限られている。基板へと向けられるエネルギーによって活性化される前駆物質ガスの使用はウェハ全体の処理もしくはマスク全体の処理とは逆に局所的な堆積を可能にし、制御可能な領域内に基板全体のそれよりも大幅に少ない材料を堆積させる。多くの実施形態で、局所的に堆積させられる領域は1ミクロン以下であり、加工物上の特徴形状のサイズに匹敵する。堆積は励起用エネルギー・ビームの経路によって規定される通りのいずれの形状であることも可能である。
【0012】
ハーフトーン型位相シフト・マスクはまたEmbedded Phase Shift Masks(EPSM)とも称され、マスク修復に関して独特の問題を呈する。EPSMは通常では、光の大部分を遮断し、かつ位相シフトを伴って通るいくらかの光を許容する領域を有する。透過された少量の光は材料の下にあるフォトレジストを露光するには不充分であるが、しかし位相シフトされた光が透明領域から入る回折光と干渉してさらに暗い影の領域を作り出す。例えば、通常の位相シフト・マスクは石英上のMoSiONを有することが可能である。通常では、MoSiONは入射する光の約94パーセントを阻止し、透過される6パーセントは通常では180度位相シフトされる。
【特許文献1】米国特許第6,709,554号
【特許文献2】米国特許第5,827,786号
【発明の開示】
【発明が解決しようとする課題】
【0013】
イオンビーム堆積によってMoSiONを堆積させるような知られている前駆物質ガスは無いので、ハーフトーン型位相シフト・マスク材料の欠落は通常では不透明材料を堆積させることによって修復される。不透明修理材によって修復されたマスクはハーフトーン型位相シフト材料を使用する元々の設計と同様には機能しないけれども、この修復は実践的であったし、多くのケースでその結果は受容可能であった。しかしながらマスクに関する仕様が厳密になるにつれて、ハーフトーン型位相シフト材料を不透明材料で置き換える処理はもはや受容不可能である。
【0014】
本発明の目的は、特定の位相シフトと減衰の特性を有する材料を局所的に堆積させることである。
【課題を解決するための手段】
【0015】
本発明は表面に堆積させられる材料の減衰および位相の制御を可能にする。本発明は位相シフト・フォトマスクの修復に特に応用可能である。修復された領域の透過および位相は制御することが可能である。好ましい実施形態では、修復された領域を透過した光の位相は堆積させられる材料の厚さを変えることによって制御され、修復された領域の透過率は堆積させられる材料の中に組み入れられる不純物の量を変えることによって制御される。
【0016】
本発明およびその利点のさらに充分な理解のために、ここで添付の図面と結び付けて為される以下の説明に参照が為される。
【発明を実施するための最良の形態】
【0017】
本発明は、制御された透過率および位相シフトの特性を備えて化合物を堆積させるために粒子ビーム、レーザ・ビーム、または他のエネルギー源を使用する方法を提供する。堆積領域の広さは堆積を誘発するビームの経路を制御することによって制御することが可能である。粒子ビームは、例えば集束イオンビーム、電子ビーム、または走査プローブ電子顕微鏡から由来する粒子ビームであることが可能である。イオンビームで誘発される透過性材料の堆積は、例えば、Puretzの米国特許第5,827,786号、「Charged Particle Deposition of Electrically Insulating Films」に述べられており、これは本発明の譲受者に譲渡される。「集束」という用語は標的の基板上の一点に焦点集束されるビームに限定されるわけではなく、整形されたビーム、焦点のずれたビーム、およびほぼ欠陥のサイズで材料を堆積させるように充分に小さいスポット・サイズを作り出す他のビームを含む。また、イオンビームという用語は、加速されてその後中性化された粒子のビームを包含することが可能である。
【0018】
本発明の実施形態は、非ゼロの位相シフトを引き起こす材料の層を堆積させ、かつ透過率を下げるために層の中に組み入れられる「不純物」と称される添加物を使用し、それにより、所望の位相シフト量および100パーセント未満の所望の減衰量を与える。本発明のいくつかの実施形態では、堆積の中で不純物が埋め込まれる度合いを制御するように特定の処理パラメータを使用することによって技術者は必要な減衰を作り出す。不純物は、例えばガスの導入によって意図的にシステムの中に注入することが可能であり、ガリウムイオンの集束ビームから埋め込まれるガリウムのような堆積過程の制御された副生成物であることが可能であり、あるいは真空システムの潤滑剤または密封材から出て低濃度で通常では不可避的に存在する炭素のような環境因子であることが可能である。不純物は物質の組み合わせであることが可能であり、いくつかの実施形態で不純物がガリウムまたは炭素であることが可能であると出願人らが述べるときその実施形態は両方を含むこともやはり可能であり、すなわち「または」は「排他的または」ではない。
【0019】
不純物の制御は追加的で独立した要因を提供し、それは堆積物の厚さに追加して制御することが可能であり、それにより、本発明の実施形態が堆積物の透過率と位相シフト量を独立して制御することを可能にする。例えば、所定の透過率および位相シフト量の吸収材を使用するマスクについては、或る厚さを備え、吸収材の透過率と位相シフト量を整合させるガリウム、炭素、または他の不純物の釣り合った組成を備えたSiOxの堆積物がある。
【0020】
