説明

環境に優しい無電解銅組成物

【課題】ホルムアルデヒドを含まず、環境に優しい無電解銅組成物を提供する。
【解決手段】1以上の銅イオン源と、1以上のチオカルボン酸と、グリオキシル酸およびその塩と、組成物をアルカリ性に維持するための1以上のアルカリ性化合物とを含み、チオカルボン酸が、下記式を有する組成物を用いて無電解メッキを行う。 HS−(CX1)r−(CHX2)s−COOH(式中、X1は−Hまたは−COOHであり、X2は−Hまたは−SHであり、rおよびsは正の整数であり、rが0〜2、または0または1であり、sが1または2である)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は環境に優しいアルカリ性無電解銅組成物を対象とする。さらに詳細には、本発明は改善された銅組成物を提供する環境に優しいアルカリ性無電解銅組成物を対象とする。
【背景技術】
【0002】
浴としても知られている無電解銅メッキ組成物は、様々な種類の基体に銅を堆積させるため、メタライゼーション産業において広範に使用されている。例えば、プリント配線板の製造においては、無電解銅浴は、その後に行われる電解銅メッキの基礎としてスルーホールおよび回路パス中に銅を堆積させるために使用されている。また、無電解メッキは、装飾プラスチック産業において、必要に応じて更に銅、ニッケル、金、銀および他の金属をメッキするための基礎として、非導電性の表面上に銅を堆積させるためにも使用されている。今日商業的に使用されている典型的な浴は、二価銅化合物、それらの二価銅イオンに対するキレート化剤または錯化剤、ホルムアルデヒド還元剤、ならびに浴をより安定化させ、メッキ速度を調節し、および銅堆積物に光沢性を持たせるための様々な添加剤を含んでいる。このような多くの浴は首尾よく広範に使用されているが、メタライゼーション産業は、ホルムアルデヒドが本質的に有する毒性のため、ホルムアルデヒドを含んでいない代替的な無電解銅メッキ浴を探し求めている。
【0003】
ホルムアルデヒドは、目、鼻および上気道に対する刺激物質であることが知られている。動物実験は、ホルムアルデヒドがインビトロ突然変異誘発であることを示している。監視委員会の報告(WATCH/2005/06−化学品管理作業のワーキンググループ−UK健康および安全委員会の副委員会(Working group on Action to Control Chemicals−sub comittee with UK Health and Safety Commission))によれば、2000年以前に実施された50件以上もの疫学的研究は、ホルムアルデヒドと鼻咽腔/鼻腔癌との関連性を示唆したが、決定的ではなかった。しかし、米国のIARC(国際癌研究機関(International Agency for Research on Cancer))により実施されたより最近の研究は、ホルムアルデヒドがヒトにおける鼻咽腔癌の原因であることを示す充分な疫学的証拠が存在したことを示した。その結果として、INRS(フランスの機関)は、ホルムアルデヒドをカテゴリー3からカテゴリー1の発癌性物質へ再分類すべく、分類・表示欧州委員会の作業グループ(European Community Classification and Labelling Work Group)に提案書を提出した。これは、無電解銅配合物における使用および取り扱いを含め、ホルムアルデヒドの使用および取り扱いを一層制限する。従って、メタライゼーション産業においては、ホルムアルデヒドに取って代わる同等または改善された還元剤に対するニーズが存在する。そのような還元剤は、現存する無電解銅プロセスと適合するものでなければならず、望ましい能力および信頼性をもたらし、原価目標に見合ったものでなければならない。
【0004】
次亜リン酸塩がホルムアルデヒドに対する代替物として提案されている。しかし、この化合物を含有する浴のメッキ速度は一般的に遅すぎる。例えば水素化ホウ素塩およびジメチルアミンボラン(DMAB)などの化合物が還元剤として含められている。しかし、そのようなホウ素含有化合物の試みの成功率は様々であった。更に、これらの化合物はホルムアルデヒドよりも高価であり、また、健康上および安全上の問題も有している。DMABは有毒である。その上、結果として生じるホウ酸塩は、環境に放出されると農作物へ悪影響を与える。
【0005】
環境に対する問題に加えて、メタライゼーション産業は、成分の非適合性に起因してメッキ浴の安定性に対して悪い影響を与えることのない代替の還元剤を必要とする。さらに、浴は、浴の安定性と銅堆積物の品質に関して工業基準を満足しなければならない。浴は銅酸化物の沈殿物を形成すべきではない。銅の堆積物は少なくともバックライト値の工業規格を満足し、相互接続欠陥(ICD)の形成の可能性を無くしまたは低減しなければならない。
【0006】
典型的に、4より大きいバックライト値は無電解銅浴が基板上に十分均一な銅層を堆積して確実な電気伝導率を提供することを示す。さらに、かかる値は良好な銅接着を示す。不充分な接着は典型的に電子物品のICDを招く。例えば、プリント配線板のスルーホール壁上において、良好な接着を備える均一な銅堆積物が非常に不可欠である。スルーホール壁上への均一な銅堆積は多層プリント配線板における隣接配線基板間の最適な電気的連絡を可能にする。良好な接着は基板間のICD(すなわち、堆積された銅内層間の界面での暗線)を防止する。欠陥銅堆積に起因する電気物品中の2つの隣接基板間の不十分な電気的連絡は、該物品の動作不良をもたらす。したがって、良好なバックライト値を有する無電解銅浴が、メタライゼーション産業にとって不可欠である。
【0007】
