説明

発光装置の作製方法

【課題】膜厚分布の均一性の高い表示装置の作製方法を提供する。
【解決手段】本発明に係る表示装置の作製方法は、基板101を蒸着室に搬送し、蒸着源104から薄膜材料を気化させ、前記薄膜材料を気化させている間、前記基板に対する前記蒸着源の位置を移動させることにより、前記基板上に薄膜を成膜することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、陽極、陰極及びそれらの間にEL(Electro Luminescence)が得られる発光性材料、特に自発光性有機材料(以下、有機EL材料という)を挟んだ構造からなるEL素子の作製に用いる成膜装置及び成膜方法に関する。
【0002】
なお、上記有機EL材料は、一重項励起もしくは三重項励起または両者の励起を経由して発光(燐光および/または蛍光)するすべての発光性有機材料を含むものとする。
【背景技術】
【0003】
近年、有機EL材料のEL現象を利用した自発光素子としてEL素子を用いた表示装置(以下、EL表示装置という)の開発が進んでいる。EL表示装置は自発光型であるため、液晶表示装置のようなバックライトが不要であり、さらに視野角が広いため、屋外で使用する携帯型機器の表示部として有望視されている。
【0004】
EL表示装置にはパッシブ型(単純マトリクス型)とアクティブ型(アクティブマトリクス型)の二種類があり、どちらも盛んに開発が行われている。特に現在はアクティブマトリクス型EL表示装置が注目されている。また、EL素子の発光層となるEL材料は、有機材料と無機材料があり、さらに有機材料は低分子系(モノマー系)有機EL材料と高分子系(ポリマー系)有機EL材料とに分けられる。両者ともに盛んに研究されているが、低分子系有機EL材料は主に蒸着法で成膜され、高いポリマー系有機EL材料は主に塗布法で成膜される。
【0005】
カラー表示のEL表示装置を作製するためには、異なる発色をするEL材料を画素ごとに分けて成膜する必要がある。しかしながら、一般的にEL材料は水及び酸素に弱く、フォトリソグラフィによるパターニングができない。そのため、成膜と同時にパターン化することが必要となる。
【0006】
最も一般的な方法は、開口部を設けた金属板もしくはガラス板からなるマスク(以下、シャドーマスクという)を、成膜を行う基板と蒸着源との間に設ける方法である。この場合、蒸着源から気化したEL材料が開口部だけを通過して選択的に成膜されるため、成膜と同時にパターン化されたEL層を形成することが可能である。
【0007】
従来の蒸着装置は一つの蒸着源から放射状に飛んだEL材料が基板上に堆積されて薄膜を形成していたため、EL材料の飛行距離を考慮して基板の配置を工夫していた。例えば、円錐形の基板ホルダに基板を固定することで蒸着源から基板までの距離を全て等しくするといった工夫が行われていた。
【0008】
しかしながら、大型基板上に複数のパネルを作製する多面取りプロセスを採用する場合には、上述の方法を行うと基板ホルダが非常に大きくなってしまい、成膜装置本体の大型化を招いてしまう。また、枚葉式で行うにも基板が平板であるため、蒸着源からの距離が基板の面内で異なり、均一な膜厚で成膜することが困難であるという問題が残る。
【0009】
さらに、大型基板を用いる場合には蒸着源とシャドーマスクとの距離を長くしないと気化されたEL材料が十分に広がらず、基板全面に均一に薄膜を形成することが困難となる。この距離の確保も装置の大型化を助長している。
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は上記問題点を鑑みてなされたものであり、高いスループットで膜厚分布の均一性の高い薄膜を成膜できる成膜装置を提供することを課題とする。また、本発明の成膜装置を用いた成膜方法を提供することを課題とする。
【課題を解決するための手段】
【0011】
本発明は、長手方向を有する蒸着セル(蒸着する薄膜の材料を入れる部分)もしくは複数個の蒸着セルを設けた蒸着源を用い、この蒸着源を蒸着源の長手方向と垂直な方向に移動させることで薄膜を成膜することを特徴とする。なお、「長手方向を有する」とは、形状が細長い長方形、細長い楕円形もしくは線状であることを指している。本発明の場合、長手方向の長さが成膜される基板の一辺の長さよりも長いと一括で処理できるため好ましい。具体的には300mm〜1200mm(典型的には600〜800mm)であると良い。
【0012】
本発明の蒸着源と基板との位置関係を図1に示す。図1において、図1(A)
は上面図、図1(B)は図1(A)をA−A’で切断した断面図、図1(C)は図1(A)をB−B’で切断した断面図である。なお、図1(A)〜(C)において符号は共通のものを用いている。
