説明

繊維強化複合材料の製造方法

【課題】
従来のRTM成形において表層に発生していた成形ピンホールを減少させ、後工程の塗装工程等に必要な補修工程を低減させることで低コストな成形品を得る。
【解決手段】
少なくとも2種類の樹脂を圧力を−101.3kPa〜−80kPaに保持した状態の混合部に混合しながら供給し、該混合部が樹脂で満たされた後、強化繊維基材を配置した成形型内に混合樹脂を連続供給し、強化繊維基材に樹脂を含浸させることを特徴とする繊維強化複合材料の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はFRP(Fiber Reinforced Plastics:繊維強化樹脂)部材のRTM(Resin Transfer Molding)成形方法、およびその方法から得られる成形体に関する。前記RTM成形方法には、上下対となる両面成形型からなり、樹脂注入口から樹脂排出口へ向けて樹脂を加圧注入し、樹脂による型内の空気押し出し後に樹脂排出口を閉じ型内を樹脂加圧して硬化させるRTM成形方法、型内を真空状態にさせた後、樹脂を加圧あるいは大気圧注入をし、硬化させるRTM成形方法、または、片面成形型でキャビティー部に基材を配置し、フィルムなどでバギングし真空吸引した後、真空圧によって樹脂を吸引注入する真空RTM成形を含む。
【背景技術】
【0002】
FRPは軽量、かつ、高い機械的性質を有する複合材料としてきわめて幅広い分野で活用されている。FRPの成形方法の一つとしてRTM成形が広く用いられているが、成形サイクルタイムは比較的短い反面、樹脂流れの不具合などにより成形品表面にピンホール、ボイドと呼ばれる気泡が残る問題があり、外観商品に対しては、後工程の塗装工程の前に表面補修工程等があり、手間と労力が掛かり、高コストの製品となっていた。
【0003】
そこで、このような従来の成形法の問題点を改良すべく、成形型内に表層形成部材/ろ過抵抗の大きい分離基材/繊維状補強材/ろ過抵抗の小さい分離基材/発泡性樹脂粒子からなる積層物を型に入れ、成形型温度を上げ発泡性粒子の体積膨張によって表層基材を成形型に押し付け、そこへ液状成形樹脂を注入し、高表面品質複合成形品を得る成形方法が提案されている(例えば特許文献1)。しかしながらこの方法によれば、ろ過抵抗の大きい分離基材で発泡性粒子が表層へ流出しないために、積層構成が制限されること、発泡性粒子の発泡温度まで加熱して成形後、当該粒子の発泡内圧による成形品変形を防ぐため液状樹脂硬化後、十分に成形型温度を下げなければならないため、設備設備の増大、成形サイクルタイムが長くなる問題があった。
【0004】
あるいは、積層において表層となる強化繊維機材の真下にランダムマット層を設けることで、強化繊維基材中の気泡を抜き、かつ表層の強化繊維基材への樹脂の含浸を促進する成形方法が提案されている(例えば特許文献2)。しかしながらこの方法は、表層基材の真下にランダムマット層を配置することから、樹脂中に含まれる気泡がランダムマット層に溜まり、直上の表層基材に貫通するピンホールとなることがあった。
【特許文献1】特開平7−100847
【特許文献2】特開2005−232601
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明の目的は、従来のRTM成形において表層に発生していた成形ピンホールを減少させ、後工程の塗装工程等に必要な補修工程を低減させることで低コストな成形品を得ることにある。
【課題を解決するための手段】
【0006】
本発明は上記課題を解決するため、種々の検討を行った結果、注入する樹脂中に存在する気泡を減少させることで、成形品内に供給される気泡を少なくし、意匠表面にピンホール発生がほとんどなく表面品位に優れたRTM成形品を得られることを見出したものである。すなわち、
(1)少なくとも2種類の樹脂を圧力を−101.3kPa〜−80kPaに保持した状態の混合部に混合しながら供給し、該混合部が樹脂で満たされた後、強化繊維基材を配置した成形型内に混合樹脂を連続供給し、強化繊維基材に樹脂を含浸させることを特徴とする繊維強化複合材料の製造方法。
【0007】
本発明において、圧力の単位は、ゲージ圧力のことを指している。
(2)少なくとも2種類の樹脂を圧力を−101.3kPa〜−80kPaに保持した状態で混合する混合部が、動的な撹拌手段を有する混合槽である前記(1)記載の繊維強化複合材料の成形方法。
(3)前記混合部が混合槽であり、該混合槽へ下部より原料となる樹脂を供給し、混合する前記(1)または(2)のいずれかに記載の繊維強化複合材料の製造方法。
(4)前記混合部が混合槽であり、該混合槽で、回転する撹拌羽根を用いて撹拌混合する(1)〜(3)のいずれかに記載の繊維強化複合材料の製造方法。
(5)前記少なくとも2種類の樹脂が、熱硬化性樹脂の主剤と硬化剤である(1)〜(4)のいずれかに記載の繊維強化複合材料の製造方法。