米国特許第6,660,071号は、ホルムアルデヒドを含まない無電解銅浴を開示する。無電解銅浴はホルムアルデヒドの代替としてグリオキシル酸を含む。また、該無電解銅浴は還元剤の酸化反応を加速する反応促進剤としてカルボン酸も含む。かかる酸は、グリコール酸、酢酸、グリシン、シュウ酸、コハク酸、リンゴ酸、マロン酸、クエン酸、およびニトリロ三酢酸である。該浴は、還元剤としてホルムアルデヒドを含む浴と等しいメッキ反応速度を有するとされている。
【特許文献1】米国特許第6,660,071号明細書
【発明の開示】
【発明が解決しようとする課題】
【0008】
ホルムアルデヒドを含まない無電解銅浴は存在するが、ホルムアルデヒドを含まず、かつ環境に優しく、かつ産業的に許容される銅堆積物を提供する無電解銅浴の必要性が今もなお存在する。
【課題を解決するための手段】
【0009】
一態様において、組成物は、1以上の銅イオン源と;1以上のチオカルボン酸と;グリオキシル酸およびその塩と;組成物をアルカリ性に維持するための1以上のアルカリ性化合物と;を含む。
【0010】
他の態様において、方法は、(a)基体を提供し;(b)1以上の銅イオン源と、1以上のチオカルボン酸と、グリオキシル酸およびその塩と、組成物をアルカリ性に維持する1以上のアルカリ性化合物とを含む無電解銅組成物を用いて、基体上に無電解的に銅を堆積すること;を含む。
【0011】
さらに他の態様において、方法は、(a)複数のスルーホールを有するプリント配線板を提供し;(b)スルーホールをデスミア処理し、(c)1以上の銅イオン源と、1以上のチオカルボン酸と、グリオキシル酸およびその塩と、組成物をアルカリ性に維持するための1以上のアルカリ性化合物とを含む無電解銅組成物を用いて、スルーホールの壁上に銅を堆積することを含む。
【0012】
さらに他の態様において、無電解銅組成物は基体上に銅合金を堆積するための1以上の追加の金属イオンを含むことができる。かかる追加の金属イオンには、スズおよびニッケルが包含される。
【発明を実施するための最良の形態】
【0013】
本無電解銅組成物は、ホルムアルデヒドを含まず、環境に優しく、且つ安定である。環境に優しい無電解銅組成物は4を越えるバックライト値で示されるような均一な銅堆積物を提供する。さらに、銅堆積物はICDが無いことで示されるように、その基板に良好な接着を有する。
【0014】
図はスルーホール壁の銅被覆率の量を示すための欧州バックライト等級スケール(European Backlight Grading Scale)の0〜5を示す。
【0015】
この明細書全体を通じ、使用されている場合、以下で与えられている省略記号は、文脈が他を明確に示していない限り、以下の意味を有している:g=グラム;mg=ミリグラム;ml=ミリリットル;L=リットル;cm=センチメートル;m=メートル;mm=ミリメートル;μm=ミクロン;min.=分;s=秒;ppm=百万分の1部;℃=摂氏度;M=モル;g/L=1リットルあたりグラム;wt%=重量パーセント;T=ガラス転移温度;ダイン=1g−cm/s=(10−3Kg)(10−2m)/s=10−5ニュートン。
【0016】
「プリント回路基板」および「プリント配線板」という用語は、この明細書全体を通じ、互換可能に使用される。「メッキ」および「堆積」という用語は、この明細書全体を通じ、互換可能に使用される。ダインは力の単位である。すべての量は、他に注記されていない限り、重量百分率である。すべての数値範囲は、境界値を含み、且つかかる数字範囲が合計して100%に制限されることが論理的である場合を除き、任意の順序で組合せ可能である。
【0017】
アルカリ性無電解銅組成物はホルムアルデヒドを含まず、かつ環境に優しい。アルカリ性無電解銅組成物は基体上に良好な接着を有する均一な銅堆積物を提供する。アルカリ性無電解銅組成物は1以上の銅イオン源と、1以上のチオカルボン酸と、グリオキシル酸およびその塩と、組成物をアルカリ性に維持するための1以上のアルカリ性化合物とを含む。また、組成物中に通常の添加剤が含まれてもよい。添加剤には、これらに制限されないが、1以上の錯化剤;酸化防止剤;安定剤(例えば機械的特性を調節し、速度制御を提供し、粒子構造を微細化し、及び堆積物の応力修正を行う安定剤など);緩衝剤;界面活性剤;および1以上の合金化金属源;が包含される。
【0018】
銅イオン源には、これらに限定するものではないが、水溶性のハロゲン化物、硝酸塩、酢酸塩、硫酸塩、ならびに他の有機および無機の銅の塩が包含される。1以上のかかる銅塩の混合物を、銅イオンをもたらすために用いてもよい。例としては、硫酸銅(例えば硫酸銅五水和物など)、塩化銅、硝酸銅、水酸化銅およびスルファミン酸銅が挙げられる。通常の量の銅塩が本組成物において用いられ得る。本組成物における銅イオン濃度は、0.5g/L〜30g/Lの範囲であってよく、または例えば1g/L〜20g/Lなど、もしくは例えば5g/L〜10g/Lなどの範囲であってよい。
【0019】
キレート化剤は1以上のチオカルボン酸から選択される。かかる酸には、これに限定されるわけではないが、下記式を有する化合物が包含される:
HS−(CX−(CHX−COOH
式中、Xは−Hまたは−COOHであり;Xは−Hまたは−SHであり;rおよびsは正の整数であり、rは0〜2、または0、または1、及びsが1または2である。かかるチオカルボン酸の例はチオグリコール酸、チオプロピオン酸、チオリンゴ酸およびジチオジコハク酸(dithiodisuccinic acid )である。かかるチオカルボン酸は、グリオキシル酸およびその塩と相溶性であり、及び銅酸化物の形成を防止することによって無電解銅組成物を安定化する。チオカルボン酸は無電解銅組成物中に0.01ppm〜20ppm、または例えば0.25ppm〜10ppm、または例えば0.5ppm〜5ppmなどの量で含まれる。
【0020】