【0013】
図1(A)に示すように、基板101の下方にはシャドーマスク102が設置され、さらにその下方には複数の蒸着セル103が一直線上に並べられた長方形の蒸着源104が設置されている。なお、本明細書において基板とは、基板とその上に形成された薄膜も含めて基板とする。また、基板の表面とは、薄膜を形成する基板面のことを指す。
【0014】
蒸着源104の長手方向の長さは基板101の1辺の長さよりも長く、矢印方向(蒸着源104の長手方向と垂直な方向)へ蒸着源104を移動させる機構を備えている。そして、蒸着源104を移動させることで基板全面に薄膜を成膜できるようになっている。なお、長手方向の長さが基板の1辺よりも短い場合は、数回の走査を繰り返して薄膜を形成すれば良い。また、蒸着源104を繰り返し移動させることにより同一の薄膜を数回積層しても構わない。
【0015】
個々の蒸着セル103にて気化した薄膜材料は上方に飛散し、シャドーマスク102に設けられた開口部(図示せず)を通って基板101に堆積される。こうして基板101には選択的に薄膜が成膜される。このとき、蒸着セル103から飛散した薄膜材料が成膜される領域は隣接する他の蒸着セルから飛散した薄膜材料が成膜される領域と重なるようにする。互いに成膜される領域を重ねることで最終的には長方形の領域で成膜されることになる。
【0016】
このように本発明は複数個の蒸着セルを並べた蒸着源を用いることで、従来の点からの放射ではなく線からの放射となり、薄膜の膜厚の均一性を大幅に向上させることができる。さらに、長方形の蒸着源を基板面の下方にて移動させることで高スループットで成膜を行うことができる。
【0017】
さらに、本発明によれば蒸着源104とシャドーマスク102との距離を長くする必要がなく、非常に近接した状態で蒸着を行うことが可能である。これは蒸着セルが並んで複数設けられているため、薄膜材料の飛散距離が短くても基板の中心部から端部に至るまでを同時に成膜することが出来るためである。この効果は蒸着セル103が密に並んでいるほど高い。
【0018】
蒸着源104とシャドーマスク102との距離は蒸着セル103を設ける密度によっても異なるため特に限定はない。しかし近すぎると基板の中心部から端部までを均一に成膜することが困難となり、遠すぎると従来の点からの放射による蒸着と変わらなくなってしまう。そのため、蒸着セル103同士の間隔をaとすると、蒸着源104とシャドーマスク102との距離は2a〜100a(好ましくは5a〜50a)とすることが望ましい。
【0019】
以上のような構成からなる本発明の成膜装置は、蒸着源を用いることで長方形、楕円形もしくは線状の領域において薄膜の膜厚分布の均一性を確保し、その上で蒸着源を移動させることで基板全面に均一性の高い薄膜を成膜することが可能である。また、点からの蒸着でないため、蒸着源と基板との距離を短くすることができ、さらに膜厚の均一性を高めることができる。
【0020】
また、本発明の成膜装置にチャンバー内にてプラズマを発生させる手段を設けることは有効である。酸素ガスによるプラズマ処理もしくはフッ素を含むガスによるプラズマ処理を行うことで、チャンバー壁に成膜された薄膜を除去し、チャンバー内のクリーニングを行うことができる。プラズマを発生させる手段としては、チャンバー内に平行平板の電極を設けて、その間でプラズマを発生させれば良い。
【発明の効果】
【0021】
本発明の成膜装置を用いることで、基板面内において膜厚分布の均一性の高い薄膜を高いスループットで成膜することが可能となる。
【図面の簡単な説明】
【0022】
【図1】蒸着源の構成を示す図。
【図2】蒸着室の構造を示す図。
【図3】蒸着室の構造を示す図。
【図4】成膜装置の構造を示す図。
【図5】成膜装置の構造を示す図。
【図6】成膜装置の構造を示す図。
【図7】成膜装置の構造を示す図。
【図8】成膜装置の構造を示す図。
【発明を実施するための形態】
【0023】
本発明の成膜装置に備えられる蒸着室の構成について図2に示す。図2(A)
は蒸着室の上面図であり、図2(B)は断面図である。なお、共通の部分には共通の符号を使うものとする。また、本実施の形態では薄膜としてEL(エレクトロルミネッセンス)膜を成膜する例を示す。
【0024】
図2(A)において、201はチャンバー、202は基板搬送口であり、ここから基板がチャンバー201の内部に搬送される。搬送された基板203は基板ホルダ204に載せられ、搬送レール205によって矢印205で示すように成膜部206へと搬送される。
【0025】