照射量(dose)および画素の照射時間(dwell time)のような制御可能な処理パラメータと、SiOxまたは窒素酸素含有化合物のような堆積した透過性化合物の単位厚さ当たりの減衰量および単位厚さ当たりの位相シフト量といった特性との間の関係を特性付けすることによって、様々な位相シフト・マスク(PSM)上の欠落吸収材の欠陥を修復するために必要な処理パラメータ、およびイオン、電子、光、もしくは他のエネルギーの照射量を決定することが可能である。実際に、本発明は「計算機」の創設を可能にし、そこでは所望の位相と減衰量が入力され、計算機は照射量および第2のパラメータもしくは複数のパラメータ、例えば照射時間の観点から必要な処理を出力し、それが最適処理に差し込まれることでSiOxのような物質を指定された減衰量と位相シフト量で堆積させる。このようにして、技術者は修復の範囲全体にわたって最適化され、かつ一定であり続けるいくつかの処理設定、および所望の減衰量と位相シフト量を作り出すために変えられるいくつかの設定を使用してマスク修復設備を操作することが可能である。
【0021】
本発明の原理を具体的に示すためにいくつかの実施形態が下記で述べられる。下記の実施形態は当業者が本発明の原理を、それでもなお添付の特許請求項の範囲内にある追加的な応用例へと拡張することを可能にする具体例を提供する。
【0022】
〔実施例1〕
本発明の一実施形態はPSM上のMoSiON欠落の修復のためにテトラメチルシクロテトラシロキサン(TMCTS)とO2のガス混合物を導入して光透過性のSi−O−Ga−Cの層を堆積させることにFIBを使用する。堆積物中のガリウム、炭素、または他の不純物の量を調節することによって、本発明はPSM上の物質の置き換えに関して光学特性を整合させることが可能である。炭素は意図的ではない不純物として真空システム中に存在する可能性があり、あるいは炭素含有ガスで導入される可能性がある。
【0023】
例えば、193nm波長のリソグラフィに関して6%透過性のMoSiON PSM上の吸収材欠落の置き換えのために調整されたFIB修復法は以下のパラメータを使用することが可能であった。
【0024】
【表1】

【0025】
FEIのAccura850+のようなFIBフォトマスク修復プラットホーム上で、これらのパラメータは180°に近い位相シフト量および193nmのリソグラフィ波長で開放された石英領域のそれの約6%の透過率を伴うSiOxの堆積物を作り出す。
【0026】
TMCTSおよび酸素でFIB堆積法を使用する処理で、所望の位相シフト量および減衰量を有する材料を堆積させるために必要とされる処理パラメータを決定する好ましい方法は複数の実施例の後に下記で詳細に述べられる。
【0027】
〔実施例2〕
この実施形態はジメトキシジメチルシラン、オクタメチルシクロテトラシロキサン(OMCTS)、またはペンタメチルシクロペンタシロキサン(PMCPS)のようないずれかのシロキサン前駆物質を誘導して光透過性材料の層を堆積させるためにFIBを使用する。堆積物中のガリウム、炭素、または他の不純物の量を調節することによって、この実施形態はPSM上の物質の置き換えに関して光学特性を整合させることが可能である。
【0028】
〔実施例3〕
この実施形態は上記で実施例2で述べたようなシロキサン前駆物質を誘導して光透過性材料の層を堆積させるために電子ビームを使用する。堆積物中に埋め込まれるいずれかの不可避的な処理もしくはシステムの不純物の量に影響を及ぼす処理パラメータを調節することによって、この実施形態はフォトマスク上の吸収材料の置き換えに関して光学特性を整合させることが可能である。
【0029】
〔実施例4〕
本発明の実施形態は、堆積物の光学特性を制御するためにスチレンガスまたは他の炭素含有ガスのような不純物を処理領域の中に意図的に導入することによって実施例3に述べられた処理を拡張することが可能である。
【0030】
通常のPSM上の吸収材欠落の置き換えのために調整される電子ビーム修復法の一例は以下のようなパラメータを使用することが可能である。
【0031】
【表2】

【0032】
〔実施例5〕
本発明の実施形態は上述したようなシロキサン前駆物質を導入して光透過性材料の層を堆積させるためにレーザを使用することが可能である。堆積物中に埋め込まれるいずれかの不可避的な処理もしくはシステムの不純物の量に影響を及ぼす処理パラメータを調節することによって、この実施形態はフォトマスク上の材料の置き換えに関して光学特性を整合させることが可能である。
【0033】
〔実施例6〕
この実施形態は、堆積物の光学特性を制御するために実施例4で述べたような炭素含有ガスといった不純物を処理領域の中に意図的に導入することによって実施例5の実施形態を拡張する。
【0034】
そのような修復処理は標準的な光周波数と画素間隔を使用するレーザに基づいたフォトマスク修復ツール上で実施することが可能である。この処理は、前駆物質をフォトマスク上に堆積させるために充分なスポット・サイズ当たりのレーザ・パワーと照射時間を使用することを必要とするであろう。FIBに基づいた堆積法に関して下記で述べられる同じ最適化処理が適切なエネルギー照射量、不純物圧力、照射時間、およびリフレッシュ時間を識別してフォトマスクの吸収材の透過率と位相シフト量を整合させるために使用することが可能である。
【0035】
〔実施例7〕
この実施形態の例は、誘導される堆積物の光学特性をさらに制御するためにFIB、電子ビーム、またはレーザによるマスク修復システムの中で前駆物質ガスを(O2、N2、またはH2Oといった)酸素もしくは窒素含有ガスと混合することを可能にする。
【0036】
処理パラメータの代表的な決定方法−ガリウムのFIB堆積
出願人らは上記の実施例1に類似した実施形態に関して処理パラメータを決定する方法を下記で述べるが、それはTMCTS前駆物質および酸素を使用してSiOxの堆積を誘発するために集束イオンビームを使用し、それにより、欠落MoSiONを置き換えるように材料を堆積させることでMoSiONハーフトーン型位相シフト・マスクを修復し、MoSiONの位相シフト量および減衰量をほぼ整合させる。
