説明

移動体

【課題】 安価で高精度に、閉じられた活動領域を設定された誘導予定経路に沿って移動することができる移動体を提供する。
【解決手段】 本発明の移動体1は、閉じられた所定の活動領域を自動的に移動する移動体であって、活動領域の地図情報を記憶する地図情報記憶部12と、地図情報記憶部12に記憶された地図情報に対応して移動体1の誘導予定経路を設定する誘導経路設定部13と、誘導経路設定部13により設定された誘導予定経路に基づいて移動体1を誘導制御する制御部17とを備えてなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は予め設定した誘導予定経路に従って自動的に走行する移動体に関し、特に地図情報に対応して設定された閉じられた活動領域内の誘導予定経路に従って自動走行を行う移動体に関する。
【背景技術】
【0002】
近年、人件費の高騰や労働力不足などにより、無人走行車や移動ロボットなどの開発が活発であるが、実用のためには活動領域を高精度に且つスピーディに移動することが求められると共にコストも高くならないことが求められる。
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、これら移動体の経路誘導技術としては、ティーチング・プレーバック方式を採用するのが一般的であるため、高精度且つスピーディな誘導を要求する用途には応えられない。例えば、屋外用では精密農業やゴルフ場の芝刈り、屋内用では倉庫内での荷物の運搬などにおいては、スピーディ且つ高精度な移動が要求される。こうした要求を満たす手段がコストの問題で実現できないのが実情である。
【0004】
例えば、ゴルフ場の自動芝刈り機を例にとり、より詳しく説明すると、従来存在する誘導方法としては、グリーンなどの活動領域内の誘導予定経路を予めオペレータが実際に機械を移動させて、経路を教示(ティーチング)し、それに基づいて移動させるいわゆるティーチング・プレーバック方式が一般的である。
【0005】
しかしながら、この方式では、一定時間または一定距離移動するごとにGPSなどの手段を使って位置座標を求めるので、経路は点列で記憶されることになり、実走行時はこの点列を辿ってプレーバックするので、次のような誤差を生むことになる。
【0006】
(1)グリーンエッジのように経路が曲線の場合には、点列を直線的に移動すると円弧部分に誤差を生じる。
(2)人の操作のバラツキによりティーチングエラーが生じる。
(3)移動体がカーブなどで方位角を変える場合、方向転換の指示を受けてから転換量を演算し制御回路が駆動部に指令を出して実際に移動体が転換を始めるまでに時間遅れを生じることによって誤差が生じる。
(4)GPSの示す位置精度は現在最も精度が高いといわれるRTK−GPSでも数cmの誤差を有するので、グリーンエッジのように高精度を要求される用途において、GPSを用いてティーチングするのは不適切である。すなわち、ティーチングにおいてGPSによる誤差を有し、更に実走行時においてもGPSを用いることにより、誤差が重なりその誤差が2倍にもなるおそれがある。
【0007】
本発明は上述した問題点を解決するためになされたものであり、安価で高精度に、且つスピーディに閉じられた活動領域を設定された誘導予定経路に沿って移動することができる移動体を提供することを目的とする。
【課題を解決するための手段】
【0008】
上述した課題を解決するため、本発明は、閉じられた所定の活動領域を自動的に移動する移動体であって、活動領域の地図情報を記憶する記憶手段と、前記地図記憶手段に記憶された地図情報に対応して前記移動体の誘導予定経路を設定する誘導経路設定手段と、前記誘導経路設定手段により設定された誘導予定経路に基づいて前記移動体を誘導制御する制御手段とを備えてなる。
【0009】
ここで、前記誘導経路設定手段は、前記誘導予定経路を複数区間に分割し、且つ各区間をパラメータを用いた数式で表現し、前記制御手段は、該誘導経路設定手段により設定された数式に基づいて各区間毎に前記移動体を誘導制御する。この構成によれば、数式による連続した予定経路が得られ、GPSを基準とする場合のように離散的経路に比べて制御し易く、その精度を高めることができる。なお、実施の形態において、前記制御手段は、制御部17及び角速度センサ14及びロータリーエンコーダ15により構成される。
【0010】
