説明

発光ダイオード

【課題】高出力・高効率であって耐湿性に優れた発光ダイオード及び発光ダイオードランプを提供する。
【解決手段】本発明の発光ダイオードは、基板上に、DBR反射層と、発光部とを順に備える発光ダイオードであって、前記発光部は、組成式(AlX1Ga1−X1)As(0≦X1≦1)からなる井戸層とバリア層との積層構造を有する活性層と、該活性層を挟む、組成式(AlX2Ga1−X2In1−YP;0≦X2≦1,0<Y≦1)からなる第1のクラッド層及び第2のクラッド層とを有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光ダイオードに関するものであり、特に660nm〜850nmの高出力の発光ダイオードに関する。
【背景技術】
【0002】
赤外発光ダイオード(以下、LED)は、赤外線通信、各種センサー用光源、夜間照明など幅広く利用されている。
近年、ピーク波長が660〜720nmの光は、人が認識できる赤色光源であり、屋外ディスプレイ、出力が高い波長帯である為、目視でセンサーの存在を認識した方が望ましい安全関係のセンサーや、バーコードリーダーの光源および医療用オキシメーターの光源など幅広い用途に使用されている。
また、物育成の形状制御に適した発光波長の1つとして、ピーク波長730nmの赤外光の効果が確認されている。
さらにまた、ピーク波長が760〜850nmの光は、発光出力が高い波長帯である為、各種センサーの光源、監視カメラ、ビデオカメラ等の赤外線照明に最適な波長帯である。この波長帯のAlGaAs活性層は、高速応答が可能であるため、光通信や高速フォトカプラに適している。一方、発光波長の特徴を利用して静脈認証システムや医療分野などの光源にも利用され始めている。
【0003】
上記用途に於いて、各機器の性能向上のため、LEDの高出力が望まれている。一方、耐湿環境下での信頼性向上が望まれている。
例えば、従来の赤外発光ダイオードに於いては、GaAs基板に液相エピタキシャル法を用いたAlGaAsの多層膜からなるLEDが実用化され、いろいろな高出力化の検討がされている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平6−21507号公報
【特許文献2】特開2001−274454号公報
【特許文献3】特開平7−38148号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
光源として更なる性能向上、省エネ、コスト面から、発光効率の高いLEDの開発が望まれている。屋内だけでなく、屋外・半屋外など使用環境が広がり、耐湿性は、重要な信頼性項目の1つである。特に、近年注目されている植物育成用LED照明の実用化の為には、使用電力の低減、耐湿性の向上、高出力化がより強く望まれている。植物育成の場合、散水、水耕栽培など、高湿環境下で使用される為、耐湿性は、重要な特性の1つである。また、液相エピタキシャル法で化合物半導体層を成長させる方法では、単色性に優れた多重量子井戸構造を形成するのは難しい。
【0006】
本発明は、上記事情を鑑みてなされたものであり、高出力・高効率であって耐湿性に優れた発光ダイオードを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者は、上記課題を解決するために鋭意研究を重ねた結果、3元混晶のAlGaAs井戸層とAlGaAs又は4元混晶のAlGaInPからなるバリア層とを交互に積層した多重量子井戸構造の活性層を用いる発光ダイオードにおいて、この活性層を挟むクラッド層に、バンドギャップが大きくて発光波長に対して透明であり、かつ、欠陥を作りやすいAsを含まないので結晶性の良い4元混晶のAlGaInP系を用いることにより、クラッド層にAlGaAs系を用いる場合に比べて高出力を示すことを見出した。また、4元混晶のAlGaInP系をクラッドに用いることで3元混晶のAlGaAs系をクラッドに用いる発光ダイオードに比べて、Alの濃度も低下させることが可能となり、腐食が起こりにくくなり耐湿性も向上する。
本発明者は、この知見についてさらに研究を進めた結果、以下の構成に示す本発明を完成するに至った。
【0008】
(1)基板上に、DBR反射層と、発光部とを順に備える発光ダイオードであって、
前記発光部は、組成式(AlX1Ga1−X1)As(0≦X1≦1)からなる井戸層とバリア層との積層構造を有する活性層と、該活性層を挟む、組成式(AlX2Ga1−X2In1−YP;0≦X2≦1,0<Y≦1)からなる第1のクラッド層及び第2のクラッド層とを有することを特徴とする発光ダイオード。
(2)基板上に、DBR反射層と、発光部とを順に備える発光ダイオードであって、
前記発光部は、組成式(AlX1Ga1−X1)As(0≦X1≦1)からなる井戸層と組成式(AlX3Ga1−X3Y2In1−Y2P(0≦X3≦1,0<Y2≦1)からなるバリア層との積層構造を有する活性層と、該活性層を挟む、組成式(AlX2Ga1−X2In1−YP(0≦X2≦1,0<Y≦1)からなる第1のクラッド層及び第2のクラッド層とを有することを特徴とする発光ダイオード。
(3)前記井戸層の組成式においてAl組成(X1)を0.20≦X1≦0.36とし、前記井戸層の厚さを3〜30nmとし、発光波長を660〜720nmに設定されてなることを特徴とする前項(1)又は(2)のいずれかに記載の発光ダイオード。
(4)前記井戸層の組成式においてAl組成(X1)を0.1≦X1≦0.24とし、前記井戸層の厚さを3〜30nmとし、発光波長を720〜760nmに設定されてなることを特徴とする前項(1)又は(2)のいずれかに記載の発光ダイオード。
(5)前記井戸層の組成式においてAl組成(X1)を0≦X1≦0.2とし、前記井戸層の厚さを3〜30nmとし、発光波長を760〜850nmに設定されてなることを特徴とする前項(1)又は(2)のいずれかに記載の発光ダイオード。
(6)前記DBR反射層は屈折率の異なる2種類の層が交互に10〜50対積層されてなることを特徴とする前項(1)から(5)のいずれか一項に発光ダイオード。
