説明

空気ばね及び免震装置

【課題】小型化しつつ高い使用圧力にも耐え得ると共に、シリンダ軸方向への大きな減衰力を得ることを目的とする。
【解決手段】シリンダ4と、シリンダ4に対して相対変位可能なピストン5と、ピストン5とシリンダ4との間の間隙部6を気密に閉塞する第一及び第二ダイヤフラム7、8とを備え、第一及び第二ダイヤフラム7、8は互いに重ね合わせられた可撓性を有する筒体からなり、第一及び第二ダイヤフラム7、8の一端がピストン5にそれぞれ固定されると共に他端がシリンダ4にそれぞれ固定され、第一及び第二ダイヤフラム7、8の中間部が間隙部6において互いにシリンダ軸方向にずらした位置でそれぞれ折り返され、第一及び第二ダイヤフラム7、8の折り返し部70、80の間に中間室9が形成されている空気ばね3において、中間室9に粘性流体12が充填されていると共に、中間室9の内圧Pbがシリンダ4の内圧Paよりも低く且つ外気圧Poよりも高い。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリンダ内にピストンが配置された空気ばね、及びそれを用いた免震装置に関する。
【背景技術】
【0002】
この種の空気ばねとして、従来、例えば下記特許文献1に記載されているような、軸方向一端が閉塞されて他端が開口されたシリンダと、シリンダの開口端側からシリンダ内に挿入されていると共にシリンダに対して相対的に軸方向に沿って変位可能なピストンと、ピストンの外周面とシリンダの内周面との間の間隙部を気密に閉塞するダイヤフラムと、を備える構成が知られている。このような構成の空気ばねは、一般に鉄道車両や機器防振などに使用される空気ばねであり、その使用圧力は1MPa以下である。
【0003】
一方、近年、上下方向のばね要素として空気ばねを使用した三次元免震装置が提供されている。このような免震装置に上記した空気ばねを用いる場合、コンパクト性が要求されるため、1MPa以上の使用圧力に耐え得るものが求められている。しかしながら、上記した構成の空気ばねでは、ダイヤフラムが耐えられる圧力までしかシリンダの内圧を高くできず、免震装置における使用圧力に対応できない場合が多い。
【0004】
そこで、従来、例えば下記特許文献2に記載されているような、ピストンの外周面とシリンダの内周面との間の間隙部に二重のダイヤフラムを設け、それらのダイヤフラムの間の内圧をシリンダの内圧よりも低く、且つ、外気圧(大気圧)よりも高く設定した空気ばねが提案されている。このような構成の空気ばねによれば、シリンダの内圧を高く設定することが可能であり、高い使用圧力に対応可能である。また、上記した空気ばねでは、ピストンの先端壁にオリフィスが形成されており、このオリフィスを通してピストン内とシリンダ内との間で空気が流通することによって、上下方向(シリンダ軸方向)の減衰力を得ることができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開昭63−92844号公報
【特許文献2】特開2007−218391号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
近年、免震装置の分野において、地震時の上部構造のロッキングや縦揺れ地震に対応するべく、シリンダ軸方向に高い減衰性能を発揮する空気ばねの要望があるが、上記した後者の従来の空気ばねでは、オリフィスによって減衰させるだけなので、大きな減衰力を得ることが難しく、上部構造のロッキングや縦揺れ地震に対して減衰性能が不十分になる場合がある。
【0007】
本発明は、上記した従来の問題が考慮されたものであり、小型化しつつ高い使用圧力にも耐え得ることができ、且つ、シリンダ軸方向への大きな減衰力を得ることができる空気ばね、及び、その空気ばねを用いた免震装置を提供することを目的としている。
【課題を解決するための手段】
【0008】
本発明に係る空気ばねは、シリンダと、該シリンダの開口端から該シリンダ内に挿入されていると共に該シリンダに対して相対的にシリンダ軸方向に沿って変位可能なピストンと、該ピストンの外周面と前記シリンダの内周面との間の間隙部を気密に閉塞する第一ダイヤフラム及び第二ダイヤフラムと、を備えており、前記第一及び第二ダイヤフラムは、互いに重ね合わせられた可撓性を有する筒体からなり、該第一及び第二ダイヤフラムの一端がピストンにそれぞれ固定されると共に他端が前記シリンダにそれぞれ固定され、前記第一及び第二ダイヤフラムの中間部が前記間隙部において互いにシリンダ軸方向にずらした位置でそれぞれ折り返され、前記第一及び第二ダイヤフラムの折り返し部の間に中間室が形成されている空気ばねにおいて、前記中間室に粘性流体が充填されていると共に、前記中間室の内圧が前記シリンダの内圧よりも低く且つ外気圧よりも高くなっていることを特徴としている。