また、前記地図情報は、平面方向及び高さ方向の情報を含む三次元地図情報であり、前記制御手段は、前記誘導経路設定手段により設定される誘導予定経路と前記地図情報とに基づいて前記制御手段が移動体の誘導制御に際して用いる付帯情報を取得し、該付帯情報に基づいて前記移動体を誘導制御する。この構成によれば、例えば予定経路の状況を走行前に知ることができ、駆動制御等の対応準備を行うことができて、応答性を高めることができる。
【0011】
更には、前記移動体の位置を検出するためのセンサと、前記誘導経路設定手段により設定された誘導予定経路と、前記センサの検出信号に基づいて得られる誘導実経路との誤差を演算する誤差演算手段と、該誤差演算手段により演算された誤差に基づいて前記誘導予定経路を補正する補正手段を備えることができる。実施の形態において、前記センサは位置検出器(3点マーカ検出器)により構成されているが、RTK−GPSなどのGPSを用いても良い。
【0012】
そして、前記補正手段は複数分割された前記誘導予定経路の各区間を移動体が走行する度に、前記センサの検出信号に基づいて誤差を検出し、該誤差に基づいて次の区間における数式から得られるパラメータを補正することができる。この構成によれば、走行制御に基づく誘導予定経路と実際に走行する実走行経路との誤差が拡大していくことを防止でき、安価で且つ極めて高精度な走行制御を行わせることができる。
【0013】
また、前記移動体の方位を検出する方位検出手段(例えば地磁気センサ)を備え、前記誤差演算手段は、所定のタイミング毎に前記誘導予定経路と誘導実経路との横ずれ量、方位誤差及び走行距離誤差をそれぞれ演算し、前記補正手段は、前記横ずれ量、方位誤差及び走行距離誤差に基づいて、誘導予定経路を補正するようにしても良い。
【0014】
この場合に、前記補正手段は、前記走行距離誤差として、誘導予定経路方向に生じる距離誤差Xeについては、誘導予定経路に対しその誤差Xe分だけその後の誘導予定経路の位置をずらすことによって補正することができる。
【0015】
また、前記補正手段は、方向誤差Θeと横ずれ量Yeについては、左右車輪に指令する速度の差をVd,com、移動体の規定速度をVr、予定経路を規定速度で走行する場合の規定角速度をωr、規定角速度ωrと実走行角速度ωaとの差(ωr−ωa)をωe、車輪幅をWとし、且つKΘ、Ky、Kωを各誤差を補正するためのゲイン係数とした場合に、
Vd,com/W=ωr+KΘ・Θe+Ky・Ye/Vr+Kω・ωe
を満たすように、制御手段に移動体の車輪の駆動制御を行わせて補正を行うことができる。なお、補正を行うタイミング、及びゲイン係数については、移動体の使用環境等により適宜変更設定することができる。
【0016】
なお、前記移動体に該移動体の所定周りを撮像するカメラを備え、前記制御手段は、該カメラによる撮像映像に基づいて移動体を誘導制御することもできる。
【発明の効果】
【0017】
以上に詳述したように本発明によれば、安価で高精度に、且つスピーディに閉じられた活動領域を設定された誘導予定経路に沿って移動することができる移動体を提供することができる。
【発明を実施するための最良の形態】
【0018】
以下、本発明の実施の形態について図面を参照しつつ説明する。
実施の形態1.
図1は本発明の実施の形態における移動体を示すブロック図である。
この移動体1は、移動体1を走行させようとする経路である誘導予定経路などを入力するための操作部11と、3次元のデジタルパラメータによる地図情報記憶部12と、誘導予定経路を地図情報に対応させて設定する誘導経路設定部13と、角速度を検出する角速度センサ14と、移動距離を検出する距離センサであるロータリーエンコーダ15と、位置検出器16と、誘導予定経路と検出角速度と検出距離とに基づいて移動体を誘導移動させながら、位置検出器16の検出位置に基づいて移動体の今後(先)の誘導予定経路を補正部17aにより補正する制御部17と、制御部17からの制御信号を受けて移動体を走行駆動させる駆動部18とを備える。
【0019】
制御部17は図示しない移動体の車輪の回転駆動制御と進路方向変更制御(ハンドルの操舵制御による方向変更、若しくは左右駆動輪の回転速度変更制御による方向変更)を行い、これを受けて駆動部18は車輪を駆動し或いは操舵を行う。
【0020】
位置検出器16としては、例えば3点マーカ検出器を採用する。この3点マーカ検出器とは、図2で後述するが、誘導予定経路の付近の所定箇所に光学的に検出できる3つのマークを設けると共に、これらマークにより基準点を設定し、これらマークを光学的に検出することで、基準点に対する相対的位置を検出するものである。勿論、基準点としてこのような相対的な位置検出に対し、緯度や経度で表すことができるRTK−GPS等の絶対的な位置検出器を採用しても良い。