(7)前記屈折率の異なる2種類の層は組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P(0≦Xl<1、Y3=0.5)の組み合わせであり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しいことを特徴とする前項(6)に記載の発光ダイオード。
(8)前記屈折率の異なる2種類の層はGaInPとAlInPの組み合わせであることを特徴とする前項(6)に記載の発光ダイオード。
(9)前記屈折率の異なる2種類の層は組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の組み合わせであり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しいことを特徴とする前項(6)に記載の発光ダイオード。
(10)前記発光部の、DBR反射層の反対側の面上に電流拡散層を備えることを特徴とする前項(1)から(9)のいずれか一項に記載の発光ダイオード。
【発明の効果】
【0009】
上記の構成によれば、以下の効果を得る。
高出力・高効率で660nm〜850nmの発光ピーク波長の赤色及び赤外光を発光することができる。
活性層が組成式(AlX1Ga1−X1)As(0≦X1≦1)からなる井戸層とAlGaAs又は4元混晶のAlGaInPからなるバリア層とを交互に積層した多重井戸構造を有する構成なので、単色性に優れている。
クラッド層が4元混晶である組成式(AlX2Ga1−X2In1−YP(0≦X2≦1,0<Y≦1)からなる構成なので、クラッド層が3元混晶AlGaAsからなる発光ダイオードに比べてAl濃度が低く、耐湿性が向上する。
また、活性層を挟む第1のクラッド層及び第2のクラッド層として、発光波長に対して透明であると共に、欠陥を作りやすいAsを含まないために結晶性が高いAlGaInPからなる構成を採用したので、欠陥を介した電子と正孔の非発光再結合確率が低下し、発光出力が向上した。
活性層が組成式(AlX1Ga1−X1)As(0≦X1≦1)からなる井戸層とバリア層との積層構造を有する構成なので、MOCVD法を利用して量産するのに適している。
発光層と基板との間にDBR反射膜を備える構成なので、GaAs基板による光の吸収による発光出力の低下が生じない。
【図面の簡単な説明】
【0010】
【図1】本発明の一実施形態である発光ダイオードを用いた発光ダイオードの断面模式図である。
【図2】本発明の一実施形態である発光ダイオードに用いるエピウェーハの断面模式図である。
【発明を実施するための形態】
【0011】
以下、本発明を適用した一実施形態である発光ダイオードについて図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
【0012】
<発光ダイオード(第1の実施形態)>
図1は、第1の実施形態に係る発光ダイオードの断面模式図である。また、図2は井戸層とバリア層の積層構造の断面模式図である。
第1の実施形態に係る発光ダイオード100は、基板1上に、DBR反射層3と、発光部20とを順に備える発光ダイオードであって、発光部20は、組成式(AlX1Ga1−X1)As(0≦X1≦1)からなる井戸層15とバリア層16との積層構造を有する活性層7と、該活性層7を挟む、組成式(AlX2Ga1−X2In1−YP;0≦X2≦1,0<Y≦1)からなる第1のクラッド層5及び第2のクラッド層9とを有することを特徴とするものである。
【0013】
化合物半導体層(エピタキシャル成長層ともいう)30は、図1に示すように、発光部20と電流拡散層10とが順次積層された構造を有している。この化合物半導体層30の構造には、公知の機能層を適時加えることができる。例えば、オーミック(Ohmic)電極の接触抵抗を下げるためのコンタクト層、素子駆動電流を発光部の全般に平面的に拡散させるための電流拡散層、逆に素子駆動電流の通流する領域を制限するための電流阻止層や電流狭窄層など公知の層構造を設けることができる。
なお、化合物半導体層30は、GaAs基板1上にエピタキシャル成長させて形成されたものであることが好ましい。
【0014】
n型基板1上に備える発光部20は例えば、図1に示すように、DBR反射層3上に、n型の下部クラッド層(第1のクラッド層)5、下部ガイド層6、活性層7、上部ガイド層8、p型の上部クラッド層(第2のクラッド層)9が順次積層されて構成されている。すなわち、発光部20は、放射再結合をもたらすキャリア(担体;carrier)及び発光を活性層7に「閉じ込める」ために、活性層7の下側及び上側に対峙して配置した下部クラッド層5、下部ガイド(guide)層6、及び上部ガイド層8、上部クラッド層9を含む、所謂、ダブルヘテロ(英略称:DH)構造とすることが高強度の発光を得る上で好ましい。
【0015】
活性層7は、図2に示すように、発光ダイオード(LED)の発光波長を制御するため、量子井戸構造を構成する。すなわち、活性層7は、バリア層(障壁層ともいう)16を両端に有する、井戸層15とバリア層(障壁層ともいう)16との多層構造(積層構造)である。
【0016】
活性層7の層厚は、0.02〜2μmの範囲であることが好ましい。特に0.03μmとするとAlの組成を低下させることができ、信頼性の観点から特に好ましい。また、活性層7の伝導型は特に限定されるものではなく、アンドープ、p型及びn型のいずれも選択することができる。発光効率を高めるには、結晶性が良好なアンドープ又は3×1017cm−3未満のキャリア濃度とすることが望ましい。
【0017】
DBR(Distributed Bragg Reflector)反射層3は、λ/(4n)の膜厚で(λ:反射すべき光の真空中での波長、n:層材料の屈折率)、屈折率が異なる2種類の層を交互に積層した多層膜からなるものである。反射率は2種類の屈折率の差が大きいと、比較的少ない層数の多層膜で高反射率が得られる。通常の反射膜のようにある面で反射されるのでなく、多層膜の全体として光の干渉現象に基づき反射が起きることが特徴である。
【0018】