グリオキシル酸およびその塩は還元剤として機能し、環境に不利な発癌性物質として知られるホルムアルデヒドに取って代わる。グリオキシル酸は発癌性物質ではない。グリオキシル酸は10g/L〜100g/L、または例えば20g/L〜80g/L、または例えば30g/L〜60g/Lなどの量で含まれる。
【0021】
また、組成物中には界面活性剤を含むことができる。組成物中には通常の界面活性剤を含むことができる。かかる界面活性剤には、イオン性、例えばカチオン性およびアニオン性界面活性剤など、非イオン性、並びに両性界面活性剤が包含される。界面活性剤の混合物を用いてもよい。界面活性剤は組成物中に0.001g/L〜50g/L、または例えば0.01g/L〜50g/Lなどの量で含むことができる。
【0022】
カチオン性界面活性剤には、これらに限定されないが、テトラアルキルアンモニウムハライド、アルキルトリメチルアンモニウムハライド、ヒドロキシエチルアルキルイミダゾリン、アルキルベンズアルコニウムハライド、アルキルアミンアセテート、アルキルアミンオレエート、およびアルキルアミノエチルグリシンが包含される。
【0023】
アニオン性界面活性剤には、これらに限定されないが、アルキルベンゼンスルホネート、アルキルまたはアルコキシナフタレンスルホネート、アルキルジフェニルエーテルスルホネート、アルキルエーテルスルホネート、アルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル、ポリオキシエチレンアルキルフェノールエーテル硫酸エステル、高級アルコールリン酸モノエステル、ポリオキシアルキレンアルキルエーテルリン酸(リン酸塩)およびアルキルスルホコハク酸塩が包含される。
【0024】
両性界面活性剤には、これらに限定されないが、2−アルキル−N−カルボキシメチルまたはエチル−N−ヒドロキシエチルまたはメチルイミダゾリウムベタイン、2−アルキル−N−カルボキシメチルまたはエチル−N−カルボキシメチルオキシエチルイミダゾリウムベタイン、ジメチルアルキルベタイン、N−アルキル−β−アミノプロピオン酸またはその塩、および脂肪酸アミドプロピルジメチルアミノ酢酸ベタインが包含される。
【0025】
典型的に界面活性剤は非イオン性である。非イオン性界面活性剤には、これらに限定されないが、アルキルフェノキシポリエトキシエタノール、20〜150繰り返し単位を有するポリオキシエチレンポリマー、およびポリオキシエチレンとポリオキシプロピレンのブロックコポリマーが包含される。界面活性剤は通常の量で用いることができる。
【0026】
酸化防止剤には、これらに限定されないが、1つまたは複数の水素原子が、−COOH、−SOH、低級アルキルまたは低級アルコキシ基で置換されていても、されていなくてもよい、1水酸基の、2水酸基の及び3水酸基のフェノール、ハドロキノン、カテコール、レゾルシノール、キノール、ピロガロール、ヒドロキシキノール、フロログルシノール、グアヤコール、没食子酸、3,4−ジヒドロキシ安息香酸、フェノールスホン酸、クレゾールスルホン酸、ヒドロキノンスルホン酸、カテコールスルホン酸、チロン、およびそれらの塩が包含される。酸化防止剤は組成物中に通常の量で含まれる。
【0027】
無電解銅メッキ組成物中にはpHを少なくとも9に維持するためにアルカリ性化合物が含まれる。pHが増加すると還元剤についての酸化電位がより負にシフとされ、銅堆積が熱力学的に好ましいものになるため、高いアルカリ性pHが望ましい。典型的に、無電解銅メッキ組成物は10〜14のpHを有する。より典型的には、本無電解銅メッキ組成物は11.5〜13.5のpHを有している。
【0028】
熱動力学的に好ましいpH範囲内のアルカリ性組成物を提供する1以上の化合物が用いられる。アルカリ性化合物には、これらに限定するものではないが、一以上のアルカリ性水酸化物、例えば水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムなどが包含される。典型的には、水酸化ナトリウム、水酸化カリウムまたはそれらの混合物が使用される。より典型的には、水酸化カリウムが使用される。このような化合物は5g/L〜100g/Lの量で使用されてよく、または例えば10g/L〜80g/Lなどの量で使用されてよい。
【0029】
また、銅の合金を形成するため、本無電解組成物に一以上の合金化金属も含めることができる。かかる合金化金属には、これらに限定するものではないが、ニッケルおよびスズが包含される。銅合金の例としては、銅/ニッケルおよび銅/スズが挙げられる。典型的には、銅合金は銅/ニッケルである。
【0030】
ニッケルイオン源には、一以上の通常の水溶性のニッケルの塩が包含され得る。ニッケルイオン源には、これらに限定するものではないが、硫酸ニッケルおよびハロゲン化ニッケルが包含される。また、ニッケルイオン源は、本無電解合金化組成物に通常の量で含められ得る。典型的には、ニッケルイオン源は0.5g/L〜10g/Lの量で含められ、または例えば1g/L〜5g/Lなどの量で含められる。
【0031】
スズイオン源には、一以上の通常の水溶性のスズの塩が包含され得る。スズイオン源には、これらに限定するものではないが、硫酸スズ、ハロゲン化スズおよび有機スルホン酸スズが包含される。スズイオン源は、本無電解組成物に通常の量で含められ得る。典型的には、スズイオン源は0.5g/L〜10g/Lの量で含められ、または例えば1g/L〜5g/Lなどの量で含められる。
【0032】
アルカリ性無電解銅および銅合金組成物中には、それらを最適な性能に調整する他の添加剤を含ませることができる。かかる添加剤の多くは無電解銅及び銅合金組成物について通常のものであり、かつ当分野においてよく知られている。
【0033】