成膜部206に基板203が搬送されると、マスクホルダ207に固定されたシャドーマスク208が基板203に近づく。なお、本実施形態ではシャドーマスク208の材料として金属板を用いる。((図2(B))また、本実施形態ではシャドーマスク208には開口部209が長方形、楕円形もしくは線状に形成されている。勿論、開口部の形状はこれに限定されるものではなく、マトリクス状もしくは網目状に形成されていても構わない。
【0026】
このとき、本実施形態では、図2(B)に示すように基板203に電磁石210が近接するような構造とする。電磁石210により磁場を形成すると、シャドーマスク208が基板203の方へと引き寄せられ、所定の間隔をもって保持される。この間隔は図3に示すようにシャドーマスク208に設けられた複数の突起301により確保される。
【0027】
このような構造は、基板203が300mmを超える大型基板である場合において特に有効である。基板203が大型化すると、基板の自重によりたわみが生じる。しかしながら、電磁石210によりシャドーマスク208を基板203側に引き寄せれば、基板203も電磁石210に引き寄せられ、たわみを解消することができる。但し、図4に示すように電磁石210にも突起401を設け、基板203と電磁石210との間隔を確保することが好ましい。
【0028】
こうして基板203とシャドーマスク208との間隔が確保されたら、長手方向を有する蒸着セル211を設けた蒸着源212を矢印213の方向へ移動させる。移動させる間、蒸着セルの内部に設けられたEL材料は蒸着セルが加熱されることにより気化し、成膜部206のチャンバー内へと飛散する。但し、本発明の場合、蒸着源212と基板203との距離を非常に短いものとすることができるため、チャンバー内の駆動部(蒸着源、基板ホルダもしくはマスクホルダを駆動する部分)へのEL材料の付着を最小限に抑えることができる。
【0029】
蒸着源212は基板203の一端から他端まで走査される。本実施形態では、図2(A)に示すように、蒸着源212の長手方向の長さが十分に長いため、1回の走査で基板203の全面を移動させることができる。
【0030】
以上のようにして、赤、緑もしくは青のEL材料(ここでは赤)を成膜したら、電磁石210の磁場を消し、マスクホルダ207を下げて、シャドーマスク208と基板203との距離を離す。そして、基板ホルダ204を一画素分ずらして、再びマスクホルダ207を上げ、シャドーマスク208と基板203とを近づける。さらに、電磁石210により磁場を形成して、シャドーマスク208及び基板203のたわみを解消する。その後、蒸着セルを切り換えて再び赤、緑もしくは青のEL材料(ここでは緑)を成膜する。
【0031】
なお、ここでは基板ホルダ204を一画素分ずらす構成としたが、マスクホルダ204を一画素部ずらしても構わない。
【0032】
このような繰り返しにより赤、緑もしくは青のEL材料をすべて成膜したら、最後に基板203を基板搬送口202の方へ搬送し、チャンバー201からロボットアーム(図示せず)にて取り出す。以上で本発明を用いたEL膜の成膜が完了する。
【実施例1】
【0033】
本発明の成膜装置について図5を用いて説明する。図5において、501は搬送室であり、搬送室501には搬送機構502が備えられ、基板503の搬送が行われる。搬送室501は減圧雰囲気にされており、各処理室とはゲートによって連結されている。各処理室への基板の受け渡しは、ゲートを開けた際に搬送機構502によって行われる。また、搬送室501を減圧するには、油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプ若しくはクライオポンプなどの排気ポンプを用いることが可能であるが、水分の除去に効果的なクライオポンプが好ましい。
【0034】
以下に、各処理室についての説明を行う。なお、搬送室501は減圧雰囲気となるので、搬送室501に直接的に連結された処理室には全て排気ポンプ(図示せず)が備えられている。排気ポンプとしては上述の油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプ若しくはクライオポンプが用いられる。
【0035】
まず、504は基板のセッティング(設置)を行うロード室であり、アンロード室も兼ねている。ロード室504はゲート500aにより搬送室501と連結され、ここに基板503をセットしたキャリア(図示せず)が配置される。なお、ロード室504は基板搬入用と基板搬出用とで部屋が区別されていても良い。
また、ロード室504は上述の排気ポンプと高純度の窒素ガスまたは希ガスを導入するためのパージラインを備えている。