DBR(Distributed Bragg Reflector)反射層3は、屈折率の異なる2種類の層が交互に10〜50対積層されてなるのが好ましい。10対以下である場合は反射率が低すぎるために出力の増大に寄与せず、50対以上にしてもさらなる反射率の増大は小さいからである。
DBR(Distributed Bragg Reflector)反射層3を構成する屈折率の異なる2種類の層は、組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh−xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されるのが効率よく高い反射率が得られることから望ましい。
組成の異なるAlGaInPの組み合わせは、結晶欠陥を生じやすいAsを含まないので好ましく、GaInPとAlInPはその中で屈折率差を最も大きくとれるので、反射層の数を少なくすることができ、組成の切り替えも単純であるので好ましい。また、AlGaAsは、大きな屈折率差をとりやすいという利点がある。
【0019】
井戸層15は、(AlX1Ga1−X1)As(0≦X1≦0.36)の組成を有していることが好ましい。
表1に、井戸層15の層厚が17nmのとき、Al組成X1と発光ピーク波長との関係を示す。Al組成X1が低くなるほど、発光ピーク波長が長くなっていることがわかる。また、その変化の傾向から、表に掲載されていない発光ピーク波長に対応する、Al組成を推定することができる。
【表1】

【0020】
井戸層15の層厚は、3〜30nmの範囲が好適である。より好ましくは、5〜20nmの範囲である。
【0021】
表2に、井戸層15のAl組成X1=0.24のとき、井戸層15の層厚と発光ピーク波長との関係を示す。層厚が薄くなると量子効果により、波長が短くなる。厚い場合には、発光ピーク波長は、組成により一定である。また、その変化の傾向から、表に掲載されていない発光ピーク波長に対応する、層厚を推定することができる。
【表2】

以上の発光ピーク波長と、井戸層15のAl組成X及び層厚との関係に基づいて、660nm〜720nmの範囲内の所望の発光ピーク波長が得られるように、井戸層15のAl組成Xと層厚を決めることができる。
【0022】
表3に、井戸層15のAl組成X1=0.18のとき、井戸層15の層厚と発光ピーク波長との関係を示す。層厚が薄くなると量子効果により、波長が短くなる。厚い場合には、発光ピーク波長は、組成により一定である。また、その変化の傾向から、表に掲載されていない発光ピーク波長に対応する、層厚を推定することができる。
【表3】

以上の発光ピーク波長と、井戸層15のAl組成X及び層厚との関係に基づいて、720nm〜760nmの範囲内の所望の発光ピーク波長が得られるように、井戸層15のAl組成Xと層厚を決めることができる。
【0023】
表4に、井戸層15のAl組成X1=0.03のとき、井戸層15の層厚と発光ピーク波長との関係を示す。層厚が薄くなると量子効果により、波長が短くなる。厚い場合には、発光ピーク波長は、組成により一定である。また、その変化の傾向から、表に掲載されていない発光ピーク波長に対応する、層厚を推定することができる。
【表4】

以上の発光ピーク波長と、井戸層15のAl組成X及び層厚との関係に基づいて、760nm〜850nmの範囲内の所望の発光ピーク波長が得られるように、井戸層15のAl組成Xと層厚を決めることができる。
【0024】
バリア層16は、(AlX3Ga1−X3)As(0<X3≦1)の組成を有している。上記X3は、発光効率を高めるため、井戸層15よりもバンドギャップが大きくなる組成とすることが好ましいが、結晶性の観点からAl濃度は低い方が望ましく、最適なX3の組成は井戸層の組成との関係で決まる。結晶性を向上させて欠陥を少なくすると、光の吸収が抑制され、その結果、発光出力の向上を図ることができる。
具体的には、井戸層のAl組成(X1)が0.20≦X1≦0.36のときは、X3は0.4〜0.6の範囲であることが好ましい。また、井戸層のAl組成(X1)が0≦X1≦0.2のときは、X3は0.1〜0.4の範囲であることが好ましい。
【0025】
バリア層16の層厚は、井戸層15の層厚と等しいか又は厚いことが好ましい。これにより、井戸層15の発光効率を高くすることができる。
【0026】
井戸層15とバリア層16との多層構造において、井戸層15とバリア層16とを交互に積層する対の数は特に限定されるものではないが、2対以上40対以下であることが好ましい。すなわち、活性層11には、井戸層17が2〜40層含まれていることが好ましい。ここで、活性層11の発光効率が好適な範囲としては、井戸層17が5層以上であることが好ましい。一方、井戸層17及びバリア層18は、キャリア濃度が低いため、多くの対にすると順方向電圧(V)が、増大してしまう。このため、40対以下であることが好ましく、20対以下であることがより好ましい。
【0027】
下部ガイド層6及び上部ガイド層8は、図2に示すように、活性層7の下面及び上面にそれぞれ設けられている。具体的には、活性層7の下面に下部ガイド層6が設けられ、活性層7の上面に上部ガイド層8が設けられている。
【0028】
下部ガイド層6および上部ガイド層8は、(AlX4Ga1−X4)As(0<X4≦1)の組成を有している。上記X4は、バリア層16とバンドギャップが等しいか又はバリア層16よりも大きくなる組成とすることが好ましく、結晶性の観点から最適なXの組成は井戸層の組成との関係で決まる。結晶性を向上させて欠陥を少なくすると、光の吸収が抑制され、その結果、発光出力の向上を図ることができる。
具体的には、井戸層のAl組成(X1)が0.20≦X1≦0.36、バリア層のAl組成(X3)が0.4〜0.6の範囲のときは、X4は0.4〜0.7の範囲であることが好ましい。また、井戸層のAl組成(X1)が0≦X1≦0.2、バリア層のAl組成(X3)が0.1〜0.4のときは、X4は0.2〜0.6の範囲であることが好ましい。
【0029】