【0037】
マスクは元来は、石英基板の上にパターン化されていないMoSiONの層を堆積させ、その後、マスク・パターンを形成するようにMoSiONを除去することによって作製される。MoSiONは制御された状況で容易に局所的に堆積させられないので、欠落MoSiONとほぼ同じ空間像を作り出すためにMoSiON以外の材料が堆積させられる。堆積した材料の光学特性、特に屈折率および透過率はMoSiONのそれらとは異なるので、堆積した材料は、欠落吸収材料と同じ位相シフト量および透過率を作り出すために異なる厚さを通常では必要とするであろう。
【0038】
一実施形態に関して処理パラメータを決定する方法の詳細な教示を下記に提供することによって、当業者がその教示を実施例2〜8に上述されたそれらを含む他の実施形態、ならびにその他の実施形態に関して処理パラメータを決定するために応用することが可能である。
【0039】
下記の例では、酸化ケイ素含有材料の層を堆積させるためにガリウムイオンの集束ビームが使用され、所望の透過率を与えるために堆積中にその領域内に埋め込まれるガリウムの量が制御される。
【0040】
いくつかの応用例で、位相シフト量と減衰量は独立して調節することが可能であること、すなわち所望の位相シフト量を与えるように堆積物の厚さが調節することが可能であり、その後、受容不可能な程度に位相シフト量に影響を及ぼすことなく第2の処理パラメータもしくは複数パラメータが調節されて必要とされる減衰量を与えることが可能であることを出願人らは見出した。本発明はまた、位相シフト量と減衰量を独立して決定することが不可能である、例えば一方の特性を調節するために処理パラメータを変更することが他方に影響を及ぼすときの状況も提供する。例えば、いくつかのケースでは、不純物の濃度を変更することが堆積した材料の屈折率を変える可能性があり、それは必要な位相シフト量を与えるために要求される厚さを変えるであろう。
【0041】
1つの好ましい方法が図4Aおよび図4Bに示されている。図4Aおよび図4Bの方法は、屈折率が埋め込まれるガリウムの濃度と実質的に無関係であると仮定している。工程402で、修復される領域の所望の位相シフト量および減衰量が当初のマスクの仕様から決定される。工程404で、堆積させられる材料の屈折率の推定値および設計位相シフト量を使用することによって堆積層の推定の厚さが決定される。所望の位相シフト量を作り出すための厚さは
T=[n+(φ/2π)]×[λ/(N−1)] …(1)
から推定することが可能であり、ここでTは必要とされる厚さであり、φは所望の位相シフト量であり、Nは堆積材料の屈折率であり、λは使用される光の真空中の波長であり、nは整数である。この式はマスクを取り巻く伝搬媒質の屈折率が真空の屈折率に近いことを仮定しており、それは通常の空気のケースについて受容可能な近似である。当業者は科学文献から知られている、浸漬流体の屈折率を説明する類似した式を使用することによってこの計算式を浸漬リソグラフィに容易に適合させることが可能である。いずれかの所望の位相シフト量を与えるために多数のTの値を使用することが可能である。所望の位相シフト量を与えるであろう最も薄い層を得るためにはn=0を選択することが望ましい。厚い層は受容不可能な程に透過率を下げる可能性がある。場合によっては、当初の位相シフト材料の厚さを、堆積対象の材料の屈折率から1を減じた値に対する当初の材料の屈折率から1を減じた値の比で乗算することによって堆積材料の必要とされる厚さを決定することが可能である。工程405で、厚さの値は必要な厚さを堆積させるために要求されるイオン照射量の値へと変換される。堆積速度に基づいて当業者は特定の厚さに対応するイオン照射量を容易に決定することが可能である。
【0042】
工程406で、多数の試験部位に材料が堆積させられる。各々の試験部位に堆積した材料は、所望の位相シフト量を作り出すであろう推定の厚さの範囲で異なる厚さを有する。各々の試験部位は、図3に示されたような欠陥をシミュレートするための欠落部分を備えた吸収材料の多数の線を有する試験用マスク・パターン上にある。1つの応用例で、出願人らは一連の予め計画された欠落MoSiONの「欠陥」を使用し、それらの欠落領域は520nmの間隔で分けられた520nmの線のパターンの中で1.0μmの長さであった。
【0043】
各々の試験部位に堆積を誘発するためにイオンビームが使用された。当業者は適切なイオンビームのパラメータを容易に決定することが可能である。1つの例では、イオンビームは15μmの口径および約2.7pAのビーム電流を伴って30kVの加速電圧で操作された。堆積用ガスは1.0mbarの圧力のTMCTSおよび3.0mbarの圧力の酸素であった。0.2μsの照射時間および264μsのラスタ時間を伴って0.020μmの画素間隔が使用された。当業者は特定の用途のために処理パラメータを容易に調節することが可能である。例えば、様々な厚さの材料を堆積させるために約0.072nC/μm2から約0.200nC/μm2の照射量範囲が使用された。
【0044】
図5はMoSiONの0.520μmの線502および間隔504の三次元画像500を示しており、欠落線部分がSiOxの堆積506によって修復されている。図6および7は図5の線の断面を示しており、図6の幅対高さの比は当初のMoSiONとSiOx修復領域との間の高さの違いをさらによく例示するために縮尺通りに示されていない。SiOxの屈折率はMoSiONのそれよりも小さいためにSiOxは隣接するMoSiONよりも厚いので、SiOxのより厚い層はMoSiON層と同じ位相シフト量を作り出すために必要とされる。堆積したSiOxは約0.1μm×1μmで高さ168nmであり、0.1571nC/μm2の照射量を使用して付けられた。