【0021】
図2は誘導経路設定部に設定された誘導予定経路の一例を示す図である。図2では、出発点S(x0、y0)、方位角θ、直線長Sn、円弧半径Rn、円弧長Cnで示されている。図2に示される誘導予定経路は、ループ状をなし、複数の円弧部分Cと直線部分Sに区分けされて設定されている。
【0022】
ここで、図2に示す誘導予定経路は、上述した位置検出器(3点マーカ検出器)16による位置検出原理に対応するように、活動領域付近の所定箇所に3点(例えばQ1,Q2,Q3)からなるマーカを設け、これらマーカから導出される所定の点(例えば図示されるX,Y軸の交点)を基準点とした座標系QR(xR,yR)で表したものである。もちろん、緯度、経度などの絶対座標系によって設定することもでき、この場合は、RTK−GPSなどの検出信号に対応することが容易である。もっとも、本実施の形態のように、活動領域付近にマーカを設けることで基準点を設け、座標系を構成するようにすると、例えば位置検出器(3点マーカ検出器)16によるその座標系における位置検出が極めて高精度に行い得る。
【0023】
制御部17はこのように区分けされた部分区間毎にその経路を数式で表し、移動体の走行経路がその数式に沿うように、角速度センサ14とロータリーエンコーダ15の検出信号に基づいて制御信号を形成して駆動部に与える。ここで、説明の便宜のため、例えば図3に示す経路の一部を数式で近似する場合について説明する。
【0024】
図3における座標形上の点S(x0,y0)を起点とした経路において、直線と円弧で設定される数式は、それぞれ次のようになる。
1)S〜P1間の直線上を移動体がS1移動した点の座標(x、y)を求める式は下式のように表される。
【0025】
y=(y1−y0)/(x1−x0)×x+(y1−y0)/(x1−x0)×x0 (1)
(x−x0)2+(y−y0)2=S12 (2)
【0026】
上記(1)(2)式から任意距離S1移動した点の座標(x、y)を求めることができ、制御部17は上記直線区間においては、このような数式を満たすような座標に従うように駆動部を制御する。この場合、進路方向制御に関し、直線区間の移動では角速度がゼロになるようにハンドル又は車輪角を固定する。
【0027】
2)P1〜P2間の円弧上を移動体がP1からC1分移動した点の座標(x、y)を求める式は下式のように表される。
【0028】
(x1−xr1)2+(y−yr1)2=R12 (3)
(x−x1)2+(y−y1)2=(2R1sin(360/(4πR1)×C1) (4)
【0029】
上記(3)(4)式から移動距離C1地点の座標が求まり、制御部17は上記円弧区間においては、このような数式を満たすような座標に従うように駆動部を制御する。この場合、操舵角については、角速度がV/Rとなるようにハンドルを一定角度切るように固定する。ここで、Vは移動速度、Rは半径(曲率半径)である。
【0030】
このようにして、制御部17は誘導経路設定部13に設定された経路に従うように、駆動信号を駆動部18に出力するが、実際には様々な誤差要因により移動体は少しずつ誘導予定経路からずれていく。例えば、方向誤差は角速度センサの零点偏移や角度誤差などで生じ図4(a)に示される。また距離誤差は車輪のスリップなどで生じ図4(b)に示される。そこで、本実施の形態では、この方向誤差及び距離誤差を所定区間毎に補正するようにする。
【0031】
以下、かかる補正方法について、その一例を説明する。
図4(c)において、誘導予定経路に設定した最初の補正点をA´´、実際の到達した位置(位置検出器16により検出される軌跡上の点)を点Aとし、点Aの位置を基準座標系に位置付ける。基準座標系への位置付けは、上述したように、誘導予定経路の設定を活動領域付近に基準点(任意の例えば3点のマーカ)を設けた座標系に対して行った場合においては、それら3点マーカの検出により行う。尚、緯度、経度などの絶対座標系で表した場合においては、RTK−GPSなどにより位置を求めて位置付ける。次に、当該座標系において、起点Sを支点とし、軌跡SAをθ度ずらしたときの誘導予定経路との交点をA´とする。
【0032】