下部ガイド層6及び上部ガイド層8はそれぞれ、下部クラッド層5及び上部クラッド層9と活性層7との間における欠陥の伝搬を低減するために設けられている。すなわち、本発明では、活性層7のV族構成元素は砒素(As)であるのに対し、下部クラッド層5及び上部クラッド層9のV族構成元素はリン(P)であるため、活性層7と下部クラッド層5及び上部クラッド層9との界面において欠陥が生じやすい。活性層7への欠陥の伝播は発光ダイオードの性能低下の原因となる。この欠陥の伝播を有効に低減するためには、下部ガイド層6および上部ガイド層8の層厚は10nm以上が好ましく、20nm〜100nmがより好ましい。
【0030】
下部ガイド層6及び上部ガイド層8の伝導型は、特に限定されるものではなく、アンドープ、p型及びn型のいずれも選択することができる。発光効率を高めるには、結晶性が良好なアンドープ又は3×1017cm−3未満のキャリア濃度とすることが望ましい。
【0031】
下部クラッド層5及び上部クラッド層9は、図1に示すように、下部ガイド層6の下面及び上部ガイド層8上面にそれぞれ設けられている。
【0032】
下部クラッド層5及び上部クラッド層9の材質としては、(AlX2Ga1−X2In1−YP(0≦X2≦1,0<Y≦1)の半導体材料を用い、バリア層15よりもバンドギャップの大きい材質が好ましく、下部ガイド層6及び上部ガイド層8よりもバンドギャップが大きい材質がより好ましい。上記材質としては、(AlX2Ga1−X2In1−YP(0≦X4≦1,0<Y≦1)のX2が、0.3〜0.7である組成を有することが好ましい。又、Yは、0.4〜0.6とすることが好ましい。
【0033】
下部クラッド層5と上部クラッド層9とは、極性が異なるように構成されている。また、下部クラッド層5及び上部クラッド層9のキャリア濃度及び厚さは、公知の好適な範囲を用いることができ、活性層7の発光効率が高まるように条件を最適化することが好ましい。また、下部クラッド層5及び上部クラッド層9の組成を制御することによって、化合物半導体層30の反りを低減させることができる。
【0034】
具体的に、下部クラッド層5としては、例えば、Siをドープしたn型の(AlX4bGa1−X4bYbIn1−YbP(0.3≦X4b≦0.7,0.4≦Yb≦0.6)からなる半導体材料を用いることが望ましい。また、キャリア濃度は1×1017〜1×1018cm−3の範囲が好ましく、層厚は0.1〜1μmの範囲が好ましい。
【0035】
一方、上部クラッド層9としては、例えば、Mgをドープしたp型の(AlX4aGa1−X4aYaIn1−YaP(0.3≦X4a≦0.7,0.4≦Ya≦0.6)からなる半導体材料を用いることが望ましい。また、キャリア濃度は2×1017〜2×1018cm−3の範囲が好ましく、層厚は0.1〜1μmの範囲が好ましい。
なお、下部クラッド層5及び上部クラッド層9の極性は、化合物半導体層30の素子構造を考慮して選択することができる。
【0036】
また、発光部20の構成層の上方には、オーミック(Ohmic)電極の接触抵抗を下げるためのコンタクト層、素子駆動電流を発光部の全般に平面的に拡散させるための電流拡散層、逆に素子駆動電流の通流する領域を制限するための電流阻止層や電流狭窄層など公知の層構造を設けることができる。
【0037】
電流拡散層10は、図1に示すように、発光部20の上方に設けられている。この電流拡散層10は、発光部20(活性層7)からの発光波長に対して透明である材料、例えば、GaPやGaInPを適用することができる。
また、電流拡散層10の厚さは0.5〜20μmの範囲であることが好ましい。0.5μm以下であると電流拡散が不十分であり、20μm以上であるとその厚さまで結晶成長させる為のコストが増大するからである。
【0038】
p型オーミック電極(第1の電極)12は発光ダイオード100の主たる光取り出し面に設けられた低抵抗のオーミック接触電極であり、n型オーミック電極(第2の電極)13は発光ダイオード100の基板側裏面に設けられた低抵抗のオーミック接触電極である。ここで、p型オーミック電極12は、電流拡散層10の表面に設けられており、例えば、AuBe/Au、またはAuZn/Auからなる合金を用いることができる。一方、n型オーミック電極13は、例えばAuGe、Ni合金/Auからなる合金を用いることができる。
【0039】
<発光ダイオードの製造方法>
次に、本実施形態の発光ダイオード100の製造方法について図1を用いて説明する。
【0040】
(化合物半導体層の形成工程)
まず、図1に示す、化合物半導体層30を作製する。化合物半導体層30は、n型GaAs基板1上に、GaAsからなる緩衝層2、GaInPからなる層(屈折率が大きい層)3aとAlInPからなる層(屈折率が小さい層)3bとを交互に40対積層したDBR反射層3、Siをドープしたn型の下部クラッド層5、下部ガイド層6、活性層7、上部ガイド層8、Mgドープしたp型の上部クラッド層9、Mgドープしたp型GaPからなる電流拡散層10を順次積層して作製する。
【0041】
GaAs基板1は、公知の製法で作製された市販品の単結晶基板を使用することができる。GaAs基板1のエピタキシャル成長させる表面は、平滑であることが望ましい。GaAs基板1の表面の面方位は、エピタキシャル成長しやすく、量産されている(100)面および(100)から、±20°以内にオフした基板が、品質の安定性の面から望ましい。さらに、GaAs基板1の面方位の範囲が、(100)方向から(0−1−1)方向に15°オフ±5°であることがより好ましい。
尚、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味する。
【0042】
GaAs基板1の転位密度は、化合物半導体層30の結晶性を良くするために低い方が望ましい。具体的には、例えば、10,000個cm−2以下、望ましくは、1,000個cm−2以下であることが好適である。
【0043】
GaAs基板1は、n型であってもp型であっても良い。GaAs基板1のキャリア濃度は、所望の電気伝導度と素子構造から、適宜選択することができる。例えば、GaAs基板1がSiドープのn型である場合には、キャリア濃度が1×1017〜5×1018cm−3の範囲であることが好ましい。これに対して、GaAs基板1がZnドープのp型の場合には、キャリア濃度2×1018〜5×1019cm−3の範囲であることが好ましい。