【0009】
上記した空気ばねでは、シリンダの内周面とピストンの外周面との間の間隙部に中間室が形成され、その中間室の内圧がシリンダの内圧よりも低く且つ外気圧よりも高くなっているので、シリンダの内圧を高くしても第一、第二ダイヤフラムに働く応力が小さく抑えられる。
【0010】
また、上記した空気ばねでは、ピストンがシリンダに対して相対的にシリンダ軸方向に変位すると、その変位に伴い第一及び第二ダイヤフラムの折り返し部がシリンダ軸方向に平行移動し、中間室が形状を保持したままシリンダ軸方向に移動する。このとき、中間室内の粘性流体にシリンダ軸方向に沿ったせん断応力が作用する。
【0011】
本発明に係る免震装置は、上部構造と下部構造との間に介装される免震装置であって、前記上部構造と前記下部構造との水平方向への相対変位を許容するアイソレータと、上記した空気ばねと、を備えることを特徴としている。
【0012】
この免震装置によれば、地震動などの外力が入力されると、アイソレータの機能によって上部構造と下部構造とが水平方向に相対変位する。これにより、上部構造の固有周期が長くなり、上部構造が受ける地震応力が緩和される。
また、空気ばねによって鉛直方向への変位が許容されるので、鉛直方向に低い剛性が得られ、上部構造の鉛直固有周期も長くなり、上部構造が受ける地震応力が緩和される。このとき、上述したように中間室内の粘性流体にシリンダ軸方向へのせん断応力が作用するので、上部構造のロッキング振動や縦揺れの振動エネルギーが吸収され、上部構造の応答振動が減衰される。
【発明の効果】
【0013】
本発明に係る空気ばねによれば、シリンダの内圧を高くすることができるので、使用圧力を高く設定することができる。また、中間室内の粘性流体にシリンダ軸方向に沿ったせん断応力が作用するので、シリンダ軸方向への大きな減衰力を得ることができる。
【0014】
また、本発明に係る免震装置によれば、横揺れの振動だけでなく、縦揺れやロッキングも吸収することができ、上部構造の応答振動を確実に低減させることができる。
【図面の簡単な説明】
【0015】
【図1】本発明の実施の形態を説明するための空気ばねを有する免震装置の断面図である。
【図2】本発明の実施の形態を説明するための空気ばねの部分断面図である。
【発明を実施するための形態】
【0016】
以下、本発明に係る空気ばね及び免震装置の実施の形態について、図面に基いて説明する。
なお、本実施の形態では、後述するシリンダ2の中心軸線を「軸線O」とし、その軸線Oに沿った方向を「軸方向」とし、軸線Oに直交する方向を「径方向」とし、軸線O周りの方向を「周方向」とする。また、軸方向の一方側(図1における上側)を「上方」とし、軸方向の他方側(図1における下側) を「下方」とする。
【0017】
図1に示す免震装置1は、基礎等の下部構造10と建物本体等の上部構造11との間に介装され、地震動に対する上部構造11の応答振動を低減させるための装置である。この免震装置1の概略構成としては、下部構造10と上部構造11との水平方向への相対変位を許容するアイソレータ2と、下部構造10と上部構造11との鉛直方向への相対変位を許容する空気ばね3と、を備えている。これらアイソレータ2及び空気ばね3は、鉛直方向に直列に並設されており、具体的には、アイソレータ2の上に空気ばね3が配設されている。なお、アイソレータ2及び空気ばね3を上下逆転させて空気ばね3の上にアイソレータ2が配設されていてもよい。
【0018】
詳しく説明すると、アイソレータ2は、下部構造10に固定される下側端板20と、上部構造11に固定される上側端板21と、下側端板20と上側端板21の間に介在された積層体22と、を備えている。
【0019】
下側端板20及び上側端板21は、例えば平面視円形の鋼板であり、上下に対向して配置されている。また、下側端板20及び上側端板21は、それぞれ積層体22の断面形状よりも大径に形成されており、これら下側端板20及び上側端板21の各外周部は、全周に亘って積層体22の径方向外側に向けて突出されている。また、下側端板20は、例えばアンカーボルト等を介して下部構造10に固定され、また、上側端板21は、例えばボルト等を介して後述する空気ばね3のピストン5の端板部50に固定されている。