もし、位置誤差を5mm以下に設定するならば、区間AA´≦5mmとなるように、A´´のポイントを決めることになる。以後、等ピッチに補正するとして、区間SA´´=区間A´´B´´=区間B´´C´´…、とB´´、C´´を補正点として設定していく。
【0033】
移動体が補正点A´´に対応する位置Aに到達したとき、実際の位置Aの誘導予定経路における補正点A´´とのずれは、位置検出器16により得られる軌跡を誘導予定経路と比較して(一致するまで回転シフトして)、その角度差θとして求めることができる。そこで、移動体は方位(進路方向)の補正のため、その角度差θを解消するように、誘導予定経路の次の区間(A´´B´´)における当所の設定における方向を補正する。
【0034】
また、この軌跡(実走行経路)のシフトによって、点Aが誘導予定経路と交わる点をA´とすると、シフトによって点Aからの移動体のその後の誘導予定経路(移動体内のコンピュータに記憶されている計画進路)も同時にシフトされることとなるので、点Aからその後移動体が移動する予定経路は上記角度補正に伴い誘導予定経路上では、点A´からとされるべきであり、当初設定された誘導予定経路の次の区間が区間A´´B´´から区間A´B´´に補正される。つまり距離の補正は当初の次の区間A´´B´´のA´´点を誘導予定経路上で距離誤差(誘導予定経路に対応させた距離誤差)A´A´´だけ後退させることによって行われることとなる。
【0035】
つまり、現実の距離ずれ量AA´´の補正を方向の補正と同時に行い、次の予定経路に沿って行くために、次の予定経路の起点をA´に設定し直す。さらにA´を始点とする予定経路に戻るために次の経路区間の設定値を補正する。すなわち、次の経路区間は当所、区間A´´B´´であったが、それを区間A´B´´とし、その区間の数式によるパラメータを変更する。
【0036】
例えば区間A´B´´が半径Rの円弧だった場合、制御部は移動体が角速度V/R+θ/tで駆動されるように駆動部に制御信号を出力する。ここで、Vは移動速度、tは区間A´B´´の移動時間である。また区間A´B´´が直線の場合、θ/tとなるようにハンドルの操舵を行う。
【0037】
以上、本実施の形態の動作について、図5に纏めて説明する。
まず、誘導予定経路を入力する(ステップS1)。次にこの誘導予定経路を図2に示すように複数区間に分割し、各区間を数式表示する(ステップS2)。そして、制御部は始点から第1区間(その後第n区間)における数式に基づいて駆動制御を行う(ステップS3、S4)。次に第1区間移動(第n区間移動)後にセンサ(位置検出器16)による検出信号に基づいて移動距離及び方位の誤差を演算処理し(ステップS6)、その演算結果に基づいて第2区間(第n+1区間)を補正し(ステップS7、S8)、その補正値に従って駆動制御を行う(ステップS4)。この処理を最終区間終了まで行って、誘導制御が終了する(ステップS5)。
【0038】
実施の形態2.
制御部は、移動体の進行方向前方に上り坂又は下り坂がある場合、直線からカーブに入る場合、又はカーブから直線に入る場合等、移動体の移動に付帯する動作情報を地図情報と誘導予定経路とに基づいて、事前にその情報を取得し、付帯する動作にスムーズに入れるように制御信号を駆動部に出力するようにすることもできる。
【0039】
この場合、例えば、現在速度と残距離から次の動作を行うまでの時間を算出し、情報の種類と応答速度とによって定められた時間前に制御信号の出力を行い、次への動作をスムーズに行えるようにすることができる。
【0040】
例えば、上り坂がある場合、地図情報から得られる現在速度に対するその上り勾配の大きさ、その長さなどに対応するエンジンの出力、出力変更時などをテーブルにしておき、制御部は地図情報の付帯情報に基づいて、このテーブルから上記上り坂にかかる直前にパラメータを抽出して駆動信号を出力する。
【0041】
直線からカーブに入る場合、逆にカーブから直線に入る場合も同様に、ハンドルの切り角の制御信号を、地図情報の付帯情報に基づいて、テーブルから抽出し、その動作に入る直前に出力する。
【0042】
また、後述する移動体が芝刈り機の場合は、上記パラメータと共に、芝領域の境界に対するカッターの上げ下ろし、又はその角度調整に関するパラメータを同様に用意されたテーブルから抽出し、その制御信号を動作位置直前に出力するようにする。
【0043】
このような構成によれば、応答速度が遅い場合でも、その動作位置においてスムーズに動作に移ることができ、移動体の機能精度を高めることができる。
【0044】
実施の形態3.