【0044】
GaAs基板1の厚さは、基板のサイズに応じて適切な範囲がある。GaAs基板1の厚さが適切な範囲よりも薄いと、化合物半導体層30の製造プロセス中に割れてしまうおそれがある。一方、GaAs基板1の厚さが適切な範囲よりも厚いと材料コストが増加することになる。このため、GaAs基板1の基板サイズが大きい場合、例えば、直径75mmの場合には、ハンドリング時の割れを防止するために250〜500μmの厚さが望ましい。同様に、直径50mmの場合は、200〜400μmの厚さが望ましく、直径100mmの場合は、350〜600μmの厚さが望ましい。
【0045】
このように、GaAs基板1の基板サイズに応じて基板の厚さを厚くすることにより、発光部20に起因する化合物半導体層30の反りを低減することができる。これにより、エピタキシャル成長中の温度分布が均一となることため、活性層7の面内の波長分布を小さくすることができる。なお、GaAs基板1の形状は、特に円形に限定されず、矩形等であっても問題ない。
【0046】
緩衝層(buffer)2は、GaAs基板1と発光部20の構成層との欠陥の伝搬を低減するために設けられている。このため、基板の品質やエピタキシャル成長条件を選択すれば、緩衝層2は、必ずしも必要ではない。また、緩衝層2の材質は、エピタキシャル成長させる基板と同じ材質とすることが好ましい。したがって、本実施形態では、緩衝層2には、GaAs基板1と同じくGaAsを用いることが好ましい。また、緩衝層2には、欠陥の伝搬を低減するためにGaAs基板1と異なる材質からなる多層膜を用いることもできる。緩衝層2の厚さは、0.1μm以上とすることが好ましく、0.2μm以上とすることがより好ましい。
【0047】
DBR反射層3は、基板方向へ進行する光を反射する為に設けられている。DBR反射層3の材質は発光波長に対して透明であることが好ましく、又、DBR反射層3を構成する2種類の材料の屈折率の差が大きくなる組み合わせとなるよう選択されるのが好ましい。本実施形態では、DBR反射層3の材質をAlInPとGaInPの組み合わせとするが、組成の異なる2種類の(AlXlGa1−Xl0.5In0.5P(0≦xl<1)、(AlXhGa1−Xh0.5In0.5P(0<xh≦1)、または組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)から選択することも可能である。
【0048】
本実施形態では、分子線エピタキシャル法(MBE)や減圧有機金属化学気相堆積法(MOCVD法)等の公知の成長方法を適用することができる。なかでも、量産性に優れるMOCVD法を適用することが、最も望ましい。具体的には、化合物半導体層30のエピタキシャル成長に使用するGaAs基板1は、成長前に洗浄工程や熱処理等の前処理を実施して、表面の汚染や自然酸化膜を除去することが望ましい。上記化合物半導体層30を構成する各層は、直径50〜150mmのGaAs基板1をMOCVD装置内にセットし、同時にエピタキシャル成長させて積層することができる。また、MOCVD装置としては、自公転型、高速回転型等の市販の大型装置を適用することができる。
【0049】
上記化合物半導体層30の各層をエピタキシャル成長する際、III族構成元素の原料としては、例えば、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)及びトリメチルインジウム((CHIn)を用いることができる。また、Mgのドーピング原料としては、例えば、ビスシクロペンタジエニルマグネシウム(bis−(CMg)等を用いることができる。また、Siのドーピング原料としては、例えば、ジシラン(Si)等を用いることができる。
また、V族構成元素の原料としては、ホスフィン(PH)、アルシン(AsH)等を用いることができる。
また、各層の成長温度としては、電流拡散層10としてp型GaPを用いる場合は、720〜770℃を適用することができ、その他の各層では600〜700℃を適用することができる。
また、電流拡散層10としてp型GaInPを用いる場合は、600〜700℃を適用することができる。
さらに、各層のキャリア濃度及び層厚、温度条件は、適宜選択することができる。
【0050】
このようにして作製した化合物半導体層30は、発光部20を有するにもかかわらず結晶欠陥が少ない良好な表面状態が得られる。また、化合物半導体層30は、素子構造に対応して研磨などの表面加工を施しても良い。
【0051】
(第1及び第2の電極の形成工程)
次に、第1の電極であるp型オーミック電極12及び第2の電極であるn型オーミック電極13を形成する。
<発光ダイオード(第2の実施形態)>
本発明を適用した第2の実施形態に係る発光ダイオードは、第1の実施形態に係る発光ダイオードにおけるAlGaAsバリア層16を、組成式(AlX3Ga1−X3Y2In1−Y2P(0≦X3≦1,0<Y2≦1)からなるバリア層とした点が異なる。
【0052】
バリア層は、組成式(AlX3Ga1−X3Y2In1−Y2P(0≦X3≦1,0<Y2≦1)の化合物半導体からなる。
Al組成X3は、井戸層よりもバンドギャップが大きくなる組成とすることが好ましく、具体的には0〜0.2の範囲が好ましい。
また、Y2は、基板との格子不整によるひずみの発生を防止する為に0.4〜0.6とするのが好ましく、0.45〜0.55の範囲がより好ましい。
【実施例】
【0053】
以下、本発明の効果を、実施例を用いて具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
【0054】
本実施例では、本発明に係る発光ダイオードを作製した例を具体的に説明する。また、本実施例で作製した発光ダイオードは、AlGaAsからなる井戸層とAlGaAsからなるバリア層との量子井戸構造からなる活性層を有する発光ダイオード、及び、AlGaAsからなる井戸層とAlGainPからなるバリア層との量子井戸構造からなる活性層を有する発光ダイオードである。本実施例では、特性評価のために発光ダイオードチップを基板上に実装した発光ダイオードランプを作製した。
【0055】
(実施例1)