【0020】
積層体22は、複数の軟質板23と硬質板24とが交互に積層された積層構造の柱状体であり、水平方向にせん断変形可能な略円柱形状に形成されている。この積層体22の外周部には、上記した軟質板23及び硬質板24の外周を被覆する被覆ゴム25が全周に亘って形成されている。軟質板23と被覆ゴム24とは、一体に形成された弾性変形可能な加硫ゴムからなり、上記した複数の硬質板24と共に未加硫の軟質板23及び被覆ゴム25を加硫させることで、軟質板23及び被覆ゴム25と複数の硬質板24とが加硫接着されている。この積層体22は、鉛直剛性が高くて鉛直方向に沈みにくく、且つ水平剛性が低くて水平方向にせん断変形しやすい。
なお、上記した軟質板23及び被覆部25はゴム以外であってもよく、例えば軟質樹脂で形成することも可能である。また、上記した硬質板24は、鋼板以外であってもよく、例えば硬質樹脂からなる板材であってもよい。
【0021】
空気ばね3は、シリンダ4と、シリンダ4の開口端からシリンダ4内に挿入されていると共にシリンダ4に対して相対的に軸方向に沿って変位可能なピストン5と、を備えている。
【0022】
シリンダ4は、鉛直方向に沿って延設された略円筒形状の筒状部であり、上端が閉塞されて下端が開口された有頂の筒体である。このシリンダ4は、上部構造11の下端部に埋設されて上部構造11に固定されている。
【0023】
ピストン5は、軸線Oに対して垂直に配設された端板部50と、端板部50の上面から軸方向に沿って立設された筒部51と、を備えている。端板部50は、上記したアイソレータ2の上側端板21の上に載置されており、その上側端板21に対して図示せぬボルトなどで固定されている。筒部51は、外径がシリンダ4の内径よりも小さい略円筒形状の筒部であり、軸線Oを共通軸にしてシリンダ4と同軸上に配設されてシリンダ4の内側に挿入されている。
【0024】
上記したピストン5(筒部51)の外周面と上記したシリンダ4の内周面との間には、周方向の全周に亘って間隙部6が形成されている。そして、空気ばね3には、互いに重ね合わせられた二重のダイヤフラム7、8が備えられており、これらのダイヤフラム7、8によって上記した間隙部6が気密に閉塞されている。上記したダイヤフラム7、8は、いわゆるローリングシール部材であり、それぞれ可撓性を有する円筒形状の筒体からなり、例えばゴム膜を筒状に形成した構成からなる。このダイヤフラム7、8は、中間部が間隙部6において略U字状に折り返され、一端がピストン5に固定されて他端がシリンダ4に固定されている。また、一対のダイヤフラム7、8は、互いに軸方向にずらした位置で折り返されており、一方のダイヤフラム(第一ダイヤフラム7)の折り返し部70と他方のダイヤフラム(第二ダイヤフラム8)の折り返し部80とは軸方向に離間して配設されている。
【0025】
詳しく説明すると、図2に示すように、第一ダイヤフラム7は、内外筒の下端同士が連結された二重筒形状となっており、その概略構成としては、シリンダ4の内周面に沿って形成された外筒部71と、ピストン5(筒部51)の外周面に沿って形成された内筒部72と、外筒部71の下端と内筒部72の下端とを全周に亘って連結する折り返し部70と、内筒部72の上端からピストン5(筒部51)の先端面に沿って形成された円環部73と、外筒部71の上端から径方向内側に全周に亘って突出されてシリンダ4の天井面に固定されたシリンダ側固定部74と、円環部73の内縁からピストン5(筒部51)の内周面に沿って垂下されてピストン5の内周面に固定されたピストン側固定部75と、を備えている。上記した外筒部71の外周面は、シリンダ4の内周面に対して剥離可能に密接されており、また、内筒部72の内周面はピストン5(筒部51)の外周面に対して剥離可能に密接されている。
【0026】