次に、本発明を自動芝刈り機に適用した場合について図6、図7を用いて説明する。
【0045】
(1コース設定)
作業に先立って、グリーンキーパーは予め作業経路(仮想軌道)を決定する。作業経路の設定については以下で詳述するが、グリーンキーパーは芝目の関係から作業手順を決めていくつかの作業パターンを用意する。その内から一つを選択する。選択した後の作業手順は次のようなものとする。
【0046】
(2誘導予定経路の設定)
最初に図6(a)のように出発点S1(予め基準となる正確位置を設定)から高精度を要求されるグリーンエッジの刈込みを行う。高精度を得る最も重要なポイントは初期合わせ(位置と向き)である。従って、管理者は出発点に正しい位置・向きに芝刈機を置く。
【0047】
(2−1初期合わせの方法)
(1)位置はデジタルマップ上で決めたS点に対応する実際のグリーンエッジ近辺にマーキングしておく。あるいは、予め精密測量等で測定した基準点をグリーンサイドに設置する。この基準点にGPSアンテナを置いて基準局とする。基準局と所定の位置関係にある地点に移動局GPSアンテナを置いて初期化する。初期化が終了した移動局GPSアンテナを移動体に搭載し、GPSの示す位置座標がスタート位置座標に合うように移動体を駆動することにおって位置合わせを行う。
【0048】
(2)方向は、位置合わせと同様、グリーンエッジ近辺に予め設定用治具によって決めても良い。他の方法は、誘導予定経路(数式で表した予定経路)をカッターエッジ等本機の基準となる部位に関係的に表示(例えばオンボードのLCD)し、実際のグリーンエッジを示す誘導予定経路のライン表示と一致するように設定する。なお、後述(実施の形態7)するように、地磁気センサを用いる場合は地磁気センサにより誘導予定経路の方向に合わせるようにしても良い。
【0049】
(3作業)
次に芝刈り機は予定経路に沿って作業開始する。
移動時、角速度センサーとロータリーエンコーダで方向と距離の演算を行い指定距離走行後停止する。位置補正は実施の形態1で記述の方法で行う。
停止後、カッターを上げて仮想軌道に沿って、一旦グリーンの外へ出て次の起点S2へ移動する。S2への移動は予定の仮想軌道通りに誘導する。
【0050】
次にS2点から上述した図6(b)のようなパターンの刈込みを行う。S2点にてパラメータデータの指示に従ってカッターを降ろし、図6(b)のように刈り進みグリーンエッジ近くに到達するとパラメータデータの指示によりカッターを上げてグリーンの外へ出る。
【0051】
グリーン外では、設定された仮想軌道に従って180度回転し、再びグリーン内に入りカッターを降ろして刈込みを開始する。以上を繰り返し、G2にて図6(b)の作業を終了する。この間、位置と方向の補正は上述したと同様に行う。
【0052】
又、カッターの上下、即ちグリーンエッジ出・入のタイミングに本機の移動を一定時間停止し、方位センサーの0(ゼロ)点補正を行うことによって精度を高めることができる。
【0053】
図6(b)に示した作業動作を行わせるための設定動作を図7のフローチャートに纏めて説明すると、まず、出発点座標を入力する(ステップD1)。すなわち、予め作成したグリーンのデジタルマップ座標上でグリーンキーパーが指定する狩り込みパターンに従って出発点S2を設定する。
【0054】
次に、グリーンエッジ侵入位置座標を入力する(D2)と共にグリーンエッジ侵出位置座標を入力(D3)する。すなわち、芝刈り機が刈り込みを開始するために、グリーンエッジ侵入点の点A及びグリーンエッジを出る点Bの座標を入力する。
【0055】
次に、走行経路(誘導予定経路)の数式を生成する(D4)。すなわち、点Aと点Bとを結ぶ直線式を演算し記憶する。この直線式生成に基づき、A点から任意の距離LA及びB点の手前のLBの位置にカッターを下降、上昇の指示を付帯情報として入力する。
【0056】
次に、方向転換開始点・終了点座標入力し(D5)、最適転回半径(R)を演算する(D6)。すなわち、点Bの手前LBの位置でカッターを上げ、そのまま直線路を進み、グリーン外へ出て、180度方向転回を開始する点と終了点を入力すると同時に転回半径(R)が演算される。
【0057】
次に、グリーン内の再入点は直線ABに対してL−l(L:カッター幅、l:ラップ分)の平行移動条件を入力することによって、グリーンエッジ線との交点として求まる。再入点が決まることによって、グリーンエッジから所定距離をおいて、芝刈り機のグリーン外での仮想軌道を直線と円弧の数式で設定し(D7)、記憶する。以上の動作を繰り返してゴール座標を入力して処理を終了する(D8)。
【0058】
(作業終了4) 図6(b)の作業の終了後、図6(c)で示すS3へ移動し同様の作業後G3にて停止する。以上で一グリーンの作業は完了し、管理者の到達を待つか次のグリーンへ自動移動する。
【0059】
実施の形態4.