【0045】
工程408で、様々な試験部位の空間像がAIMSシステム上で観察される。図8は修復領域を含む試験用マスク・パターンの空間像802を示している。この空間像は、例えばCarl Zeiss SMP AG,Oberkochen,Germanyから得られるAerial Image Measurement System(AIMS)を使用して得ことが可能である。空間像802はマスク上の吸収材料および吸収材料の欠如に対応する暗い線804と明るい線806のパターンを有する。図8に画像が示されている修復部は0.1286nC/μm2の照射量を使用して付けられた。
【0046】
工程410で、各々の試験部位の下の光の強度が判定される。図9は図8の画像の線808に沿った光の強度のプロットを示しており、線808は試験部位の下でマスク上の複数の線と複数の間隔に対して直角に試験部位付近を走っている。線900は試験部位の中心の下の位置に相当する。グラフの線902は焦点面内の強度を示し、線904および906はそれぞれ焦点面の6.4μm上および下の強度を示している。修復部の左(すなわち線900の左)にある一層高い強度、および修復部の右にある一層低い強度はイオンビームの位置の25〜30nmのドリフトによって引き起こされると考えられ、そのような人為的な結果は容易に制御することが可能である。修復部位の下の焦点面での強度がその修復部の強度の値として使用される。多数の修復部位の各々について強度が判定される。
【0047】
工程412で、複数の修復部位の下の強度がプロットされ、厚さと強度との間の関係を規定するためにプロットされた複数の点に曲線が合わせられる。図10は透過率対堆積厚さのグラフを示している。透過率の値は、欠陥の無い部分の下の透過率が100パーセントとなるように正規化されている。図10の正方形の点は測定値を表わし、ひし形の点は測定値に合わせるように計算された最良適合線を表わす。
【0048】
工程414で、修復領域の下の強度を最小化する厚さが曲線から判定される。図10のケースでは、測定データ点に最良適合する理論的曲線は160nmの堆積厚さ付近で最小値に到達する。この厚さが必要な180度の位相シフト量を与えると推定される。
【0049】
必要とされる位相シフト量を与えるための最適の厚さを工程404から414で判定するとその後、次のいくつかの工程が、必要とされる減衰量を与える処理パラメータを決定する。ガリウム濃度を変えることによって堆積物の単位厚さ当たりの減衰量が制御され得ること、および照射量以外の処理パラメータを調節することによって堆積厚さとは比較的無関係にガリウム濃度が制御され得ることを出願人らは見出した。例えば、照射時間またはリフレッシュ速度を調節することによってガリウム濃度を制御することが可能である。単位厚さ当たりの減衰量のこの制御は厚さとは無関係であり、なぜならば照射時間、リフレッシュ速度、または処理パラメータが堆積速度に対して有するいずれの効果を説明することにも照射量の調節が使用され得るからである。
【0050】
イオンビームは通常ではラスタ・パターンで修復領域を走査する。水平方向の走査は通常では連続的ではなく、画素と称される点から隣の重なる画素へと移動する。各々の画素にビームが動かずにいる時間の量は「照射時間」と称される。或る線が走査されるとその後、ビームはそれが次の線の開始部へと迅速に戻されるときに消され、その後にビームは次の線を処理する。いくつかの実施形態では、ビームは牛耕式、すなわち蛇行パターンに動かされ、反対方向に移動しながら1行おきに処理する。さらに別の実施形態では、ビームは横列もしくは縦列に関係無く点から点へと移動することが可能である。
【0051】
修復領域全体が処理されるとその後、ビームは消されて修復領域の開始部へと戻され、再び修復領域が処理される。一回の繰り返しの終了から次の開始への時間的遅延はリフレッシュ時間と称される。
【0052】
修復は通常では多数回の繰り返しを必要とする。通常では堆積は領域全体にわたる一回の長い持続時間の走査で実行されるわけではなく、なぜならば画素の表面上に吸着される堆積ガスはビームがそこに滞在している間に使い尽くされるからである。概して、前駆物質がイオン衝突領域付近のマスク表面上に吸着されない限り前駆物質ガスはイオンビームと反応しないと考えられる。したがってビームは吸着された前駆物質ガスの枯渇を避けるために画素から画素へと比較的迅速に移動しなければならず、リフレッシュ時間はビームの通過と通過の間に追加分の前駆物質ガスが吸着されることを可能にするように設定される。一層長い照射時間または一層短いリフレッシュ時間は吸着された前駆物質の一層大きな枯渇を可能にし、それゆえに、前駆物質ガスの分子を分解することによる厚さの増加に寄与することなく一層多くのガリウムが埋め込まれる。
【0053】
必要とされる減衰量を与える処理パラメータを判定する工程を開始するために、多数の約3.0μm×3.0μmの試験領域が工程420で堆積させられて透過率に与える照射時間およびリフレッシュ速度の効果を特性付ける。小さい試験領域では回折の影響がバルク(bulk)の透過率の測定に干渉するので、位相シフト量を判定するためよりも減衰量を判定するためにさらに大きな試験領域が使用される。試験領域のサイズは、試験領域全体を通してビームをラスタ走査させるために必要な時間が試験されるリフレッシュ時間よりも少なくなければならないという事実によって制限される。
【0054】