(6)少なくとも2種類の樹脂を混合し、前記成形型内に連続供給する直前の温度条件下で樹脂粘度が、1Pa・S以下となっている(1)〜(5)のいずれかに記載の繊維強化複合材料の製造方法。
【発明の効果】
【0008】
本発明のRTM成形方法を用いれば、樹脂の混合時に混入する気泡を低減することが出来、この気泡混入の少ない樹脂を成形型に注入することで、意匠表面のボイドやピンホール等の欠陥が発生することの極めて少ない成形品を効率よく短時間で安定的に成形できる。この結果、後工程として塗装工程があるような製造工程でも、表面補修の工程を省略もしくは、ほとんど無くすることが出来、低コストの成形品を得ることができる。
【発明を実施するための最良の形態】
【0009】
本発明において、少なくとも2種類の樹脂を混合するとき、混合部での圧力を大気圧よりも低く保持した状態で樹脂混合することが必要で、その低く保持する圧力としては−101.3kPa〜−80KPaにすることが、空気のような気体を樹脂中に混合しない観点から好ましく、かかる低圧力下で混合した樹脂を繊維強化複合材料の成形に用いれば表面意匠面にピンホールの少ない成形品を得ることができる。このように、少なくとも2種類の樹脂を低圧力下で混合するには、圧力を−101.3kPa〜−80kPaに保持した状態の混合部に混合しながら供給し、該混合部が樹脂で満たされた後、強化繊維基材を配置した成形型内に混合樹脂を連続供給することが必要である。なお、樹脂を混合する初期の段階では混合部での圧力は大気圧よりも低い圧力となっているが、混合部が樹脂で満たされ、成形型に注入が開始されると、成形型の樹脂充填度に従い、正の注入圧となっても良い。
【0010】
次に、上記のように少なくとも2種類の樹脂を圧力を−101.3kPa〜−80kPaに保持した状態で混合する混合部の上部に、混合された樹脂の通過する空間を有し、混合槽に設けた動的な撹拌手段により樹脂を混合後、その上部の空間より吐出される樹脂をもちいることで、より気体の混入の少ない樹脂を供給し、表面意匠面にピンホールの少ない成形品を得ることができる。
【0011】
更に、前記混合槽の下部より原料となる樹脂を供給し混合させる手段を用いれば、樹脂の流入に従って軽い気体は混合槽の上部より順次排出され、気体よりも重量の重い樹脂は、混合槽内の下部から、ほとんど樹脂のみで撹拌混合されながら、連続して樹脂を供給することができる。よって、この樹脂を成形に用いることで表面意匠面にピンホールの少ない成形品を得ることができる。
【0012】
前記混合槽で、回転する撹拌羽根を用いて撹拌混合することを行えば、混合量が比較的多い場合でも気泡の混入を抑制した樹脂を連続して供給する事が出きる。
【0013】
本発明で使用する樹脂としては、例えば、エポキシ樹脂やビニルエステル樹脂,不飽和ポリエステル樹脂,フェノール樹脂等の熱硬化性樹脂が好適であり、必要に応じて添加剤を付与した樹脂系でも構わない。これらの樹脂系の中でも、主剤と硬化剤からなる熱硬化性樹脂であることが様々な特性を必要に応じ選択できることから好ましい。熱硬化性樹脂の中でも、エポキシ樹脂が、耐熱性耐薬品性に優れるために好ましい。
【0014】
また、これら混合した樹脂を成形型に連続供給するときの粘度特性としては、成形型に注入するときの温度での樹脂粘度特性として1Pa・S以下となるようなものを用いることで、型内での樹脂含浸性が良好になることで、より表面意匠にピンホールの少ない外観の成形品が、短い成形時間で得ることができる。
【0015】
なお、本発明に用いられる繊維としては、例えば炭素繊維やガラス繊維,アラミド繊維,PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維,チラノ(チタンアルミナ)繊維,ナイロン繊維などが挙げられる。また基材の組織としては、織布でも不織布でも構わない。織布の場合、平織りや綾織り,朱子織り等が挙げられ、単一の繊維で構成するだけでなく複数の繊維を織った組織となっても良い。不織布の場合は、例えば、チョップドストランドマットやコンティニアスストランドマット等が挙げられる。
【0016】
上述したような本発明の製造方法によれば、樹脂混合時の気体との混合がより少なくなることから、こうして得られた樹脂を繊維強化複合材料の成形に用いることで、成形品の表面外観にピンホールのほとんどない、後工程の少ない強化繊維プラスチックスの成形体を得ることが可能となる。
【実施例】
【0017】
以下に、より具体的な実施例について説明する。
基材a:炭素繊維織物、東レ(株)製CO6343B(織り組織:平織り、織物目付:198g/m、強化繊維:T300B−3K、弾性率:230GPa、強度:3530MPa、繊度:198tex、フィラメント数:3000本)
基材b:ガラス繊維サーフェースマット、日東紡(株)製MF30P100BS6(布帛の形態:連続繊維不織布、目付:30g/m
樹脂a:東レ製 エポキシ樹脂 TR−C35
主剤:エピコート 828(油化シェルエポキシ社製、エポキシ樹脂)
硬化剤:東レ(株)ブレンド TR−C35H(イミダゾール誘導体)
混合比: 主剤:硬化剤=10:1