以上に述べた実施の形態は、誘導予定経路に従って、補正しながら走行できる場合について説明したが、場合によっては、オペレータが補正を支援するべく適宜進路変更を指示したり、始点における位置及び方向合わせをオペレータが確実に行えるような構成とすることが望ましい。
【0060】
実施の形態4は、そのような場合を想定して移動体に遠隔指示を行える構成とした場合について説明する。図8は実施の形態4における移動体1A及びモニタ室30内の構成を示すブロック図である。実施の形態4において、移動体の構成は、図1に示した構成において更に図8に示す構成が付加されているものとする。
【0061】
図8に示す移動体1Aは、更に移動体の適所に設けられ、進行方向における所定範囲を撮像することができるカメラ21と、カメラ21により撮像された映像信号を処理する映像信号処理部22と、処理された映像信号を送信すると共に、遠隔指示信号を受信する送受信部23と、送受信部23で受けた遠隔指示信号に基づいて駆動部18を制御する制御部17Aとを備えている。
【0062】
一方、モニタ室30では、移動体1Aと送受信を行う送受信部31と、移動体1Aから送られた映像信号を映し出すモニタ装置32と、オペレータが移動体1Aに対して指示を出す操作部33とを備えている。
【0063】
以上の構成において、移動体1Aが始点に存するときは、その周囲の映像を送信し、モニタ装置32に映し出す。オペレータはその映像から移動体1Aの位置及び方向を操作部33を介して合わせるように操作する。この場合、例えばモニタ装置32側では正しく位置と方向が合わせられた場合の映像を別に用意しておき、それら映像の重なりが一致するようにオペレータが指示を出すようにすれば、より正確に位置及び方向合わせを行うことが可能となる。
【0064】
また、移動体1Aの走行時においては、映像信号をオペレータが監視しながら、誤差がより迅速に収束するように操作部33を操作するようにすることもできる。勿論この場合も制御部17Aは実施の形態1に示した補正動作を行っているが、それにオペレータの操作を加えることにより、移動体1Aの走行精度をより高めることができる。更にこの場合、映像信号処理部22において、映像上に移動体の所定部が通過しようとする進路を重ねて表示するようにすれば、オペレータの操作がより容易となる。
【0065】
実施の形態5.
実施の形態5は更に必要に応じてパターンマッチング処理を行うことにより自動走行を可能とする構成を更に付加した場合について説明する。
図9は実施の形態5において付加される構成を示すブロック図である。
実施の形態5においては、基準パターン記憶部24とパターンマッチング処理部25を有し、カメラ21により撮像されるパターンと基準パターンと比較することにより、マッチング処理を行い、その結果に基づいて制御部17Bは駆動部18に出力を行うようにする。このパターンの比較において、移動体1Bの方位変動に伴うパターンの回転は角速度センサ14(図1参照)の検出信号に基づいて方位を検出する方位検出部14Aを備えて、この方位を用いて回転補正を行った上でパターンマッチング処理を行う。
【0066】
また基準パターン記憶部24には、誘導予定経路に沿って予め取得された映像パターンが記憶されており、移動体1Bの進行に伴ってこれらパターンを順次読み出してマッチング処理に用いるようにする。このような構成によれば、極めて高精度な移動制御を行うことができるので、例えば芝刈り機の場合、グリーンエッジ周りの芝刈りにおいて適用すると効果的である。
【0067】
実施の形態6.
実施の形態5は予め進路に基づいた基準パターンを用いるようにしたが、基準パターンを用いずとも、パターンマッチング処理を用いて移動体の進行方向及び走行距離を正確に検出することもできる。
【0068】
図10は実施の形態6における構成を示すブロック図である。この構成は、カメラの映像を一時的に記憶する映像記憶部(前ステップ映像記憶部)26を備え、カメラ21から出力される生の映像(最新映像)と、前ステップ映像記憶部26に記憶された前ステップ(例えば1又は数フレーム前)の映像を記憶したものとのマッチングをパターンマッチング処理部25Aで行うことで、二つのフレーム間において移動体1Cがどの方向にどれだけの距離移動したかを検出するようにしたものである。この検出処理を繰り返すことで、移動体の移動に追従して、その経路を検出することができる。
【0069】
特に、移動体1Cが芝刈り機の場合、芝生は殆どランダム模様と考えられるので、1ステップ前に撮影した映像の一部(例えば映像の中央部を構成する複数(例えば1024個)の画素データが1ステップ後に撮影した映像の何処に移動したかをマッチング処理で検出することにより極めて正確に移動距離と方向を検出することができる。この場合も移動体の方位変動に伴う映像の回転は、方位検出部による検出結果に基づいて修正するようにすることができる。
【0070】
実施の形態7.