任意選択的な通常の添加剤には、これらに限定されるわけではないが、硫黄含有化合物、例えばメルカプトピリジン、メルカプトベンゾチアゾール、チオ尿素など;ピリジン、プリン、キノリン、インドール、インダゾール、イミダゾール、ピラジン、およびその誘導体などの化合物;アルコール、例えばアルキンアルコール、アリルアルコール、アリールアルコール、および環状フェノールなど;ヒドロキシ置換芳香族化合物、例えばメチル−3,4,5−トリヒドロキシベンゾエート、2,5−ジヒドロキシ−1,4−ベンゾキノン、および2,6−ジヒドロキシナフタレンなど;カルボン酸、例えばクエン酸、酒石酸、コハク酸、リンゴ酸、マロン酸、乳酸、酢酸およびされらの塩など;アミン;アミノ酸;水溶性金属化合物、例えば金属塩化物および硫酸塩など;のシリコン化合物、例えばシラン、シロキサン、および低〜中間分子量のポリシロキサンなど;ゲルマニウムならびにその酸化物およびハロゲン化物;ポリアルキレングリコール、セルロース化合物、アルキルフェニルエトキシラートおよびポリオキシエチレン化合物;並びに安定剤、例えばピリダジン、メチルピペリジン、1,2−ジ−(2−ピリジル)エチレン、1,2−ジ−(ピリジル)エチレン、2,2’−ジピリジルアミン、2,2’−ビピリジル、2,2’−ビピリミジン、6,6’−ジメチル−2,2’−ジピリジル、ジ−2−ピリルケトン、N,N,N’,N’−テトラエチレンジアミン、ナフタレン、1,8−ナフチリジン、1,6−ナフチリジン、テトラチアフルバレン、ターピリジン、フタル酸、イソフタル酸、および2,2’−二安息香酸など;が包含される。かかる添加剤は、無電解銅組成物中に0.01ppm〜1000ppm、または例えば0.05ppm〜10ppmなどの量で含むことができる。
【0034】
他の通常の添加剤には、これらに限定するものではないが、ロッシェル塩、エチレンジアミン四酢酸のナトリウム塩、ニトリロ酢酸およびニトリロ酢酸のアルカリ金属塩、トリエタノールアミン、修飾されたエチレンジアミン四酢酸、例えばN−ヒドロキシエチレンジアミン三酢酸など、ヒドロキシアルキル置換ジアルカリトリアミン、例えばペンタヒドロキシプロピルジエチレントリアミンなど、および種々の化合物、例えばN,N−ジカルボキシメチルL−グルタミン酸四ナトリウム塩などが包含され得る。また、s,s−エチレンジアミン二コハク酸およびN,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン(エチレンジニトリロ)テトラ−2−プロパノールも包含され得る。このような添加剤は、典型的には、溶液中に銅(II)を維持するための錯化剤として機能する。そのような錯化剤は本組成物に通常の量で含められ得る。典型的には、かかる錯化剤は1g/L〜50g/Lの量で含められ、または例えば10g/L〜40g/Lなどの量で含められる。
【0035】
アルカリ性無電解銅組成物を用いて導電性基体および非導電性基体のどちら上にも銅を堆積させることができる。アルカリ性無電解銅組成物は、当分野に既知の多くの通常方法において用いられ得る。典型的に、銅堆積は20℃〜80℃の温度で行われる。さらに典型的には、無電解組成物は30℃〜60℃の温度で銅を堆積する。銅によってメッキされる基体は無電解組成物中へ浸漬するか、無電解組成物が基体上に噴霧される。通常のメッキ時間を用いて基板上に銅を堆積することができる。堆積は5秒〜30分間とすることができるが、メッキ時間は所望の銅厚さに応じて変化し得る。
【0036】
基体は、これらに限定するものではないが、無機および有機の基体を含む種々の材料、例えばガラス、セラミックス、磁器、樹脂、紙、布およびそれらの材料の組合せなどを包含する。メタルクラッドおよびアンクラッド材料(metal−clad and unclad materials)も、本無電解銅および銅合金組成物でメッキされ得る基体である。
【0037】
また、基体には、プリント回路基板も包含される。かかるプリント回路基板には、繊維、例えば繊維ガラスなどをはじめとして、熱硬化性樹脂、熱可塑性樹脂およびそれらの組合せを伴うメタルクラッドおよびアンクラッド、ならびに前述の材料の含浸された実施形態を伴うメタルクラッドおよびアンクラッドが包含される。
【0038】
熱可塑性樹脂には、これらに限定するものではないが、アセタール樹脂、アクリル系、例えばアクリル酸メチルなど、セルロース樹脂、例えば酢酸エチル、プロピオン酸セルロース、酢酸酪酸セルロースおよび硝酸セルロースなど、ポリエーテル、ナイロン、ポリエチレン、ポリスチレン、スチレンブレンド、例えばアクリロニトリルスチレンおよびコポリマー、ならびにアクリロニトリル−ブタジエンスチレンコポリマーなど、ポリカーボネート、ポリクロロトリフルオロエチレン、ならびにビニルポリマーおよびコポリマー、例えば酢酸ビニル、ビニルアルコール、ビニルブチラール、塩化ビニル、ビニルクロライドアセテートコポリマー、塩化ビニリデンおよびビニルホルマールなどが包含される。
【0039】
熱硬化性樹脂には、これらに限定するものではないが、フタル酸アリル、フラン、メラミン−ホルムアルデヒド、フェノール−ホルムアルデヒドおよびフェノール−フルフラールコポリマー、の単独、またはこれらと、ブタジエンアクリロニトリルコポリマーまたはアクリロニトリル−ブタジエン−スチレンコポリマーを混ぜ合わせたもの、ポリアクリル酸エステル、シリコーン、尿素ホルムアルデヒド、エポキシ樹脂、アリル樹脂、フタル酸グリセリルおよびポリエステルが包含される。
【0040】
多孔質材料には、これらに限定するものではないが、紙、木材、繊維ガラス、布および繊維、例えば天然繊維および合成繊維など、例えば綿繊維およびポリエステル繊維などが包含される。
【0041】