粘度特性: 0.9Pa・s (温度35℃時)
実施例1
図1に示すような混合部分を持つ樹脂注入機を用いて、バルブ17aを閉じた状態でバルブ17bを開放し、樹脂トラップ18を通じて真空ポンプ19から混合槽10内の気体を抜いた。この時、圧力計5は−100.3kPaの表示であった。次ぎにバルブ17bを閉じて、混合槽10内を密閉状態とし、120secの間、圧力計5の低下を確認したところ、−100.2kPaと0.1kPaの低下程度の密閉度を確認した。次ぎに撹拌モーター11を動かし、外形φ40mmの十字形状の撹拌羽根12を200r.p.m.で回転させ、その状態で逆流防止弁付き主剤樹脂注入口14より樹脂aの主剤を、また逆流防止弁付き硬化剤注入口15より樹脂aの硬化剤をそれぞれ10:1で、図示しないシリンダーポンプで混合槽10内に注入し、混合槽10の内部を満たした。
【0018】
そして、バルブ17aを開放し、真空状態に保持した図2の成形型に混合樹脂を注入した。この時、成形型に入る直前の樹脂温度で35℃であった。
【0019】
図2は480mm×480mmの製品キャビティー21を有する成形下型23に、基材を予め重ね合わせただけの強化繊維基材31a,31b,31c(図3参照)を準備し配置し、図示しない上型を閉じた。ここで用いた各強化繊維基材の構成は以下の通りである。
【0020】
強化繊維基材31a= 基材a(0/90)×1Ply
強化繊維基材31b= 基材f ×4Ply
強化繊維基材31c= 基材a(0/90)×1Ply
樹脂注入に際して、成形型23は90℃に加熱保持した状態とし、樹脂注入口24より樹脂注入を行った。次ぎに内部が樹脂で満たされた時、排出口25を閉じた。この時の樹脂注入圧力を圧力計10で測定すると0.7MPaであった、次ぎに注入口25を閉じて、そのままの状態で20分間保持し樹脂を硬化させた。
【0021】
成形型23の図示しない上型を開けて、成形品を取り出してピンホールの数を数えたところ、2個であった。
【0022】
比較例1
混合槽10内の保持圧を−30kPaにし、120sec間の密閉操作時に圧力計5の表示が−30kPaから−29.9kPaと0.1kPaの低下であった以外は、実施例1と同様にして、成形品を得た。この時の成形品表面のピンホールの数は、57個であった。
【産業上の利用可能性】
【0023】
以上述べたように、本発明の成形方法によれば、樹脂混合時の樹脂と気体との混合確率を少なくすることで、成形品内への気泡の流入を抑制できることから、この成形方法により製造すれば、外観にピンホールの少ない成形体を得ることができ、表面補修工程を省略することができ、低コストな製品を提供できる。
【図面の簡単な説明】
【0024】
【図1】本発明で用いる樹脂混合部周辺の概略図
【図2】成形に用いた型図
【図3】積層構成説明図
【符号の説明】
【0025】
5:圧力計
10:混合槽
11:モーター
12:撹拌羽根
13:撹拌用固定子
14:樹脂注入口(主剤用)
15:樹脂注入口(硬化剤用)
16:気密シール
17a:バルブ
17b:バルブ
18:樹脂トラップ
19:真空ポンプ
21:成形品キャビティー
22:シールリング
23:成形型下型
24:注入口
25:排出口
31a:基材
31b:基材
31c:基材

【特許請求の範囲】
【請求項1】
少なくとも2種類の樹脂を圧力を−101.3kPa〜−80kPaに保持した状態の混合部に混合しながら供給し、該混合部が樹脂で満たされた後、強化繊維基材を配置した成形型内に混合樹脂を連続供給し、強化繊維基材に樹脂を含浸させることを特徴とする繊維強化複合材料の製造方法。
【請求項2】
少なくとも2種類の樹脂を圧力を−101.3kPa〜−80kPaに保持した状態で混合する混合部が、動的な撹拌手段を有する混合槽である請求項1記載の繊維強化複合材料の製造方法。
【請求項3】
前記混合部が混合槽であり、該混合槽へ下部より原料となる樹脂を供給し、混合する請求項1または2に記載の繊維強化複合材料の製造方法。
【請求項4】
前記混合部が混合槽であり、該混合槽で、回転する撹拌羽根を用いて撹拌混合する請求項1〜3のいずれかに記載の製造方法。
【請求項5】
前記少なくとも2種類の樹脂が、熱硬化性樹脂の主剤と硬化剤である請求項1〜4のいずれかに記載の繊維強化複合材料の製造方法
【請求項6】
少なくとも2種類の樹脂を混合し、前記成形型内に連続供給する直前の温度条件下で樹脂粘度が、1Pa・S以下となっている請求項1〜5のいずれかに記載の繊維強化複合材料の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2007−261015(P2007−261015A)
【公開日】平成19年10月11日(2007.10.11)
【国際特許分類】
【出願番号】特願2006−87402(P2006−87402)
【出願日】平成18年3月28日(2006.3.28)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】