実施の形態7は、実経路と誘導予定経路に差が生じた場合に、実施の形態1とは異なる方法で補正を行うようにしたものである。
【0071】
図11は本発明の実施の形態7における移動体を示すブロック図である。
この移動体1Dは、実施の形態1の構成に加えて、更に移動体1Dの絶対方位を検出する地磁気センサ41を備えることができる。
【0072】
本実施の形態では、制御部17Dは、角速度センサ14による検出角度とロータリーエンコーダ15による検出距離に基づいて移動体1Dが走行した場合の検出角度及び検出距離と、位置検出器16による検出位置及び地磁気センサ41の検出方位とに基づいて、移動体1Dが誘導予定経路に沿うように、補正部17a−1により誘導予定経路を補正しつつ移動体1Dを移動制御する。
【0073】
なお、図11において、図1と同一の符号は図1で説明したものと同一又は相当物を示しており、ここでの説明を省略する。
【0074】
制御部17Dは、実施の形態1で説明したように区分けされた部分区間毎にその経路を数式で表し、移動体の走行経路がその数式に沿うように、制御信号を形成して駆動部18に与える。
【0075】
すなわち、この実施の形態7において、制御部17Dは実施の形態1において上述した式(1)(2)から任意距離S1移動した点の座標(x、y)を求めることができ、制御部17Dは上記直線区間においては、このような数式を満たすような座標に従うように駆動部18を制御する。この場合、進路方向制御に関し、直線区間の移動では、ハンドルを固定し、又は左右車輪回転速度を同一にする。
【0076】
また、実施の形態1において上述した式(3)(4)から移動距離C1の地点の座標が求まり、制御部17Dは上記円弧区間においては、このような数式を満たすような座標に従うように駆動部18を制御する。
【0077】
この駆動に際し、制御部17Dは、直線部では、駆動部に対し、左右車輪の回転速度が一定、且つ両輪が指定速度になるように指令する。また、円弧部では、回転半径と移動体速度(車輪の回転速度の平均値)から定まる所定の角速度になるように駆動部へ指令する。
【0078】
すなわち、制御部17Dは移動体1Dが誘導予定経路設定部13に設定された経路に沿うように、パラメータと角速度センサ14及びロータリーエンコーダ15の出力に基づいて誘導予定経路を走行(自律走行)させる。しかし、実際には図12に示すように、初期方位設定誤差や左右車輪回転差のような様々な誤差要因のために予定経路からずれる。そこで、実施の形態7では、位置検出器16の検出位置および地磁気センサ41の絶対方位のそれぞれを所定時間ごと(例えば20msごと)にサンプリングし、誘導予定経路との誤差を検出し、それを以下のように補正する。
【0079】
以下、本実施の形態の動作を図12に基づいて説明する。
誘導予定経路方向に生じる距離誤差Xe(誘導予定経路上の予定位置と移動体位置から誘導予定経路に垂線を下ろした場合の交点との距離差)については、誘導予定経路に対しその誤差Xe分だけその後の誘導予定経路の位置をずらす(加減算する)ことによって補正する。例えば、誘導予定経路に対して実経路の距離が小さい場合は、その距離だけ誘導予定経路上における移動体1Dの位置を戻す。
【0080】
方向誤差Θeと横ずれ量Yeの補正は、左右車輪速度を制御することによって行うことができる。この補正について以下に説明する。
【0081】
左右車輪に指令する速度の差をVd,comとすると、
Vd,com/W=ωr+KΘ・Θe+Ky・Ye/Vr+Kω・ωe (5)
ここで、Vrは移動体の規定速度であり、左右両車輪の平均速度に相当する。
ωrは予定経路を規定速度で走行する場合の規定角速度を表す。
ωeは規定角速度ωrと実走行角速度ωaとの差(ωr−ωa)を表す。
Wは車輪幅である。
【0082】
また、KΘ、Ky、Kωは、各誤差を補正するための定数であり、制御の感度を決めるゲイン係数である。これらの定数は、大きく設定すれば、補正制御がシャープになり姿勢が左右に振れてジグザグする傾向になる。逆に小さく設定すれば、制御が緩慢になりなかなか補正されない傾向になる。
【0083】
芝刈り機の場合、特にグリーンエッジの刈り取りは高精度が要求されるので、ジグザグしないで且つ迅速な補正を行わなければならない。そのために、これらの定数は、
【0084】
0<KΘ、Ky、Kω<10
【0085】
のように設定することが適切である。
ここで、距離誤差Xeを補正するための時間間隔と、方向誤差Θ及び横ずれ量Yeを補正するための時間間隔は、それぞれ異ならせるようにしても良い。例えば距離誤差を補正するための時間間隔は方向誤差及び横ずれ量を補正するための時間間隔よりも小さくすることで、実経路をより滑らかにすることができる。これらは、移動体1Dの使用状態等によって、適宜変更することが可能であることは言うまでもない。
【0086】
以上、本発明の実施の形態を説明したが、本発明は、上記各実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。
【図面の簡単な説明】
【0087】
【図1】実施の形態1を示すブロック図である。