図11および図12は減衰量を判定するための異なる試験部位構成の例を示している。図11は石英領域の上のMoSiON1112、石英領域1114、および試験領域1116を有するマスク1110である。図12は石英1204上の多数の試験領域1202を示している。回折の影響を削減するために透過率を判定するための試験部位は位相シフト量を判定するための部位よりも大きい。堆積は約30kVの加速電圧を伴った集束イオンビーム、1.0mbarのTMCTS圧力、可変の酸素圧力、2.7pAのビーム電流を使用して実施された。所望の位相シフト量を与えるために必要とされる厚さに基づいて決定された照射量は0.160nC/μm2であり、0.02μmの画素間隔が使用された。
【0055】
照射時間およびリフレッシュ時間は異なる試験領域で変えられた。これらのパラメータはガリウム濃度に及ぼすそれらの影響を通じて堆積物の単位厚さ当たりの減衰量に影響を与えると考えられる。これらのパラメータと単位厚さ当たりの減衰量との間には相関があった。工程422で、試験領域の空間像がAIMSシステムを通じて観察され、修復領域全域にわたる平均、最小の強度が測定された。
【0056】
工程424で、側面計(profilometer)を使用して堆積領域の厚さが測定された。工程422で見出された減衰量の対数と、工程424で測定された厚さに対する単位厚さの比とを乗算して、その結果の逆対数をとることにより、工程426において単位厚さ当たりの減衰量が判定される。
【0057】
工程428で、単位厚さ当たりの減衰量と試験堆積時に変えられた処理パラメータの間の数学的関係が判定される。例えば、照射時間およびリフレッシュ時間に関連する単位厚さ当たりの減衰量に標準的な実験解析技法を使用することから数式を導き出すことが可能である。異なる用途で、他の因子を独立した変数として使用することが可能である。
【0058】
所望の位相シフト量を与えるために必要な厚さは以前に工程414で判定された。工程430では、工程414で判定された修復厚さで所望の減衰量を作り出すために必要とされる単位厚さ当たりの減衰量(減衰係数)が以下のように近似される。
【0059】
単位厚さ当たりの減衰係数=Exp[Loge(必要減衰量)/位相シフト量を与えるための厚さ×単位厚さ]
単位厚さ当たり必要な減衰量が分かると、工程428で見出された関係から処理パラメータ、すなわち照射時間とリフレッシュ時間を決定することが可能である。工程436では、工程426で決定された処理パラメータと工程414で判定された厚さを基にしてイオン照射量が決定される。工程438では技術者が工程436から得られるイオン照射量と工程434から得られる処理パラメータでFIB機械をプログラムし、修復を実行する。
【0060】
発明者らは上記で一般的な堆積方法の特定の実施形態の詳細を説明しているが、使用することが可能な代替策となる特性付けおよび最適化の方法があることは理解される。例えば、工程405から414の結果は(1)式を使用して推定することが可能であり、工程405〜414を省略することを可能にする。別の代替策は、必要な堆積厚さを識別する工程(工程405から414)の前に単位厚さ当たりの減衰量に与える処理パラメータの影響を特性付ける(工程420から428)ことである。工程410から414に述べられた分析を実行する代わりに、修復領域のAIMS捕捉像のスルーフォーカス分析を実行することが可能である。当業者は上記の工程と同じ目標を達成する他の代替策の方法に気付くであろう。そのような代替策の方法は本発明の範囲から逸脱するものではない。
【0061】
上記で述べられた工程は特定の位相シフト量および減衰量を達成するための処理パラメータの設定を決定する方法を示している。いったん厚さ、位相シフト量、および照射量の間の関係が識別され、かつ減衰量、照射時間、およびリフレッシュ時間の間の関係が識別されると、将来の修復をプログラムするためにそれらの関係を使用することが可能である。その後、追加的な特性付けの試験を殆ど伴わないかまたは全く伴わないで整合をとることができる位相シフト量と透過率の所望の組み合わせの或る範囲を達成するために処理は「調整される」ことが可能である。その結果、技術者は単に所望の位相シフト量と減衰量を指定するだけでよく、関係式を組み入れるプログラムが照射量および処理パラメータを決定して修復を達成することが可能であろう。図13は工程1302で修復技術者が所望の位相シフト量および減衰量を指定することしか必要とせず、処理パラメータが工程1304で自動的に決定されることを示している。その後、工程1306で修復は完了される。
【0062】
上記に示された複数の工程はガリウムの集束イオンビームによる堆積法に関して述べられているが、この教示は適切な処理パラメータを使用することによって電子ビームまたはレーザによる堆積法に応用することが可能である。
【0063】
図4Aおよび4Bの工程は、埋め込まれるガリウムの濃度に屈折率が無関係であり、それにより、埋め込みガリウムによって生じる減衰が堆積層の厚さおよび屈折率によって決定される位相シフト量に無関係に調節することが可能になることを想定している。この想定は位相シフト・マスクのための修復ツールによって堆積可能な様々な材料に関して有効である。
【0064】
図4Aおよび4Bの工程は図14に示される一般化された方法の一部であると考えることが可能であり、この一般化された方法はイオンビーム、電子ビーム、レーザ誘導、または他の局所的な堆積工程と共に使用するために適している。工程1402で、リソグラフィ波長で透明の石英領域に対して通常ではπラジアンを含む様々な所望の位相シフト量を透過光で実現するであろう(Gaを埋め込まれたSiOxのような)材料の厚さを決定するために実験が遂行される。工程1404では、別の方式で最適化された堆積方法の堆積材料の単位厚さ当たりの減衰量を1つまたは複数の処理パラメータの関数として特性付けるように設計された実験が遂行される。工程1406で、工程1404で測定されたパラメータ値の各々に関して、計算による照射量を使用して同じ厚さの修復材を堆積させることによって前の工程の結果が試験される。その後、透過率が測定され、位相シフト量が一連の堆積全般にわたって所望の位相シフト量から大幅に変わるかどうかを判定するために位相効果が分析される。工程1408で不純物の濃度に伴って位相シフト量が変化することが見出されれば、工程1410がそれら2つの関係を特性付け、所望の位相シフト量と減衰量から処理パラメータを決定するアルゴリズムがそれに従って調節される。その後、工程1414で、所望の出力パラメータに基づいて決定された処理パラメータで修復を実行することが可能である。