【0036】
なお、本実施例では基板503として、EL素子の陽極となる透明導電膜までを形成した基板を用いる。本実施例では基板503を、被成膜面を下向きにしてキャリアにセットする。これは後に蒸着法による成膜を行う際に、フェイスダウン方式(デポアップ方式ともいう)を行いやすくするためである。フェイスダウン方式とは、基板の被成膜面が下を向いた状態で成膜する方式をいい、この方式によればゴミの付着などを抑えることができる。
【0037】
次に、505で示されるのはEL素子の陽極もしくは陰極(本実施例では陽極)の表面を処理する処理室(以下、前処理室という)であり、前処理室505はゲート500bにより搬送室501と連結される。前処理室はEL素子の作製プロセスによって様々に変えることができるが、本実施例では透明導電膜からなる陽極の表面に酸素中で紫外光を照射しつつ100〜120℃で加熱できるようにする。このような前処理は、EL素子の陽極表面を処理する際に有効である。
【0038】
次に、506は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(A)と呼ぶ。蒸着室(A)506はゲート500cを介して搬送室501に連結される。本実施例では蒸着室(A)506として図2に示した構造の蒸着室を設けている。
【0039】
本実施例では、蒸着室(A)506内の成膜部507において、まず正孔注入層を基板面全体に成膜し、次に赤色に発色する発光層、その次に緑色に発色する発光層、最後に青色に発色する発光層を成膜する。なお、正孔注入層、赤色に発色する発光層、緑色に発色する発光層及び青色に発色する発光層としては如何なる材料を用いても良い。
【0040】
蒸着室(A)506は蒸着源を成膜する有機材料の種類に対応して切り換えが可能な構成となっている。即ち、複数種類の蒸着源を格納した予備室508が蒸着室(A)506に接続されており、内部の搬送機構により蒸着源の切り換えを行うことができる。従って、成膜する有機EL材料が変わるたびに蒸着源も切り換えることになる。また、シャドーマスクは同一のマスクを成膜する有機EL材料が変わるたびに一画素分移動させて用いる。
【0041】
なお、蒸着室(A)506内における成膜プロセスに関しては、図2の説明を参照すれば良い。
【0042】
次に、509は蒸着法によりEL素子の陽極もしくは陰極となる導電膜(本実施例では陰極となる金属膜)を成膜するための蒸着室であり、蒸着室(B)と呼ぶ。蒸着室(B)509はゲート500dを介して搬送室501に連結される。
本実施例では蒸着室(B)509として図2に示した構造の蒸着室を設けている。本実施例では、蒸着室(B)509内の成膜部510において、EL素子の陰極となる導電膜としてAl−Li合金膜(アルミニウムとリチウムとの合金膜)
を成膜する。
【0043】
なお、周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着することも可能である。共蒸着とは、同時に蒸着セルを加熱し、成膜段階で異なる物質を混合する蒸着法をいう。
【0044】
次に、511は封止室(封入室またはグローブボックスともいう)であり、ゲート500eを介してロード室504に連結されている。封止室511では、最終的にEL素子を密閉空間に封入するための処理が行われる。この処理は形成されたEL素子を酸素や水分から保護するための処理であり、シーリング材で機械的に封入する、又は熱硬化性樹脂若しくは紫外光硬化性樹脂で封入するといった手段を用いる。
【0045】
シーリング材としては、ガラス、セラミックス、プラスチックもしくは金属を用いることができるが、シーリング材側に光を放射させる場合は透光性でなければならない。また、シーリング材と上記EL素子が形成された基板とは熱硬化性樹脂又は紫外光硬化性樹脂を用いて貼り合わせられ、熱処理又は紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化バリウムに代表される吸湿材を設けることも有効である。
【0046】
また、シーリング材とEL素子の形成された基板との空間を熱硬化性樹脂若しくは紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。
【0047】
図5に示した成膜装置では、封止室511の内部に紫外光を照射するための機構(以下、紫外光照射機構という)512が設けられており、この紫外光照射機構512から発した紫外光によって紫外光硬化性樹脂を硬化させる構成となっている。また、封止室511の内部は排気ポンプを取り付けることで減圧とすることも可能である。上記封入工程をロボット操作で機械的に行う場合には、減圧下で行うことで酸素や水分の混入を防ぐことができる。また、逆に封止室511の内部を与圧とすることも可能である。この場合、高純度な窒素ガスや希ガスでパージしつつ与圧とし、外気から酸素等が侵入することを防ぐ。