本アルカリ性電解銅組成物は、低T樹脂および高T樹脂の両方をメッキするために使用することができる。低T樹脂は160℃より低いTを有しており、高T樹脂は160℃およびそれ以上のTを有している。典型的には、高T樹脂は160℃〜280℃のTを有しており、または例えば170℃〜240℃などのTを有している。高Tポリマー樹脂には、これらに限定するものではないが、ポリテトラフルオロエチレン(PTFE)およびポリテトラフルオロエチレンブレンドが包含される。そのようなブレンドには、例えばポリエチレンオキシドおよびシアン酸エステルを伴うPTFEが包含される。高いTを有する樹脂を含む他の種類のポリマー樹脂には、これらに限定するものではないが、エポキシ樹脂、例えば二官能性および多官能性エポキシ樹脂、ビマレイミド/トリアジンおよびエポキシ樹脂(BTエポキシ)、エポキシ/ポリフェニレンオキシド樹脂など、アクリロニトリルブタジエンスチレン、ポリカーボネート(PC)、ポリフェニレンオキシド(PPO)、ポリフェニレンエーテル(PPE)、ポリフェニレンスルフィド(PPS)、ポリスルホン(PS)、ポリアミド、ポリエステル、例えばポリエチレンテレフタレート(PET)およびポリブチレンテレフタレート(PBT)など、ポリエーテルケトン(PEEK)、液晶ポリマー、ポリウレタン、ポリエーテルイミド、エポキシ、並びにそれらの複合物が包含される。
【0042】
ある実施態様においては、アルカリ性無電解組成物は、プリント回路基板のスルーホールまたはビアの壁に銅または銅合金を堆積させるために使用することができる。本無電解組成物は、プリント回路基板の製造における水平プロセスと垂直プロセスとのどちらにおいても使用することができる。
【0043】
ある実施態様においては、スルーホールは、ドリル穿孔もしくは打ち抜き、または当技術分野において知られている任意の他の方法によりプリント回路基板に形成される。スルーホールの形成後、それらの基板は、清浄しかつ基板を脱脂するため、水および通常の有機溶液ですすぎ洗いされ、続いて、スルーホール壁のデスミア処理が行われる。典型的には、スルーホールのデスミア処理は溶媒膨潤剤の適用から始まる。
【0044】
任意の通常の溶媒膨潤剤を用いてスルーホールのデスミア処理が行われ得る。溶媒膨潤剤には、これらに限定するものではないが、グリコールエーテルおよびそれらの関連する酢酸エーテルが包含される。通常の量のグリコールエーテルおよびそれらの関連する酢酸エーテルが使用され得る。そのような溶媒膨潤剤は当技術分野において広く知られている。商業的に入手可能な溶媒膨潤剤としては、これらに限定するものではないが、CIRCUPOSIT CONDITIONER(商標)3302、CIRCUPOSIT HOLE PREP(商標)3303およびCIRCUPOSIT HOLE PREP(商標)4120(マサチューセッツ州マールボロのローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができる)が挙げられる。
【0045】
任意に、スルーホールは水ですすぎ洗いされる。その後、プロモーター(promoter)がスルーホールに適用される。通常のプロモーターを使用することができる。かかるプロモーターには、硫酸、クロム酸、アルカリ性過マンガン酸塩またはプラズマエッチングが包含される。典型的には、アルカリ性過マンガン酸塩がプロモーターとして使用される。商業的に入手可能なプロモーターの一例は、マサチューセッツ州マールボロのローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT PROMOTER(商標)4130である。
【0046】
任意に、スルーホールは再び水ですすぎ洗いされる。その後、プロモーターによって残されたあらゆる残留物を中和するため、中和剤がスルーホールに適用される。通常の中和剤を使用することができる。典型的には、中和剤は、一以上のアミンを含有するアルカリ性水溶液、または3重量%の過酸化物および3重量%の硫酸の溶液である。任意に、スルーホールが水ですすぎ洗いされ、その後、それらのプリント回路基板が乾かされる。
【0047】
デスミア処理の後、酸性またはアルカリ性のコンディショナーがそれらのスルーホールに適用されてもよい。通常のコンディショナーを使用することができる。かかるコンディショナーは、一以上のカチオン性界面活性剤、非イオン性界面活性剤、錯化剤およびpH調節剤または緩衝剤を含んでいてよい。商業的に入手可能な酸性コンディショナーには、これらに限定するものではないが、マサチューセッツ州マールボロのローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT CONDITIONER(商標)3320およびCIRCUPOSIT CONDITIONER(商標)3327が包含される。好適なアルカリ性コンディショナーには、これらに限定するものではないが、一以上の第四級アミンおよびポリアミンを含有するアルカリ性界面活性剤水溶液が包含される。商業的に入手可能なアルカリ性界面活性剤には、これらに限定するものではないが、ローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT CONDITIONER(商標)231、3325、813および860が包含される。任意に、それらのスルーホールは、コンディショニング後、水ですすぎ洗いされる。
【0048】
コンディショニングに続いて、スルーホールのマイクロエッチングが行われる。通常のマイクロエッチング組成物を使用することができる。マイクロエッチングは、堆積される無電解メッキおよび電気メッキのその後の付着力を高めるため、露出された銅に微細に粗面化された銅表面(例えば内層および表面エッチ)をもたらすべく設計されている。マイクロエッチには、これらに限定するものではないが、60g/L〜120g/Lの過硫酸ナトリウムまたはペルオキシ一硫酸カリウムもしくはナトリウムおよび硫酸(2%)混合物、または一般的な硫酸/過酸化水素が含まれる。商業的に入手可能なマイクロエッチング組成物の一例としては、ローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT MICROETCH(商標)3330が包含される。任意に、これらのスルーホールは水ですすぎ洗いされる。