【0065】
不純物のレベルに伴って屈折率が大幅に変化する実施形態では、処理の因子と修復領域の位相シフト量および減衰量との間の関係を判定するために照射量、照射時間、および独立した変数としてのリフレッシュ時間、および応答する変数としての透過率と位相シフト量を使用して従来式の実験計画の技法に従うことが可能である。埋め込まれたガリウムは屈折率に無視可能な影響しか与えないので、計画された実験を実施例1の処理に適用することが上述と同様の結果を生じるであろう。不純物が屈折率を上昇させた場合、算出される厚さは減衰量およびそれゆえに不純物が増すにつれて減少するであろう。
【0066】
ガリウムが堆積することを誘発するガリウムイオンビームの不可欠な一部であるから、材料を堆積するためにガリウムイオンの集束ビームを用いることは必然的にガリウムを埋め込むことになり、また幾ばくかの減衰を引き起こす。他の実施形態で、例えば電子ビームもしくはレーザで誘発される堆積を使用するとき、位相シフト材料の堆積は減衰を殆ど伴わないか、または全く伴わないで実行することが可能である。そのようなケースでは、位相シフト量を整合させるための処理パラメータと減衰量を整合させるための処理パラメータを独立して決定するモデルは一層正確である。
【0067】
本発明の好ましい実施形態では、堆積材料は欠落材料の位相シフト特性および減衰特性の両方に正確に一致するかまたは密接に一致する。本発明の代替選択肢の実施形態は、欠落材料の位相シフト特性および減衰特性に部分的に一致する材料を堆積させることが可能である。欠落材料の所望の特性に部分的に一致することが、欠陥を未修復で放置するよりも良好に、かつ欠落材料を不透明材料で置き換える従来式の修復方法よりも良好に損傷PSMの空間像の品質を向上させることが可能である。本発明の実施形態は、本発明の実施の物理的な制限がマスクから欠落する材料の特性への正確な一致を妨げるとき、堆積物を修復のための光学特性の最善の組み合わせに調整することが可能である。本発明の実施形態はまた、同様に他の理由で欠落材料のそれらと一致しない特性を備えた材料を堆積させるように調整されることも可能である。
【0068】
本発明の或る実施形態では、6%の透過率であり、かつ透過光において180°の位相シフト量を誘発するはずの吸収材料の欠落から成る欠陥を備えたPSMによって位相および透過の特性の不正確な整合が具体的に示される。このマスクのケースでは、4%の透過率と160°の位相シフト(+/−2%以内の透過率、+/−20度以内の位相シフト)を伴う材料を堆積させることよりも5%の透過率と170°の位相シフト(+/−1%以内の透過率、+/−10度以内の位相シフト)を伴う材料を堆積させることが好ましく、それよりも6%に近い透過率と180°に近い位相シフトを伴う材料を堆積させることが好ましい。しかしながら、3通りのケースすべてが本発明の実施形態の例である。出願人らは本発明の実施形態が広範な光学特性を備えた吸収材料でPSMを修復するために使用されるであろうと予期しており、PSMは6%、8%、20%、50%、および100%を含めたいずれかの有用な透過率、および60度、120度、180度、および270度を含めた有用ないずれかの位相シフトを伴う吸収材料を有する可能性が高い。整合精度は優先度が高まる順に+/−で(例えば10%の設計透過率を備えたマスク、入射光を3%と17%の間で透過する堆積材料に関して)設計透過率の70%、50%、30%、20%、10%、5%、2%、または1%以内であることが好ましく、位相シフト量の整合精度は優先度が高まる順に設計位相シフト量の90°、60°、30°、20°、10°、5°、3°、または1°以内であることが好ましい。
【0069】
前駆物質を分解して材料を堆積させるためのエネルギーを供給するために電子ビームまたはレーザが使用されるいくつかの実施形態では、堆積材料を表面の中に埋め込むためにイオンを使用することが可能である。
【0070】
本願明細書で使用される「光」という用語はスペクトルの可視部分内の放射に限定されるわけではなく、紫外線またはX線といったいずれの曝露放射も含むことが可能である。
【0071】
出願人らはまた、シロキサン化合物が不透明材料を堆積させるために使用されることもやはり可能であることを見出した。例えば、酸素を導入せずにTMCTSガスを使用して堆積を誘発するためにFIBを使用することでフォトマスク上の欠落した不透明吸収材料の置き換えのための不透明材料の層を堆積させることが可能である。この堆積材料の透過率は本質的にゼロである。
【0072】
欠落不透明材料の置き換えのために調整されるFIB修復方法の一例は以下のパラメータを使用することが可能である。
【0073】
【表3】

【0074】
修復材を欠落材料と位置合わせし、かつ修復材のエッジでのエッジ効果を補償するために多くの知られている技術が使用されることを当業者は理解するであろう。これらの技術はよく知られており、本願明細書には述べられない。
【0075】