【0048】
次に、封止室511には受渡室(パスボックス)513が連結される。受渡室513には搬送機構(B)514が設けられ、封止室511でEL素子の封入が完了した基板を受渡室513へと搬送する。受渡室513も排気ポンプを取り付けることで減圧とすることが可能である。この受渡室513は封止室511を直接外気に晒さないようにするための設備であり、ここから基板を取り出す。
【0049】
以上のように、図5に示した成膜装置を用いることで完全にEL素子を密閉空間に封入するまで外気に晒さずに済むため、信頼性の高いEL表示装置を作製することが可能となる。
【実施例2】
【0050】
本発明の成膜装置をマルチチャンバー方式(クラスターツール方式ともいう)
とした場合について図6を用いて説明する。図6において、601は搬送室であり、搬送室601には搬送機構(A)602が備えられ、基板603の搬送が行われる。搬送室601は減圧雰囲気にされており、各処理室とはゲートによって連結されている。各処理室への基板の受け渡しは、ゲートを開けた際に搬送機構(A)602によって行われる。また、搬送室601を減圧するには、油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプ若しくはクライオポンプなどの排気ポンプを用いることが可能であるが、水分の除去に効果的なクライオポンプが好ましい。
【0051】
以下に、各処理室についての説明を行う。なお、搬送室601は減圧雰囲気となるので、搬送室601に直接的に連結された処理室には全て排気ポンプ(図示せず)が備えられている。排気ポンプとしては上述の油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプ若しくはクライオポンプが用いられる。
【0052】
まず、604は基板のセッティング(設置)を行うロード室であり、ロードロック室とも呼ばれる。ロード室604はゲート600aにより搬送室601と連結され、ここに基板603をセットしたキャリア(図示せず)が配置される。なお、ロード室604は基板搬入用と基板搬出用とで部屋が区別されていても良い。また、ロード室604は上述の排気ポンプと高純度の窒素ガスまたは希ガスを導入するためのパージラインを備えている。
【0053】
次に、605で示されるのはEL素子の陽極もしくは陰極(本実施例では陽極)の表面を処理する前処理室であり、前処理室605はゲート600bにより搬送室601と連結される。前処理室はEL素子の作製プロセスによって様々に変えることができるが、本実施例では透明導電膜からなる陽極の表面に酸素中で紫外光を照射しつつ100〜120℃で加熱できるようにする。このような前処理は、EL素子の陽極表面を処理する際に有効である。
【0054】
次に、606は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(A)と呼ぶ。蒸着室(A)606はゲート600cを介して搬送室601に連結される。本実施例では蒸着室(A)606として図2に示した構造の蒸着室を設けている。
【0055】
本実施例では、蒸着室(A)606内の成膜部607において、正孔注入層及び赤色に発色する発光層を成膜する。従って、蒸着源及びシャドーマスクを正孔注入層及び赤色に発色する発光層となる有機材料に対応して二種類ずつ備え、切り換えが可能な構成となっている。なお、正孔注入層及び赤色に発色する発光層としては公知の材料を用いれば良い。
【0056】
次に、608は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(B)と呼ぶ。蒸着室(B)608はゲート600dを介して搬送室601に連結される。本実施例では蒸着室(B)608として図2に示した構造の蒸着室を設けている。本実施例では、蒸着室(B)608内の成膜部609において、緑色に発色する発光層を成膜する。なお、緑色に発色する発光層としては公知の材料を用いれば良い。
【0057】
次に、610は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(C)と呼ぶ。蒸着室(C)610はゲート600eを介して搬送室601に連結される。本実施例では蒸着室(C)610として図2に示した構造の蒸着室を設けている。本実施例では、蒸着室(C)610内の成膜部611において、青色に発色する発光層を成膜する。なお、青色に発色する発光層としては公知の材料を用いれば良い。