また、第二ダイヤフラム8は、内外筒の下端同士が連結された二重筒形状となっており、上記した第一ダイヤフラム7に軸方向上側から重ねられた状態で配設されている。この第二ダイヤフラム8の概略構成としては、第一ダイヤフラム7の外筒部71の内周面に沿って形成された外筒部81と、第一ダイヤフラム7の内筒部72の外周面に沿って形成された内筒部82と、外筒部81の下端と内筒部82の下端とを全周に亘って連結する折り返し部80と、内筒部82の上端から第一ダイヤフラム7の円環部73の上面に沿って形成された円環部83と、外筒部81の上端から径方向内側に全周に亘って突出されてシリンダ4の天井面に固定されたシリンダ側固定部84と、円環部83の内縁から第一ダイヤフラム7のピストン側固定部75の内面に沿って垂下されてピストン5の内周面に固定されたピストン側固定部85と、を備えている。上記した第二ダイヤフラム8の外筒部81の外周面は、第一ダイヤフラム7の外筒部71の内周面に対して剥離可能に密接されており、また、第二ダイヤフラム8の内筒部82の内周面は第一ダイヤフラム7の内筒部72の外周面に対して剥離可能に密接されている。また、第二ダイヤフラム8の折り返し部80は、第一ダイヤフラム7の折り返し部70の軸方向上側に間隔をあけて配設されている。
【0027】
また、上記した折り返し部70、80の間には、シリンダ4とピストン5との軸方向への相対変位に伴い軸方向に平行移動する中間室9が形成されている。この中間室9は、シリンダ4の内側と外部との間に介在された密閉空間であり、上記した第一ダイヤフラム7の折り返し部70、外筒部71及び内筒部72と第二ダイヤフラム8の折り返し部80とによって画成されている。
【0028】
また、上記した中間室9には、記したシリンダ4とピストン5との軸方向への相対変位に伴う中間室9の平行移動に追従して当該中間室9の内面に対して摺動しながら変位する粘性流体12が充填されている。粘性流体12は、流動性を有する液体や半固体であり、例えばシリコーンオイル等の高粘性流体などである。
また、上記した中間室9の内圧Pbは、シリンダの内圧Paよりも低く、且つ、外気圧Po(大気圧)よりも高くなっている。なお、この中間室9の内圧Pbを調整する図示せぬ圧力調整手段を備えていることが好ましい。
【0029】
次に、上記した構成からなる空気ばね3及び免震装置1の作用について説明する。
【0030】
上記した下部構造10に地震動が入力されると、アイソレータ2の積層体22が水平方向にせん断変形し、下部構造10と上部構造11が水平方向に相対変位する。これにより、上部構造11の固有周期が長くなり、上部構造11が受ける地震応力が緩和される。
【0031】
また、地震時に上下方向の地震動が入力されると、空気ばね3のピストン5がシリンダ4に対して相対的に軸方向に変位する。これにより、下部構造10と上部構造11との鉛直方向への変位が許容され、上部構造11の鉛直固有周期が長くなり、上部構造11が受ける鉛直地震応力も緩和される。このとき、図3(a)及び(b)に示すように、上記したピストン5とシリンダ4との相対変位に伴い上記した第一、第二ダイヤフラム7、8の折り返し部70、80が軸方向に平行移動し、上記した中間室9が形状を保持したまま軸方向に移動する。つまり、第一ダイヤフラム7及び第二ダイヤフラム8が、ピストン5とシリンダ4との相対変位に伴い各々の折り返し位置を変えてそれぞれ追従変形し、これにより、中間室9が一定の形状のまま軸方向に変位する。
【0032】
例えば、図3(b)に示すように、ピストン5がシリンダ4に対して軸方向上側に相対変位すると、ピストン5によって第一ダイヤフラム7及び第二ダイヤフラム8のピストン側固定部75、85及び円環部73、83が軸方向上側にそれぞれ押し上げられる。これにより、シリンダ4の内周面に密接した第一ダイヤフラム7の外筒部71が下端側から捲り剥がされつつ、径方向内側に折り返された後にピストン5(筒部51)の外周面に張り付いていき、また、第一ダイヤフラム7の外筒部71の内周面に密接した第二ダイヤフラム8の外筒部81が下端側から捲り剥がされつつ、径方向内側に折り返された後に第一ダイヤフラム7の内筒部72の外周面に張り付いていく。その結果、第一ダイヤフラム7の折り返し部70及び第二ダイヤフラム8の折り返し部80は、互いに一定の離間距離を保ったまま軸方向上側にそれぞれ平行移動し、中間室9は一定の形状のまま軸方向上側に変位する。
【0033】
また、中間室9が一定の形状のまま軸方向に変位するとき、中間室9内に充填された粘性流体12には、軸方向に沿ったせん断応力Fが作用する。このせん断応力Fによるダンパー効果(減衰力)が得られる。
【0034】