実施例1の発光ダイオードは、まず、Siをドープしたn型のGaAs単結晶からなるGaAs基板上に、化合物半導体層を順次積層してエピタキシャルウェーハを作製した。GaAs基板は、(100)面から(0−1−1)方向に15°傾けた面を成長面とし、キャリア濃度を2×1018cm−3とした。また、GaAs基板の層厚は、約0.5μmとした。化合物半導体層とは、SiをドープしたGaAsからなるn型の緩衝層、SiをドープしたAlInPとGaInPの40対の繰り返し構造であるn型のDBR反射層、Siをドープした(Al0.7Ga0.30.5In0.5Pからなるn型の下部クラッド層、Al0.6Ga0.4Asからなる下部ガイド層、Al0.24Ga0.76As/Al0.4Ga0.6Asの22対からなる井戸層/バリア層、Al0.6Ga0.4Asからなる上部ガイド層、Mgをドープした(Al0.7Ga0.30.5In0.5Pからなるp型の上部クラッド層、(Al0.5Ga0.50.5In0.5Pからなる薄膜の中間層、Mgドープしたp型GaPからなる電流拡散層である。
【0056】
本実施例では、減圧有機金属化学気相堆積装置法(MOCVD装置)を用い、直径76mm、厚さ350μmのGaAs基板に化合物半導体層をエピタキシャル成長させて、エピタキシャルウェーハを形成した。エピタキシャル成長層を成長させる際、III族構成元素の原料としては、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)及びトリメチルインジウム((CHIn)を使用した。また、Mgのドーピング原料としては、ビスシクロペンタジエニルマグネシウム(bis−(CMg)を使用した。また、Siのドーピング原料としては、ジシラン(Si)を使用した。また、V族構成元素の原料としては、ホスフィン(PH)、アルシン(AsH)を使用した。また、各層の成長温度としては、p型GaPからなる電流拡散層は、750℃で成長させた。その他の各層では700℃で成長させた。
【0057】
GaAsからなる緩衝層は、キャリア濃度を約2×1018cm−3、層厚を約0.5μmとした。下部クラッド層は、キャリア濃度を約1×1018cm−3、層厚を約0.5μmとした。下部ガイド層は、アンドープで層厚を約50nmとした。井戸層は、アンドープで層厚が約17nmのAl0.24Ga0.76Asとし、バリア層はアンドープで層厚が約19nmのAl0.4Ga0.6Asとした。また、井戸層とバリア層とを交互に22対積層した。上部ガイド層は、アンドープで層厚を約50nmとした。上部クラッド層は、キャリア濃度を約8×1017cm−3、層厚を約0.5μmとした。中間層は、キャリア濃度を約8×1017cm−3、層厚を約0.05μmとした。GaPからなる電流拡散層は、キャリア濃度を約3×1018cm−3、層厚を約9μmとした。
また、DBR反射層はキャリア濃度を約1×1018cm−3、層厚を約54nmとしたAlInPと、キャリア濃度を約1×1018cm−3、層厚を約51nmとしたGaInPを交互に40対積層した。
【0058】
次に電流拡散層の表面に、AuBeを0.2μm、Auを1μmとなるように真空蒸着法によって成膜した。その後、一般的なフォトリソグラフィー手段を利用してパターニングを施し、第1の電極としてp型オーミック電極を形成した。次に、電極部以外の表面である光取り出し面に粗面化処理を施した。
【0059】
次に、第2の電極として基板裏面に、AuGe、Ni合金を厚さが0.5μm、Ptを0.2μm、Auを1μmとなるように真空蒸着法によって成膜し、n型オーミック電極を形成した。その後、450℃で10分間熱処理を行って合金化し、低抵抗のp型およびn型オーミック電極を形成した。
【0060】
次に、化合物半導体層側からダイシングソーを用い350μm間隔で切断し、チップ化した。ダイシングによる破砕層および汚れを硫酸・過酸化水素混合液でエッチング除去して、実施例1の発光ダイオードを作製した。
【0061】
上記の様にして作製した実施例1の発光ダイオードチップを、マウント基板上に実装した発光ダイオードランプを100個組み立てた。この発光ダイオードランプは、マウントは、ダイボンダーで支持(マウント)し、p型オーミック電極とp電極端子とを金線でワイヤーボンディングした後、一般的なエポキシ樹脂で封止して作製した。
【0062】
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果を表1に示す。
表1に示すように、n型及びp型オーミック電極間に電流を流したところ、ピーク波長700nmとする赤色光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、約1.4ボルトとなった。順方向電流を20mAとした際の発光出力は、6.5mWであった。
【表5】

【0063】
(実施例2)
実施例2の発光ダイオードは第1の実施形態の実施例であり、発光ピーク波長を730nmにするべく井戸層のAl組成X=0.18、バリア層のAl組成X=0.4、すなわち、発光部をAl0.18Ga0.82As/Al0.4Ga0.6Asの対からなる井戸層/バリア層に変更した。更にDBR反射層の層厚を約57nmとしたAlInPと、約53nmとしたGaInPに変更した。その他は、実施例1と同じ条件で作製した。
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果は表5に示した通りであり、ピーク波長730nmとする赤色光が出射され、発光出力(P)、順方向電圧(V)はそれぞれ、6.7mW、1.4Vであった。
【0064】
(実施例3)
実施例3の発光ダイオードは第1の実施形態の実施例であり、発光ピーク波長を830nmにするべく井戸層のAl組成X=0.03、バリア層のAl組成X=0.2、すなわち、発光部をAl0.03Ga0.97As/Al0.2Ga0.8Asの対からなる井戸層/バリア層に変更した。更にDBR反射層の層厚を約64nmとしたAlInPと、約60nmとしたGaInPに変更した。その他は、実施例1と同じ条件で作製した。