【0049】
その後、マイクロエッチされたスルーホールにプレディップが適用される。プレディップの例としては、2%〜5%の塩酸、または25g/L〜75g/Lの塩化ナトリウムの酸性溶液が挙げられる。任意に、これらのスルーホールは冷水ですすぎ洗いされる。
【0050】
その後、これらのスルーホールに触媒が適用される。任意の通常の触媒を使用することができる。触媒の選択は、スルーホールの壁に堆積させるべき金属の種類に依存する。典型的には、触媒は貴金属および非貴金属のコロイドである。かかる触媒は当技術分野において広く知られており、多くのものが商業的に入手可能であり、または文献から調製することができる。非貴金属触媒の例としては、銅、アルミニウム、コバルト、ニッケル、スズおよび鉄が挙げられる。典型的には貴金属触媒が使用される。好適な貴金属コロイド触媒としては、例えば金、銀、白金、パラジウム、イリジウム、ロジウム、ルテニウムおよびオスミウムが挙げられる。より典型的には、銀、白金、金およびパラジウムの貴金属触媒が使用される。最も典型的には、銀およびパラジウムが使用される。商業的に入手可能な好適な触媒には、例えばローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT CATALYST(商標)334およびCATAPOSIT(商標)44が包含される。場合によって、スルーホールは、触媒の適用後、水ですすぎ洗いされてもよい。
【0051】
次いで、スルーホールの壁は上述のアルカリ性無電解組成物により銅メッキされる。メッキ時間および温度は上述の通りである。
【0052】
スルーホールの壁に銅が堆積された後、これらのスルーホールは、任意に、水ですすぎ洗いされる。場合によっては、スルーホールの壁に堆積された金属に変色防止(anti−tarnish)組成物を適用してもよい。通常の変色防止組成物を使用することができる。変色防止組成物の例としては、ANTI TARNISH(商標)7130およびCUPRATEC(商標)3(ローム・アンド・ハース・エレクトロニック・マテリアルズから入手可能)が挙げられる。これらのスルーホールは、場合によって、30℃を超える温度の熱水洗浄液ですすがれ、その後、それらの基板を乾かしてもよい。
【0053】
代替的な実施態様においては、スルーホールは、それらのスルーホールの銅の無電解堆積の準備のため、デスミア処理後、アルカリ性水酸化物溶液で処理されてもよい。スルーホールまたはビアをメッキするためのこの代替的な実施態様は、典型的には、高T基板のメッキの準備をするときに使用される。このアルカリ性水酸化物溶液はスルーホールと30秒間〜120秒間の時間接触させられ、または例えば60秒間〜90秒間などの時間接触させられる。スルーホールをデスミア処理する工程とスルーホールをメッキする工程との間で行われるアルカリ性水酸化物組成物の適用は、銅で壁を覆うことができるように、触媒によるスルーホール壁の良好な被覆率をもたらす。このアルカリ性水酸化物溶液は、水酸化ナトリウム、水酸化カリウムまたはそれらの混合物の水溶液である。これらの水酸化物は0.1g/L〜100g/Lの量で含められ、または例えば5g/L〜25g/Lなどの量で含められる。典型的には、これらの水酸化物は、その溶液中に15g/L〜20g/Lの量で含められる。典型的には、このアルカリ性水酸化物は水酸化ナトリウムである。アルカリ性水酸化物溶液が水酸化ナトリウムと水酸化カリウムとの混合物である場合には、水酸化ナトリウムおよび水酸化カリウムは4:1〜1:1の重量比であり、または例えば3:1〜2:1などの重量比である。
【0054】
場合によっては、一以上の界面活性剤がこのアルカリ性水酸化物溶液に添加されてもよい。典型的には、それらの界面活性剤は非イオン性界面活性剤である。これらの界面活性剤は、表面張力を低減し、スルーホールの適切な濡れを可能にする。スルーホールに界面活性剤を適用した後の表面張力は25ダイン/cm〜50ダイン/cmの範囲であり、または例えば30ダイン/cm〜40ダイン/cmなどの範囲である。典型的には、界面活性剤は、押し広げを防止すべく、アルカリ性水酸化物溶液が小さなスルーホールを処理するために使用されるときに配合物に含められる。小さなスルーホールは、典型的には、直径が0.2mm〜0.5mmまでの範囲である。その一方、大きなスルーホールは、典型的には、直径が0.5mm〜1mmである。スルーホールのアスペクト比は1:1〜20:1であり得る。
【0055】
界面活性剤は、アルカリ性水酸化物溶液中に0.05重量%〜5重量%の量で含められ、または例えば0.25重量%〜1重量%などの量で含められる。好適な非イオン性界面活性剤としては、例えば脂肪族アルコール、例えばアルコキシレートなどが挙げられる。そのような脂肪族アルコールは、エチレンオキシド、プロピレンオキシドまたはそれらの組合せを有し、分子内にポリオキシエチレン鎖またはポリオキシプロピレン鎖、即ち、反復する(−O−CH−CH−)基からなる鎖もしくは反復する(−O−CH−CH−CH)基からなる鎖、またはそれらの基の組合せからなる鎖を有する化合物を形成している。典型的には、かかるアルコールアルコキシレートは、7〜15の炭素の炭素鎖を有する直鎖状または分枝鎖状の4モル〜20モルのエトキシレート、典型的には5モル〜40モルのエトキシレート、より典型的には5モル〜15モルのエトキシレートを有するアルコールエトキシレートである。
【0056】