【0058】
次に、612は蒸着法によりEL素子の陽極もしくは陰極となる導電膜(本実施例では陰極となる金属膜)を成膜するための蒸着室であり、蒸着室(D)と呼ぶ。蒸着室(D)612はゲート600fを介して搬送室601に連結される。
本実施例では蒸着室(D)612として図2に示した構造の蒸着室を設けている。本実施例では、蒸着室(D)612内の成膜部613において、EL素子の陰極となる導電膜としてAl−Li合金膜(アルミニウムとリチウムとの合金膜)
を成膜する。なお、周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着することも可能である。
【0059】
次に、614は封止室であり、ゲート600gを介してロード室604に連結されている。封止室614の説明は実施例1を参照すれば良い。また、実施例1と同様に封止室614の内部には紫外光照射機構615が設けられている。さらに、封止室615には受渡室616が連結される。受渡室616には搬送機構(B)617が設けられ、封止室614でEL素子の封入が完了した基板を受渡室616へと搬送する。受渡室616の説明も実施例1を参照すれば良い。
【0060】
以上のように、図6に示した成膜装置を用いることで完全にEL素子を密閉空間に封入するまで外気に晒さずに済むため、信頼性の高いEL表示装置を作製することが可能となる。
【実施例3】
【0061】
本発明の成膜装置をインライン方式とした場合について図7を用いて説明する。図7において701はロード室であり、基板の搬送はここから行われる。ロード室701には排気系700aが備えられ、排気系700aは第1バルブ71、ターボ分子ポンプ72、第2バルブ73及びロータリーポンプ(油回転ポンプ)74を含んだ構成からなっている。
【0062】
第1バルブ71はメインバルブであり、コンダクタンスバルブを兼ねる場合もあるしバタフライバルブを用いる場合もある。第2バルブ73はフォアバルブであり、まず第2バルブ73を開けてロータリーポンプ74によりロード室701を粗く減圧し、次に第1バルブ71を空けてターボ分子ポンプ72で高真空まで減圧する。なお、ターボ分子ポンプの代わりにメカニカルブースターポンプ若しくはクライオポンプを用いることが可能であるがクライオポンプは水分の除去に特に効果的である。
【0063】
次に、702で示されるのはEL素子の陽極もしくは陰極(本実施例では陽極)の表面を処理する前処理室であり、前処理室702は排気系700bを備えている。また、ロード室701とは図示しないゲートで密閉遮断されている。前処理室702はEL素子の作製プロセスによって様々に変えることができるが、本実施例では透明導電膜からなる陽極の表面に酸素中で紫外光を照射しつつ100〜120℃で加熱できるようにする。
【0064】
次に、703は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(A)と呼ぶ。蒸着室(A)703は排気系700cを備えている。また、前処理室702とは図示しないゲートで密閉遮断されている。本実施例では蒸着室(A)703として図2に示した構造の蒸着室を設けている。
【0065】
蒸着室(A)703に搬送された基板704及び蒸着室(A)703に備えられた蒸着源705は各々矢印の方向に向かって移動し、成膜が行われる。なお、蒸着室(A)703の詳細な動作に関しては、図2の説明を参照すれば良い。本実施例では、蒸着室(A)703において、正孔注入層を成膜する。正孔注入層としては公知の材料を用いれば良い。
【0066】
次に、706は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(B)と呼ぶ。蒸着室(B)706は排気系700dを備えている。また、蒸着室(A)703とは図示しないゲートで密閉遮断されている。本実施例では蒸着室(B)706として図2に示した構造の蒸着室を設けている。従って蒸着室(B)706の詳細な動作に関しては、図2の説明を参照すれば良い。また、本実施例では、蒸着室(B)706において、赤色に発色する発光層を成膜する。赤色に発色する発光層としては公知の材料を用いれば良い。
【0067】
次に、707は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(C)と呼ぶ。蒸着室(C)707は排気系700eを備えている。また、蒸着室(B)706とは図示しないゲートで密閉遮断されている。本実施例では蒸着室(C)707として図2に示した構造の蒸着室を設けている。従って蒸着室(C)707の詳細な動作に関しては、図2の説明を参照すれば良い。また、本実施例では、蒸着室(C)707において、緑色に発色する発光層を成膜する。緑色に発色する発光層としては公知の材料を用いれば良い。