【図2】誘導経路設定部に設定された誘導予定経路の一例を示す図である
【図3】経路の一部を数式で近似する場合について説明する図である。
【図4】誤差と補正方法を説明するための図である。
【図5】実施の形態1の全体動作を示すフローチャートである。
【図6】本実施の形態3として本発明を自動芝刈り機に適用した場合についてその動作を説明する図である。
【図7】実施の形態3の動作を説明するフローチャートである。
【図8】実施の形態4における移動体及びモニタ室内の構成を示すブロック図である。
【図9】実施の形態5の構成を示すブロック図である。
【図10】実施の形態6の構成を示すブロック図である。
【図11】実施の形態7の構成を示すブロック図である。
【図12】実施の形態7の動作を示す説明図である。
【符号の説明】
【0088】
1,1A,1B,1C,1D 移動体、11 操作部、12 3Dデジタルパラメータ地図情報記憶部、13 誘導経路設定部、14 角速度センサ、14A 方位検出部、15 ロータリーエンコーダ、16 位置検出器、17,17A,17B,17C 制御部、17a 補正部、18 駆動部、21 カメラ、22 映像信号処理部、23,31 送受信部、24 基準パターン記憶部、25,25A パターンマッチング処理部、26 前ステップ映像記憶部、30 モニタ室、32 モニタ装置、33 操作部,41 地磁気センサ。

【特許請求の範囲】
【請求項1】
閉じられた所定の活動領域を自動的に移動する移動体であって、
活動領域の地図情報を記憶する記憶手段と、
前記記憶手段に記憶された地図情報に対応して前記移動体の誘導予定経路を設定する誘導経路設定手段と、
前記誘導経路設定手段により設定された誘導予定経路に基づいて前記移動体を誘導制御する制御手段と
を備えてなる移動体。
【請求項2】
前記誘導経路設定手段は、前記誘導予定経路を複数区間に分割し、且つ各区間をパラメータを用いた数式で表現し、前記制御手段は、該誘導経路設定手段により設定された数式に基づいて各区間毎に前記移動体を誘導制御することを特徴とする請求項1に記載の移動体。
【請求項3】
前記地図情報は、平面方向及び高さ方向の情報を含む三次元地図情報であり、前記制御手段は、前記誘導経路設定手段により設定される誘導予定経路と前記地図情報とに基づいて前記制御手段が移動体の誘導制御に際して用いる付帯情報を取得し、該付帯情報に基づいて前記移動体を誘導制御することを特徴とする請求項1又は請求項2に記載の移動体。
【請求項4】
前記移動体の位置を検出するための位置検出手段と、
前記誘導経路設定手段により設定された誘導予定経路と、前記位置検出手段の検出信号に基づいて得られる誘導実経路との誤差を演算する誤差演算手段と、
該誤差演算手段により演算された誤差に基づいて前記誘導予定経路を補正する補正手段を備えることを特徴とする請求項1乃至請求項3のいずれかに記載の移動体。
【請求項5】
前記補正手段は複数分割された前記誘導予定経路の各区間を移動体が走行する度に、前記位置検出手段の検出信号に基づいて誤差を検出し、該誤差に基づいて次の区間における数式から得られるパラメータを補正することを特徴とする請求項4に記載の移動体。
【請求項6】
前記移動体の方位を検出する方位検出手段を備え、
前記誤差演算手段は、所定のタイミング毎に前記誘導予定経路と誘導実経路との横ずれ量、方位誤差及び走行距離誤差をそれぞれ演算し、
前記補正手段は、前記横ずれ量、方位誤差及び走行距離誤差に基づいて、誘導予定経路を補正することを特徴とする請求項4に記載の移動体。
【請求項7】
前記補正手段は、前記走行距離誤差として、誘導予定経路方向に生じる距離誤差Xeについては、誘導予定経路に対しその誤差Xe分だけその後の誘導予定経路の位置をずらすことによって補正することを特徴とする請求項6に記載の移動体。
【請求項8】
前記補正手段は、方向誤差Θeと横ずれ量Yeについては、
左右車輪に指令する速度の差をVd,com、移動体の規定速度をVr、予定経路を規定速度で走行する場合の規定角速度をωr、規定角速度ωrと実走行角速度ωaとの差(ωr−ωa)をωe、車輪幅をWとし、且つKΘ、Ky、Kωを各誤差を補正するためのゲイン係数とした場合に、
Vd,com/W=ωr+KΘ・Θe+Ky・Ye/Vr+Kω・ωe
を満たすように、制御手段に移動体の車輪の駆動制御を行わせて補正を行うことを特徴とする請求項7に記載の移動体。
【請求項9】
前記移動体に該移動体の所定周りを撮像するカメラを備え、前記制御手段は、該カメラによる撮像映像に基づいて移動体を誘導制御することを特徴とする請求項1乃至請求項5のいずれかに記載の移動体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−4412(P2006−4412A)
【公開日】平成18年1月5日(2006.1.5)
【国際特許分類】
【出願番号】特願2005−141360(P2005−141360)
【出願日】平成17年5月13日(2005.5.13)
【出願人】(599152810)有限会社ヒューマンリンク (5)
【Fターム(参考)】