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果は表5に示した通りであり、ピーク波長830nmとする赤色光が出射され、発光出力(P)、順方向電圧(V)はそれぞれ、7.2mW、1.4Vであった。
【0065】
(実施例4)
実施例4の発光ダイオードはDBR反射層の構成を変更した以外は、実施例1と同じ条件で作製した。
具体的には、DBR反射層はキャリア濃度を約1×1018cm−3、層厚を約54nmとした(Al0.9Ga0.10.5In0.5Pと、キャリア濃度を約1×1018cm−3、層厚を約51nmとした(Al0.2Ga0.80.5In0.5Pを交互に40対積層した。
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果は表5に示した通りであり、ピーク波長700nmとする赤色光が出射され、発光出力(P)及び順方向電圧(V)はそれぞれ、6.3mW、1.4Vであった。
【0066】
(実施例5)
実施例5の発光ダイオードはDBR反射層の構成を変更した以外は、実施例1と同じ条件で作製した。
具体的には、DBR反射層はキャリア濃度を約1×1018cm−3、層厚を約54nmとしたAl0.9Ga0.1Asと、キャリア濃度を約1×1018cm−3、層厚を約50nmとしたAl0.3Ga0.7Asを交互に40対積層した。
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果は表5に示した通りであり、ピーク波長700nmとする赤色光が出射され、発光出力(P)及び順方向電圧(V)はそれぞれ、6.4mW、1.3Vであった。
【0067】
(実施例6)
実施例6の発光ダイオードは第2の実施形態の実施例であり、以下の通り作製した。
まず、Siをドープしたn型のGaAs単結晶からなるGaAs基板上に、化合物半導体層を順次積層してエピタキシャルウェーハを作製した。GaAs基板は、(100)面から(0−1−1)方向に15°傾けた面を成長面とし、キャリア濃度を2×1018cm−3とした。また、GaAs基板の層厚は、約0.5μmとした。化合物半導体層としては、SiをドープしたGaAsからなるn型の緩衝層、SiをドープしたAlInPとGaInPの40対の繰り返し構造であるn型のDBR反射層、Siをドープした(Al0.7Ga0.30.5In0.5Pからなるn型の下部クラッド層、Al0.4Ga0.6Asからなる下部ガイド層、Al0.17Ga0.83As/(Al0.1Ga0.9 0.5 In0.5Pの対からなる井戸層/バリア層、Al0.4Ga0.6Asからなる上部ガイド層、Mgをドープした(Al0.7Ga0.30.5In0.5Pからなるp型の上部クラッド層、(Al0.5Ga0.50.5In0.5Pからなる薄膜の中間層、Mgドープしたp型GaPからなる電流拡散層を用いた。
GaAsからなる緩衝層は、キャリア濃度を約2×1018cm−3、層厚を約0.5μmとした。コンタクト層は、キャリア濃度を約2×1018cm−3、層厚を約3.5μmとした。上部クラッド層は、キャリア濃度を約1×1018cm−3、層厚を約0.5μmとした。上部ガイド層は、アンドープで層厚を約50nmとした。井戸層は、アンドープで層厚が約7nmのAl0.17Ga0.83Asとし、バリア層はアンドープで層厚が約19nmの(Al0.1Ga0.9 0.5 In0.5Pとした。また、井戸層及びバリア層のペア数を5対とした。下部ガイド層は、アンドープで層厚を約50nmとした。下部クラッド層は、キャリア濃度を約8×1017cm−3、層厚を約0.5μmとした。中間層は、キャリア濃度を約8×1017cm−3、層厚を約0.05μmとした。GaPからなる電流拡散層は、キャリア濃度を約3×1018cm−3、層厚を約9μmとした。
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果は表5に示した通りであり、ピーク波長700nmとする赤色光が出射され、発光出力(P)及び順方向電圧(V)はそれぞれ、6.4mW、1.5Vであった。
【0068】
(実施例7)
実施例7の発光ダイオードは第2の実施形態の実施例であり、発光ピーク波長を830nmにするべく井戸層のAl組成X=0.03、バリア層のAl組成X=0.2、すなわち、発光部をAl0.03Ga0.97As/(Al0.1Ga0.9 0.5 In0.5Pの対からなる井戸層/バリア層に変更した。更にDBR反射層の層厚を約64nmとしたAlInPと、約60nmとしたGaInPに変更した。その他は、実施例6と同じ条件で作製した。
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果は表5に示した通りであり、ピーク波長830nmとする赤色光が出射され、発光出力(P)、順方向電圧(V)はそれぞれ、7.0mW、1.5Vであった。
【0069】
(比較例1)
液相エピタキシャル法で、厚膜成長し、基板除去した構造の波長760nmの発光ダイオードの例を示す。
GaAs基板に、スライドボート型成長装置を用いてAlGaAs層を成長した。
スライドボート型成長装置の基板収納溝にp型GaAs基板をセットし、各層の成長用に用意したルツボにGaメタル、GaAs多結晶、金属Al、及びドーパントを入れた。成長する層は、透明厚膜層(第1のp型層)、下部クラッド層(p型クラッド層)、活性層、上部クラッド層(n型クラッド層)の4層構造とし、この順序で積層した。
これらの原料をセットしたスライドボート型成長装置を、石英反応管内にセットし、水素気流中で950℃まで加温し、原料を溶解した後、雰囲気温度を910℃まで降温し、スライダーを右側に押して原料溶液(メルト)に接触させたあと0.5℃/分の速度で降温し、所定温度に達した後、またスライダーを押して順次各原料溶液に接触させたあと高温させる動作を繰り返し、最終的にはメルトと接触させた後、雰囲気温度を703℃まで降温してnクラッド層を成長させた後、スライダーを押して原料溶液とウェーハを切り離してエピタキシャル成長を終了させた。
【0070】