【0068】
次に、708は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(D)と呼ぶ。蒸着室(D)708は排気系700fを備えている。また、蒸着室(C)707とは図示しないゲートで密閉遮断されている。本実施例では蒸着室(D)708として図2に示した構造の蒸着室を設けている。従って蒸着室(D)708の詳細な動作に関しては、図2の説明を参照すれば良い。また、本実施例では、蒸着室(D)708において、青色に発色する発光層を成膜する。青色に発色する発光層としては公知の材料を用いれば良い。
【0069】
次に、709は蒸着法によりEL素子の陽極もしくは陰極となる導電膜(本実施例では陰極となる金属膜)を成膜するための蒸着室であり、蒸着室(E)と呼ぶ。蒸着室(E)709は排気系700gを備えている。また、蒸着室(D)708とは図示しないゲートで密閉遮断されている。本実施形態では蒸着室(E)
709として図2に示した構造の蒸着室を設けている。従って蒸着室(E)709の詳細な動作に関しては、図2の説明を参照すれば良い。
【0070】
本実施例では、蒸着室(E)709において、EL素子の陰極となる導電膜としてAl−Li合金膜(アルミニウムとリチウムとの合金膜)を成膜する。なお、周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着することも可能である。
【0071】
次に、710は封止室であり、排気系700hを備えている。また、蒸着室(E)709とは図示しないゲートで密閉遮断されている。封止室710の説明は実施例1を参照すれば良い。また、実施例1と同様に封止室710の内部には紫外光照射機構(図示せず)が設けられている。
【0072】
最後に、711はアンロード室であり、排気系700iを備えている。EL素子が形成された基板はここから取り出される。
【0073】
以上のように、図7に示した成膜装置を用いることで完全にEL素子を密閉空間に封入するまで外気に晒さずに済むため、信頼性の高いEL表示装置を作製することが可能となる。また、インライン方式により高いスループットでEL表示装置を作製することができる。
【実施例4】
【0074】
本発明の成膜装置をインライン方式とした場合について図8を用いて説明する。図8において801はロード室であり、基板の搬送はここから行われる。ロード室801には排気系800aが備えられ、排気系800aは第1バルブ81、ターボ分子ポンプ82、第2バルブ83及びロータリーポンプ(油回転ポンプ)84を含んだ構成からなっている。
【0075】
次に、802で示されるのはEL素子の陽極もしくは陰極(本実施例では陽極)の表面を処理する前処理室であり、前処理室802は排気系800bを備えている。また、ロード室801とは図示しないゲートで密閉遮断されている。前処理室802はEL素子の作製プロセスによって様々に変えることができるが、本実施例では透明導電膜からなる陽極の表面に酸素中で紫外光を照射しつつ100〜120℃で加熱できるようにする。
【0076】
次に、803は蒸着法により有機EL材料を成膜するための蒸着室であり排気系800cを備えている。また、前処理室802とは図示しないゲートで密閉遮断されている。本実施例では蒸着室803として図2に示した構造の蒸着室を設けている。蒸着室803に搬送された基板804及び蒸着室803に備えられた蒸着源805は各々矢印の方向に向かって移動し、成膜が行われる。
【0077】
なお、本実施例の場合、蒸着室803において正孔注入層、赤色に発色する発光層、緑色に発色する発光層、青色に発色する発光層及び陰極となる導電膜を形成するため、成膜ごとに蒸着源803もしくはシャドーマスク(図示せず)を切り換えることが好ましい。本実施例では蒸着室803に予備室806を連結し、予備室806に蒸着源もしくはシャドーマスクを格納しておき、適宜切り換えることとする。
【0078】
次に、807は封止室であり、排気系800dを備えている。また、蒸着室803とは図示しないゲートで密閉遮断されている。封止室807の説明は実施例1を参照すれば良い。また、実施例1と同様に封止室807の内部には紫外光照射機構(図示せず)が設けられている。
【0079】
最後に、808はアンロード室であり、排気系800eを備えている。EL素子が形成された基板はここから取り出される。
【0080】