かかるアルコールアルコキシレートの多くは商業的に入手可能である。商業的に入手可能なアルコールアルコキシレートの例としては、例えば直鎖状の第一級アルコールエトキシレート、例えばNEODOL 91−6、NEODOL 91−9(1モルの直鎖アルコールエトキシレート当たり平均で6モルから9モルまでのエチレンオキシドを有するC−C11アルコール)およびNEODOL 1−73B(1モルの直鎖第一級アルコールエトキシレート当たり7モルの平均ブレンドのエチレンオキシドを有するC11アルコール)などが挙げられる。どちらもテキサス州ヒューストンのShell Oil Companyから入手可能である。
【0057】
スルーホールをアルカリ性水酸化物溶液で処理した後、それらは、酸性またはアルカリ性のコンディショナーで処理され得る。その後、スルーホールはマイクロエッチされ、プレディップが適用され、続いて、触媒が適用される。この後、スルーホールは銅で無電解的にメッキされる。
【0058】
スルーホールに銅がメッキされた後、それらの基体は更なる処理を受けることができる。更なる処理には、光画像形成および基体への更なる金属の堆積、例えば電解的な堆積、例えば銅、銅合金、スズおよびスズ合金の電解的な堆積などによる通常の処理が包含され得る。
【0059】
理論に拘束される訳ではないが、グリオキシル酸と組み合わせたチオカルボン酸キレート剤は、基板上の制御された自己触媒的堆積を可能にする。グリオキシル酸と組み合わせたこれらのキレート剤は、浴中における酸化銅(CuO)の形成を防止する。酸化銅は、高いpH範囲において、ホルムアルデヒドを含んでいない多くの従来の無電解銅メッキ溶液中において形成されやすい。かかる酸化銅の形成は、無電解銅組成物を不安定にし、基体上における銅堆積に欠陥を生じさせる。酸化銅の形成の抑制が、銅の堆積が熱力学的に好ましい高いpH範囲で、自己触媒プロセスが機能することを可能にする。
【0060】
無電解銅組成物はホルムアルデヒドを含まず、かつ環境に優しい。保管中および無電解堆積中に安定している。4を超えるバックライト値から明らかなように、それらは基板上に均一な銅層を堆積する。
【0061】
以下の実施例は、本発明の範囲を限定することを意図したものではなく、本発明を更に例証することを意図したものである。
【実施例】
【0062】
実施例1(比較)
複数のスルーホールを8つの低T(150℃)FR4エポキシ/ガラス多層基板(6層)と8つの高T(180℃)NELCO4000−6多層基板(6層)にドリル穿孔した。次いで、各基板中のスルーホールは水平デスミア処理ライン工程で以下のようにデスミア処理した。
(1)各基板を溶媒膨潤剤240リットルを用いて80℃で100秒間処理した。溶媒膨潤剤は通常の10%ジエチレングリコールモノブチルエーテルの水性溶液、界面活性剤、および35g/Lの水酸化ナトリウムであった。
(2)次いで、基板は冷水で洗浄した。
(3)次いで、各基板中のスルーホールは、pH12、80℃のアルカリ性過マンガン酸塩のアルカリ性促進剤550リットルで150秒間処理した。
(4)次いで、基板を冷水で洗浄した。
(5)次いで、基板中のスルーホールは、室温の3重量%の過酸化水素と3重量%の硫酸からなる水性中和剤180リットルで75秒間処理した。
(6)次いで、基板を冷水で洗浄した。
(7)次いで、基板を190リットルの水性酸性コンディショナーCIRCUPOSIT CONDITIONER(商標)3320で50℃、60秒間処理した。
(8)次いで、基板の各々を冷水で洗浄した。
(9)次いで、各基板のスルーホールを20重量%過マンガン酸ナトリウムと10重量%の水酸化ナトリウムの水性アルカリ性溶液100リットルで、50℃、60分間マイクロエッチングを行った。エッチング速度は0.5μm/分〜1μm/分であった。
(10)次いで、基板を冷水で洗浄した。
(11)次いで、スルーホールのプレディップを室温で40秒間施した。プレディップはPre−dip(商標)3340であった。
(12)次いで、各基板のスルーホールを、スルーホール壁の無電解銅メタライゼーション用の触媒125リットルで、40℃、215秒間下塗りした。触媒は以下の処方を有した。
【0063】
【表1】

【0064】
(13)次いで、基板を冷水で洗浄した。
(14)次いで、4つのFR4基板および4つのNELCO基板のスルーホール壁を以下の表2の通常の無電解銅メッキ浴を用いて銅メッキした。メッキはpH13.2で55℃、20分間行った。
【0065】
【表2】

【0066】
(15)他の4つのFR4基板および他の4つのNELCO基板のスルーホール壁を以下の表に示した無電解銅メッキ組成物でメッキした。銅メッキはpH13.2で55℃、20分間に渡って行った。
【0067】
【表3】

【0068】
(16)無電解銅堆積の後、基板を冷水で洗浄した。
(17)次いで、スルーホールの銅メッキされた壁を露出するように各基板を横方向に切断した。各基板の切断したスルーホールの壁から複数の横断面1mm厚さを取って、欧州バックライト等級スケールを用いて基板のスルーホール壁の被覆率を決定した。
【0069】
図はスルーホールの壁上の無電解銅被覆率を測定するために用いられる標準的な欧州バックライト等級スケールである。各基板からの1mmの断面を通常の50倍光学顕微鏡の下に置いた。銅堆積の品質は顕微鏡下で観察される光の量によって決定した。光が観察されない場合、断面は完全に黒く、バックライト等級5と評価される。これは完全な銅被覆率を示す。光が如何なる黒い領域もなしに断面全体を通過した場合、これは壁上の銅金属堆積がほとんど無いか、または完全に無いことを示し、断面は0に評価した。断面がいくらかの黒い領域ならびに光領域を有する場合、それらは0〜5の間に評価される。
【0070】
穴及びすき間は、それらを通過する光で観察し、顕微鏡を通して断面を見ながら、断面毎に手動で計数した。穴及びすき間の数を各断面について記録し、基板にはバックライトスケールに基づくバックライト値を与えた。基板および浴の各種類について平均バックライト値を求めた。
【0071】