本発明とその利点が詳細に述べられてきたけれども、添付の特許請求項で規定される本発明の精神および範囲から逸脱することなく様々な変形例、置き換え、および代替例が為され得ることは理解されるはずである。本発明は多数の目的を達成するものであり、多様な用途で多様な目的のために本発明が使用され得るので添付の特許請求項の範囲内にあるすべての実施形態がすべての目的を達成するわけではない。さらに本出願の範囲は本願明細書に述べられた処理、機械、製造、物質の組成、手段、方法、および工程の特定の実施形態に限定されるように意図されない。当業者は本発明の開示から、本願明細書に述べられた実施形態と実質的に同じ機能を果たすかまたはその実施形態に対応する実質的に同じ結果を達成する既存、または後に開発される処理、機械、製造、物質の組成、手段、方法、または工程を本発明に従って利用することが可能であることを容易に理解するであろう。したがって、添付の特許請求項がその範囲の中にそれらの処理、機械、製造、物質の組成、手段、方法、または工程を含むように意図される。
【図面の簡単な説明】
【0076】
【図1】線とスペースのパターンを有するフォトリソグラフィ用マスクの一部分を示す図である。
【図2】図1のマスク部分の理想的な空間像を示す図である。
【図3】図1に類似しているが吸収材料欠落の欠陥を有するマスク・パターンを示す図である。
【図4A】処理パラメータを特徴付け、かつ所望の位相シフト量と減衰の材料を堆積させることによって欠陥を修復する好ましい方法の複数の工程を示す図である。
【図4B】処理パラメータを特徴付け、かつ所望の位相シフト量と減衰の材料を堆積させることによって欠陥を修復する好ましい方法の複数の工程を示す図である。
【図5】所望の位相シフト量と減衰を与えるための材料の堆積によって修復された欠陥の三次元画像を示す図である。
【図6】図5の修復部の断面を縦方向に縮尺拡大して示す図である。
【図7】図5の修復部の断面を示す図である。
【図8】修復された部分の空間像を示す図である。
【図9】図8の空間像から由来する線に沿って光の強度を示す図である。
【図10】いくつかの試験点に関して相対的透過に対する堆積厚さを示し、かつ試験点に合致した理論的な線を示す図である。
【図11】様々な処理パラメータでの減衰を測定するために使用されるテストパターンを示す図である。
【図12】様々な処理パラメータでの減衰を測定するために使用される別のテストパターンを示す図である。
【図13】処理パラメータが特性付けされた後に本発明に従ってハーフトーン型位相シフト・マスクを修復する工程を示す図である。
【図14】処理パラメータを決定するために一般化された方法を記述する図である。

【特許請求の範囲】
【請求項1】
特定の光波長で特定の位相シフト量および透過率を有する材料を局所的に堆積させる方法であって、
基板に対して所望の非ゼロの位相シフト量を与える厚さを有する材料を局所領域内に堆積させる工程と、
特定の波長で設計当初の位相シフト量および透過率と類似した透過率および非ゼロの位相シフト量を与えるように前記堆積材料を通る際の透過率を低下させるがしかし遮蔽しない不純物を前記堆積材料の中に組み入れる工程とを含む方法。
【請求項2】
不純物を組み入れる工程が、マスク修復システム内に不可避的または非意図的に存在する不純物を組み入れる工程を含む、請求項1に記載の方法。
【請求項3】
不純物を組み入れる工程が、マスク修復システム内に意図的に導入される不純物を組み入れる工程を含む、請求項1に記載の方法。
【請求項4】
材料を堆積させる工程がエネルギーの局所的適用によって堆積を誘発させる工程を含む、請求項1に記載の方法。
【請求項5】
材料を堆積させる工程がビームで誘発する堆積を使用して材料を堆積させる工程を含む、請求項4に記載の方法。
【請求項6】
材料を堆積させる工程が、前駆物質を分解して材料を堆積させるためにイオンビーム、電子ビーム、またはレーザ・ビームを使用して材料を堆積させる工程を含む、請求項5に記載の方法。
【請求項7】
不純物を組み入れる工程が、堆積処理の必須部分ではない不純物を組み入れる工程を含む、請求項6に記載の方法。
【請求項8】
不純物を組み入れる工程が、堆積処理中に不可避的に前記前駆物質と組み合わされる不純物を組み入れる工程を含み、前記堆積材料の光学特性に影響を及ぼす前記不純物の濃度、または不純物の他の特性を処理パラメータを使用して制御することが可能である、請求項6に記載の方法。
【請求項9】
前記前駆物質がシロキサン化合物を含むガスである、請求項6に記載の方法。
【請求項10】
前記前駆物質が炭素を含むガスである、請求項6に記載の方法。
【請求項11】
不純物を組み入れる工程が、炭素を前記堆積材料の中に組み入れるために分解する炭素含有ガスを前記前駆ガスと混合する工程を含む、請求項2に記載の方法。
【請求項12】
前記炭素含有ガスがスチレンを含む、請求項11に記載の方法。
【請求項13】
前記堆積材料がケイ素および酸化物を含む、請求項12に記載の方法。
【請求項14】
前駆物質の分解を誘発するためにガリウムイオンのビームを使用して材料を堆積させる工程が、酸素または酸素担持化合物と組み合わせてシロキサン化合物の分解を誘発するためにガリウムイオンのビームを使用する工程を含む、請求項13に記載の方法。
【請求項15】
前記堆積材料が窒素担持化合物と組み合わせてケイ素を含む、請求項12に記載の方法。
【請求項16】
材料を堆積させる工程が、前駆物質の分解を誘発するために電子のビームを使用して材料を堆積させる工程を含む、請求項1に記載の方法。
【請求項17】
前記堆積材料がケイ素および酸化物を含む、請求項16に記載の方法。
【請求項18】
前駆物質の分解を誘発するために電子のビームを使用して材料を堆積させる工程が、酸素または酸素担持化合物と組み合わせてシロキサン化合物の分解を誘発するために電子のビームを使用する工程を含む、請求項16に記載の方法。
【請求項19】