以上のように、図8に示した成膜装置を用いることで完全にEL素子を密閉空間に封入するまで外気に晒さずに済むため、信頼性の高い発光装置(EL表示装置)を作製することが可能となる。また、インライン方式により高いスループットでEL表示装置を作製することができる。


【特許請求の範囲】
【請求項1】
線状に並べられた複数の蒸着セルを備え、長手方向を有する蒸着源と、蒸着室とを有するインライン方式の蒸着装置を用いた発光装置の作製方法であって、
基板を前記蒸着室に搬送し、
前記蒸着源から薄膜材料を気化させ、
前記薄膜材料を気化させている間、前記基板に対する前記蒸着源の位置を移動させることにより、前記基板上に薄膜を成膜することを特徴とする発光装置の作製方法。
【請求項2】
請求項1において、
前記薄膜材料には発光材料を含むことを特徴とする発光装置の作製方法。
【請求項3】
請求項1において、
前記薄膜材料が有機材料であることを特徴とする発光装置の作製方法。
【請求項4】
請求項1乃至3のうちのいずれか一項において、
前記蒸着源における長手方向の長さは、前記基板の一辺の長さよりも長いことを特徴とする発光装置の作製方法。
【請求項5】
線状に並べられた複数の蒸着セルを備え、長手方向を有する第1及び第2の蒸着源と、蒸着室と、前記蒸着室に接続された予備室とを有するインライン方式の蒸着装置を用いた発光装置の作製方法であって、
前記第1の蒸着源を前記蒸着室に設置し、
前記第2の蒸着源を前記予備室に格納し、
基板を前記蒸着室に搬送し、
前記第1の蒸着源から第1の薄膜材料を気化させ、
前記第1の薄膜材料を気化させている間、前記基板に対する前記第1の蒸着源の位置を移動させることにより、前記基板上に第1の薄膜を成膜し、その後、前記予備室から前記蒸着室に前記第2の蒸着源を搬送し、
前記第2の蒸着源から第2の薄膜材料を気化させ、
前記第2の薄膜材料を気化させている間、前記基板に対する前記第2の蒸着源の位置を移動させることにより、前記蒸着室内で前記基板上に第2の薄膜を成膜することを特徴とする発光装置の作製方法。
【請求項6】
請求項5において、
前記第1及び第2の薄膜材料の少なくとも一つには発光材料を含むことを特徴とする発光装置の作製方法。
【請求項7】
請求項5において、
前記第1及び第2の薄膜材料の少なくとも一つが有機材料であることを特徴とする発光装置の作製方法。
【請求項8】
請求項5乃至7のいずれか一項において、
前記第1の蒸着源及び前記第2の蒸着源それぞれにおける長手方向の長さは、前記基板の一辺の長さよりも長いことを特徴とする発光装置の作製方法。
【請求項9】
請求項1乃至8のうちのいずれか一項において、
前記基板をシャドーマスクと磁石との間に配置し、前記シャドーマスクを前記基板の方に前記磁石によって引き寄せ、
前記シャドーマスクを通して前記基板上に薄膜を成膜することを特徴とする発光装置の作製方法。
【請求項10】
請求項9において、
前記シャドーマスクは長方形または楕円形の開口部を有し、前記開口部の長手方向は前記蒸着源の長手方向に対して垂直に位置されることを特徴とする発光装置の作製方法。
【請求項11】
請求項9又は10において、
前記シャドーマスクは突起を有していることを特徴とする発光装置の作製方法。
【請求項12】
請求項9乃至11のうちのいずれか一項において、
前記磁石は突起を有していることを特徴とする発光装置の作製方法。
【請求項13】
請求項1乃至12のうちのいずれか一項において、
前記基板を蒸着室に搬送する際は搬送レールが用いられることを特徴とする発光装置の作製方法。
【請求項14】
請求項1乃至13のいずれか一項において、
前記基板上に薄膜を成膜後、前記蒸着室内をクリーニングすることを特徴とする発光装置の作製方法。
【請求項15】
請求項14において、
前記蒸着室内はプラズマによりクリーニングされることを特徴とする発光装置の作製方法。
【請求項16】
請求項1乃至15のうちのいずれか一項において、
前記発光装置はアクティブマトリクス型EL表示装置であることを特徴とする発光装置の作製方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−117083(P2011−117083A)
【公開日】平成23年6月16日(2011.6.16)
【国際特許分類】
【出願番号】特願2011−8084(P2011−8084)
【出願日】平成23年1月18日(2011.1.18)
【分割の表示】特願2003−14594(P2003−14594)の分割
【原出願日】平成12年12月26日(2000.12.26)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】