ホルムアルデヒドを含む無電解銅配合でメッキされたFR4およびNELCO基板はそれぞれ4.95と5の平均バックライト値を有した。ホルムアルデヒドの替わりにグリオキシル酸を含む無電解銅組成物でメッキされたFR4およびNELCO基板はそれぞれ4.65と4.30のバックライト値を有した。グリコキシル酸を含む無電解銅組成物のバックライト値はホルムアルデヒド配合の値よりも僅かに低かったが、グリオキシル酸含有銅組成物は4を超えるバックライト値を有していた。それらの値は、グリオキシル酸を含む無電解銅配合がメタライゼーション産業のために許容することができ、環境に優しくないホルムアルデヒドの良い代替であることを示した。
【0072】
どの無電解銅組成物にも銅酸化物は観察されなかった。したがって、無電解銅組成物は安定であった。
【0073】
また、断面を光学顕微鏡下で、100倍および150倍の倍率のICD検査を行った。どちらの浴種の断面もICDは観察されなかった。
【0074】
結果は、環境に優しいグリオキシル酸がまさに、ホルムアルデヒドと同様に機能し、かつ環境に優しくないホルムアルデヒドの許容可能な代替であることを示した。
【0075】
実施例2(比較)
複数のスルーホールを8つの低T(150℃)FR4エポキシ/ガラス多層基板(6層)と8つの高T(180℃)NELCO4000−6多層基板(6層)にドリル穿孔した。次いで、各基板中のスルーホールをデスミア処理し、上記実施例1で説明したように銅でメッキした。
【0076】
4つの該FR4基板および4つの該NELCO4000−6基板のスルーホール壁を以下の配合を有する浴からの銅で無電解メッキした。
【0077】
【表4】

【0078】
残りの4つのFR4基板および4つのNELCO4000−6基板のスルーホール壁を、以下の配合を有する無電解組成物からの銅でメッキした。
【0079】
【表5】

【0080】
スルーホールの銅メッキされた壁を露出するように、該基板を横断切断した。各基板の切断したスルーホールの壁から複数の横断面1mm厚さを取って、欧州バックライト等級スケールを用いて基板のスルーホール壁の被覆率を決定した。
【0081】
穴及びすき間は、50倍の光学顕微鏡を通して断面を見ながら、断面毎に手動で計数した。穴及びすき間の数を各断面について記録し、基板はバックライトスケールに基づくバックライト値が与えられた。基板および浴の各種類について平均バックライト値を決定した。
【0082】
ホルムアルデヒドを含む無電解銅配合でメッキされたFR4およびNELCO基板はそれぞれ4.95と4.9の平均バックライト値を有していた。ホルムアルデヒドの代わりにグリコキシル酸を含む無電解銅組成物でメッキされたFR4およびNELCO基板は4.8と4.9の平均バックライト値を有した。グリオキシル酸を含有する組成物でメッキされた基板からの値をはじめとする全てのバックライト値は4を超えた。それらの値は、グリオキシル酸を含む無電解銅配合がメタライゼーション産業のために許容することができ、かつ環境に優しくないホルムアルデヒドの良い代替であることを示した。
【0083】
どの無電解銅組成物に銅酸化物は観察されなかった。したがって、無電解銅組成物は安定であった。
【0084】
また、断面を光学顕微鏡下で、100倍および150倍の倍率のICD検査を行った。いずれの浴種の断面にもICDは観察されなかった。結果は、環境に優しいグリオキシル酸がまさに、ホルムアルデヒドと同様に機能し、かつホルムアルデヒドの許容可能な代替であることを示した。
【図面の簡単な説明】
【0085】
【図1】図はスルーホール壁の銅被覆の量を示すための欧州バックライト等級スケールの0〜5を示す。

【特許請求の範囲】
【請求項1】
1以上の銅イオン源と、1以上のチオカルボン酸と、グリオキシル酸およびその塩と、組成物をアルカリ性に維持するための1以上のアルカリ性化合物とを含む組成物。
【請求項2】
チオカルボン酸が、下記式を有する請求項1記載の組成物:
HS−(CX−(CHX−COOH
(式中、Xは−Hまたは−COOHであり、Xは−Hまたは−SHであり、rおよびsは正の整数であり、rが0〜2、または0または1であり、sが1または2である)。
【請求項3】
1以上の錯化剤と、カルボン酸と、界面活性剤と、酸化防止剤とをさらに含む請求項1記載の組成物。
【請求項4】
アルカリ性化合物が、水酸化ナトリウム、水酸化カリウム、および水酸化リチウムから選択される請求項1記載の組成物。
【請求項5】
1以上の追加の金属イオンをさらに含む請求項1記載の組成物。
【請求項6】
pHが少なくとも9である請求項1記載の組成物。
【請求項7】
(a)基体を提供し、
(b)1以上の銅イオン源と;チオカルボン酸から選択される1以上のキレート化剤と;グリオキシル酸およびその塩と;組成物をアルカリ性に維持するための1以上のアルカリ性化合物と;を含む無電解銅組成物を用いて、前記基体上に銅を無電解的に堆積すること、
を含む方法。
【請求項8】
(a)複数のスルーホールを含むプリント配線板を提供し、
(b)スルーホールをデスミア処理し、
(c)1以上の銅イオン源と;チオカルボン酸から選択される1以上のキレート化剤と;グリオキシル酸およびその塩と;組成物をアルカリ性に維持するための1以上のアルカリ性化合物と;を含む無電解銅浴を用いて、スルーホールの壁上に銅を堆積すること、
を含む方法。

【図1】
image rotate


【公開番号】特開2008−169465(P2008−169465A)
【公開日】平成20年7月24日(2008.7.24)
【国際特許分類】
【外国語出願】
【出願番号】特願2007−178644(P2007−178644)
【出願日】平成19年7月6日(2007.7.6)
【出願人】(591016862)ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. (270)
【Fターム(参考)】