前記堆積材料が窒素担持化合物と組み合わせてケイ素を含む、請求項16に記載の方法。
【請求項20】
材料を堆積させる工程が、前駆物質の分解を誘発するために電子のビームまたはレーザ・ビームを使用して材料を堆積させる工程を含み、かつイオンを使用して材料を堆積させる工程を含む、請求項1に記載の方法。
【請求項21】
前記イオンが、前記電子のビームまたはレーザ・ビームで誘発される分解によって堆積された前記材料の中に埋め込まれ、前記イオンビームが実質的に前記堆積材料を分解しない、請求項20に記載の方法。
【請求項22】
前記イオンが前駆物質の分解を誘発するために使用され、前記イオンが、前記堆積材料の透過率を下げる不純物として前記堆積材料の中に組み入れられる、請求項20に記載の方法。
【請求項23】
不純物が、前記電子ビームまたはレーザ・ビームによって分解された前記前駆物質の中に導入される、請求項20に記載の方法。
【請求項24】
前記前駆物質の中に不純物を導入する工程が炭素を含有するガスを供給する、請求項23に記載の方法。
【請求項25】
前記ガスがスチレンを含む、請求項24に記載の方法。
【請求項26】
ビーム堆積法を使用して材料を堆積させる工程が走査プローブ顕微鏡を使用して材料を堆積させる工程を含む、請求項1に記載の方法。
【請求項27】
吸収材料を通過しない入射光と比較して位相シフトされた入射光の一部を透過させる前記吸収材料の領域を有するハーフトーン型位相シフト・リソグラフィ・マスクであって、
入射光を減衰させ、前記吸収材料を通過しない入射光と比較して位相シフトされた入射光の一部を透過させる第1の吸収材料の領域と、
吸収材料を有する前記領域と比較して大幅な減衰を伴わずに入射光を透過させる吸収材料を欠いた領域と、
前記第1の吸収材料とは異なる組成を有する第2の吸収材料の少なくとも1つの領域とを有し、前記第2の吸収材料が前記入射光を減衰させ、吸収材料を欠いている領域を通過する入射光と比較して位相シフトされた入射光の一部を透過させ、前記少なくとも1つの第2の吸収材料の領域を通る減衰量と位相シフト量が、不透明材料よりも前記第1の吸収材料に近い空間像を作り出すように前記第1の吸収材料の減衰量と位相シフト量とほぼ同じであるマスク。
【請求項28】
前記第1の吸収材料の前記領域が第1の厚さを有し、前記第2の吸収材料の前記領域が第2の厚さを有し、前記第1および第2の厚さが異なる、請求項27に記載のハーフトーン型位相シフト・リソグラフィ・マスク。
【請求項29】
前記第1の吸収材料がMoSiONを含み、前記第2の吸収材料が不純物を組み入れられたSiOxを含む、請求項27に記載のハーフトーン型位相シフト・リソグラフィ・マスク。
【請求項30】
前記組み入れられた不純物がガリウムまたは炭素を含む、請求項29に記載のハーフトーン型位相シフト・リソグラフィ・マスク。
【請求項31】
修復領域の当初の設計の位相シフト量および透過率と同様の位相シフト量および透過率を有する前記修復領域を作り出すようにハーフトーン型位相シフト・マスク上の欠陥を修復する方法であって、
欠陥のあるマスク領域の設計された位相シフト量をほぼ回復するような堆積材料の厚さで材料を局所的に堆積させる工程と、
設計当初と類似した透過率および位相シフト量を与えるように前記堆積材料の透過率を低下させる不純物を前記堆積材料の中に組み入れる工程とを含む方法。
【請求項32】
材料を局所的に堆積させる工程がガリウムイオン・ビームによる堆積法を使用する工程を含み、不純物を前記堆積材料の中に組み入れる工程がケイ素および酸素を含む材料の中にガリウムを組み入れる工程を含む、請求項31に記載の方法。
【請求項33】
不純物を前記堆積材料の中に組み入れる工程が炭素を組み入れる工程を含む、請求項31に記載の方法。
【請求項34】
前記マスクが設計波長で設計された位相シフト量および設計透過率を有し、前記組み入れられた不純物を含む前記堆積材料が前記設計波長で前記設計された位相シフト量に対して60度以内の位相シフト量、および前記設計波長で前記設計減衰量の5パーセント以内の減衰量を作り出す、請求項31に記載の方法。
【請求項35】
前記マスクが設計波長で設計さらた位相シフト量および設計透過率を有し、前記組み入れられた不純物を含む前記堆積材料が前記設計波長で前記設計された位相シフト量に対して20度以内の位相シフト量、および前記設計波長で前記設計減衰量の2パーセント以内の減衰量を作り出す、請求項31に記載の方法。
【請求項36】
組み入れられた不純物を含む前記堆積材料が前記設計波長で約180度の位相シフト量および約94パーセントの減衰量を作り出す、請求項31に記載の方法。
【請求項37】
材料を局所的に堆積させる工程が、堆積を誘発するようにイオンビーム、電子ビーム、またはレーザ・ビームを方向付ける工程を含む、請求項31に記載の方法。
【請求項38】
請求項28に記載の処理に従って修復されるリソグラフィ・マスク。
【請求項39】
特定の位相シフト量および透過率を有する材料を局所的に堆積させる方法であって、
所望の位相シフト量を与えるような厚さを有する材料を局所領域に堆積させる工程と、
設計当初と類似した透過率および位相シフト量を与えるように前記堆積材料の前記透過率を下げる不純物を前記堆積材料の中に組み入れる工程とを含む方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2006−139282(P2006−139282A)
【公開日】平成18年6月1日(2006.6.1)
【国際特許分類】
【出願番号】特願2005−324895(P2005−324895)
【出願日】平成17年11月9日(2005.11.9)
【出願人】(501419107)エフ・イ−・アイ・カンパニー (78)
【Fターム(参考)】