得られたエピタキシャル層の構造は、第1のp型層は、Al組成X1=0.3〜0.4、層厚64μm、キャリア濃度3×1017cm−3、p型クラッド層は、Al組成X2=0.4〜0.5、層厚79μm、キャリア濃度5×1017cm−3、p型活性層は、発光波長が760nmの組成で、層厚1μm、キャリア濃度1×1018cm−3、n型クラッド層は、Al組成X4=0.4〜0.5、層厚25μm、キャリア濃度5×1017cm−3、であった。
【0071】
エピタキシャル成長終了後、エピタキシャル基板を取り出し、n型GaAlAsクラッド層表面を保護して、アンモニア−過酸化水素系エッチャントでp型GaAs基板を選択的に除去した。その後、エピタキシャルウェーハ両面に金電極を形成し、長辺が350μmの電極マスクを用いて、直径100μmのワイヤーボンディング用パッドを中央に配置された表面電極を形成した。裏面電極には、直径20μmのオーミック電極を80μm間隔に形成した。その後、ダイシングで分離、エッチングすることにより、n型GaAlAs層が表面側となるようにした350μm角の発光ダイオードを作製した。
【0072】
比較例1の発光ダイオードを実装し、発光ダイオードランプの特性を評価した結果を表5に示す。
表5に示すように、n型及びp型オーミック電極間に電流を流したところ、ピーク波長を760nmとする赤外光が出射された。また、順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(V)は、1.9ボルト(V)となった。また、順方向電流を20mAとした際の発光出力は5.0mWであり、本発明の実施例に比べて出力が低かった。
【0073】
(比較例2)
比較例2と同様な方法で、発光波長を830nmになるように、活性層を調整した発光ダイオードの評価結果を表5に示す。
特性評価した結果は発光出力(P)及び順方向電圧(V)はそれぞれ、6.0mW、1.9Vであった。
【産業上の利用可能性】
【0074】
本発明の発光ダイオードは高効率で発光し、信頼性が高く、従来の液相エピタキシャル法で製造したAlGaAsのLEDで得られなかった高出力発光ダイオード製品として利用できる。
【符号の説明】
【0075】
1・・・GaAs基板
2・・・緩衝層
3・・・DBR反射層
3a・・・DBR反射層の第1の構成層
3b・・・DBR反射層の第2の構成層
5・・・下部クラッド層(第1のクラッド層)
6・・・下部ガイド層
7・・・活性層
8・・・上部ガイド層
9・・・上部クラッド層(第2のクラッド層)
10・・・電流拡散層
12・・・p型オーミック電極(第1の電極)
13・・・n型オーミック電極(第2の電極)
20・・・発光部
30・・・化合物半導体層
100・・・発光ダイオード

【特許請求の範囲】
【請求項1】
基板上に、DBR反射層と、発光部とを順に備える発光ダイオードであって、
前記発光部は、組成式(AlX1Ga1−X1)As(0≦X1≦1)からなる井戸層とバリア層との積層構造を有する活性層と、該活性層を挟む、組成式(AlX2Ga1−X2In1−YP;0≦X2≦1,0<Y≦1)からなる第1のクラッド層及び第2のクラッド層とを有することを特徴とする発光ダイオード。
【請求項2】
基板上に、DBR反射層と、発光部とを順に備える発光ダイオードであって、
前記発光部は、組成式(AlX1Ga1−X1)As(0≦X1≦1)からなる井戸層と組成式(AlX3Ga1−X3Y2In1−Y2P(0≦X3≦1,0<Y2≦1)からなるバリア層との積層構造を有する活性層と、該活性層を挟む、組成式(AlX2Ga1−X2In1−YP;0≦X2≦1,0<Y≦1)からなる第1のクラッド層及び第2のクラッド層とを有することを特徴とする発光ダイオード。
【請求項3】
前記井戸層の組成式においてAl組成(X1)を0.20≦X1≦0.36とし、前記井戸層の厚さを3〜30nmとし、発光波長を660〜720nmに設定されてなることを特徴とする請求項1又は2のいずれかに記載の発光ダイオード。
【請求項4】
前記井戸層の組成式においてAl組成(X1)を0.1≦X1≦0.24とし、前記井戸層の厚さを3〜30nmとし、発光波長を720〜760nmに設定されてなることを特徴とする請求項1又は2のいずれかに記載の発光ダイオード。
【請求項5】
前記井戸層の組成式においてAl組成(X1)を0≦X1≦0.2とし、前記井戸層の厚さを3〜30nmとし、発光波長を760〜850nmに設定されてなることを特徴とする請求項1又は2のいずれかに記載の発光ダイオード。
【請求項6】
前記DBR反射層は屈折率の異なる2種類の層が交互に10〜50対積層されてなることを特徴とする請求項1から5のいずれか一項に発光ダイオード。
【請求項7】
前記屈折率の異なる2種類の層は組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P;0≦Xl<1、Y3=0.5)の組み合わせであり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しいことを特徴とする請求項6に記載の発光ダイオード。
【請求項8】
前記屈折率の異なる2種類の層はGaInPとAlInPの組み合わせであることを特徴とする請求項6に記載の発光ダイオード。
【請求項9】
前記屈折率の異なる2種類の層は組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の組み合わせであり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しいことを特徴とする請求項6に記載の発光ダイオード。
【請求項10】
前記発光部の、DBR反射層の反対側の面上に電流拡散層を備えることを特徴とする請求項1から9のいずれか一項に記載の発光ダイオード。


【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−222950(P2011−222950A)
【公開日】平成23年11月4日(2011.11.4)
【国際特許分類】
【出願番号】特願2010−257184(P2010−257184)
【出願日】平成22年11月17日(2010.11.17)
【出願人】(000002004)昭和電工株式会社 (3,251)
【Fターム(参考)】