上記した空気ばね3によれば、シリンダ4の内周面とピストン5の外周面との間の間隙部6に中間室9が形成され、その中間室9の内圧Pbがシリンダの内圧Paよりも低く、且つ、外気圧Po(大気圧)よりも高くなっているので、シリンダ4の内圧を高くしても第一、第二ダイヤフラム7、8に働く応力が小さく抑えられる。したがって、シリンダ4の内圧を高くすることができ、空気ばね3の使用圧力を高く設定することができる。
【0035】
また、上記した空気ばね3によれば、ピストン5とシリンダ4との軸方向への相対変位時に中間室9内の粘性流体12にせん断応力Fが作用するので、軸方向への大きな減衰力を得ることができる。
したがって、上記した免震装置1によれば、横揺れの振動エネルギーだけでなく、縦揺れやロッキングの振動エネルギーも吸収することができ、上部構造11の応答振動を確実に低減させることができる。
【0036】
以上、本発明に係る空気ばねの実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記した実施の形態では、ダイヤフラム7、8が二重に設けられているが、本発明は、三重以上のダイヤフラムを設けることも可能である。これにより、間隙部6に二層以上の中間室を形成することができる。すなわち、粘性流体12が充填された中間室9の上側(シリンダ4の内部側)や下側(シリンダ4の開口端側)に第2、第3の中間室が形成されていてもよい。また、前記した第2、第3の中間室に、上記した中間室9内の粘性流体12と同一の粘性流体12を充填してもよく、或いは、前記した粘性流体12と異なる粘性流体又は気体を充填してもよい。なお、2室以上の中間室を形成する場合、それらの内圧は、少なくともシリンダ4の開口端側(図1における下側)に隣接する中間室の内圧以上に設定されていればよく、シリンダ4の内方側から外部に向かうに従い漸次低くなるように設定することが好ましい。
【0037】
また、上記した実施の形態では、アイソレータ2と組み合わされて免震装置1を形成する空気ばね3について説明しているが、本発明における空気ばねは、免震装置1以外にも適用可能であり、例えば自動車や鉄道車両、その他の機器等に用いることも可能である。
【0038】
また、上記した実施の形態では、アイソレータ2として積層体22を備えた免震要素が備えられているが、本発明におけるアイソレータは、積層体22以外のものであってもよく、例えば滑り支承や転がり支承を用いることも可能である。
【0039】
その他、本発明の主旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。
【符号の説明】
【0040】
1 免震装置
2 アイソレータ
3 空気ばね
4 シリンダ
5 ピストン
6 間隙部
7 第一ダイヤフラム
8 第二ダイヤフラム
9 中間室
10 下部構造
11 上部構造
12 粘性流体

【特許請求の範囲】
【請求項1】
シリンダと、該シリンダの開口端から該シリンダ内に挿入されていると共に該シリンダに対して相対的にシリンダ軸方向に沿って変位可能なピストンと、該ピストンの外周面と前記シリンダの内周面との間の間隙部を気密に閉塞する第一ダイヤフラム及び第二ダイヤフラムと、を備えており、
前記第一及び第二ダイヤフラムは、互いに重ね合わせられた可撓性を有する筒体からなり、該第一及び第二ダイヤフラムの一端がピストンにそれぞれ固定されると共に他端が前記シリンダにそれぞれ固定され、前記第一及び第二ダイヤフラムの中間部が前記間隙部において互いにシリンダ軸方向にずらした位置でそれぞれ折り返され、前記第一及び第二ダイヤフラムの折り返し部の間に中間室が形成されている空気ばねにおいて、
前記中間室に粘性流体が充填されていると共に、前記中間室の内圧が前記シリンダの内圧よりも低く且つ外気圧よりも高くなっていることを特徴とする空気ばね。
【請求項2】
上部構造と下部構造との間に介装される免震装置であって、
前記上部構造と前記下部構造との水平方向への相対変位を許容するアイソレータと、請求項1に記載の空気ばねと、を備えることを特徴とする免震装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−144894(P2011−144894A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2010−6962(P2010−6962)
【出願日】平成22年1月15日(2010.1.15)
【出願人】(000005278)株式会社ブリヂストン (11,469)
【Fターム(参考)】