説明

耐熱性基板及びこれを用いた光学シート

【課題】 高い耐熱性及び熱的寸法安定性、並びに良好な強度、透明性、ガスバリア性、柔軟性等の諸特性を有し、例えば液晶表示装置用光学シート材、有機EL用バリア性シート材等に好適に使用される耐熱性基板及びこれを用いた光学シートの提供を目的とするものである。
【解決手段】 本発明の耐熱性基板は、基材ポリマー中にガラス繊維及び/又はガラスフレークを含有する耐熱層を備えている。本発明の光学シートは、当該耐熱性基板と、この耐熱性基板の一方の面に積層される光学層とを備えている。当該耐熱性基板は、合成樹脂製の基材フィルムを備え、この基材フィルムの少なくとも一方の面に上記耐熱層を積層するとよい。上記耐熱層の基材ポリマーとしては、熱硬化性樹脂又は放射線硬化型樹脂が好ましい。上記基材フィルムの基材ポリマーとガラス繊維等との屈折率差としては0.01以下が好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、優れた耐熱性及び熱的寸法安定性を有し、加えて高い透明性、柔軟性、強度等の諸特性を有する耐熱性基板及びこれを用いた光学シートに関するものである。
【背景技術】
【0002】
今日では、食品、医薬品等の分野において、内容物の酸化や変質を抑制して味、鮮度、効能等を維持するために、包装材料として高度なガスバリア性、透明性、耐熱性、柔軟性等の諸特性を有する機能性シート(高バリア性包装用シート)が要求されている。また、液晶表示装置において、その構成材料として透過光線に対して拡散、集光、反射、法線方向への変角、偏向等の光学的機能を有する機能性シート(光学シート、具体的には光拡散シート、プリズムシート、反射シート、偏向シート等)が使用されている。さらに、今日開発が進められている有機EL、有機薄膜太陽電池、有機トランジスタ、フレキシブル液晶等の新規分野においても、高度なガスバリア性、透明性、耐熱性、柔軟性等の諸特性を有する機能性シート(高バリア性シート、具体的には太陽電池モジュール用バックシート等)の開発が待望されている。
【0003】
上記機能性シートの一般的な構造としては、図9に示すように、強度、製造性等を目的とした合成樹脂製の基板51と、この基板51の表面に積層される機能層52とを備えている。この機能層52は、機能性シートの各機能に応じて種々の形態が採用されている。例えば、良好なガスバリア性を有する高バリア性シートの場合、機能層(ガスバリア層)52は、物理気相成長法又は化学気相成長法によって形成されるケイ素酸化物又はアルミニウム酸化物の蒸着薄膜から構成されている(例えば、特開2003−181974等参照)。また、透過光線に対して拡散機能を有する光拡散シートの場合、機能層(光拡散層)52は、複数の光拡散剤とそのバインダーとから構成されている(例えば、特開平7−5305号公報、特開2000−89007公報等参照)。
【特許文献1】特開2003−181974公報
【特許文献2】特開平7−5305号公報
【特許文献3】特開2000−89007公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上記従来の機能性シートは、基板51の基材ポリマーとして一般的にポリビニルアルコール、エチレン−酢酸ビニル共重合体、ポリカーボネート、ポリエチレンテレフタレート等が用いられているため、約60ppm/℃以上の線膨張係数を有し、耐熱性及び熱的寸法安定性があまり高くない。
【0005】
従って、高バリア性シートにあっては、機能層(ガスバリア層)52を構成する無機酸化物等の蒸着時に基板51に比較的大きい熱膨張が発生し、積層された機能層(ガスバリア層)52にストレスが負荷される。かかるストレスに起因して、機能層(ガスバリア層)52を構成する蒸着膜への欠陥の発生が増大し、上記従来の高バリア性シートのガスバリア性の低下を招来している。また、高バリア性シートが上記新規用途等に使用される時にその表面に無機半導体や金属が蒸着等の方法によって製膜される場合があるが、上述のように比較的高い線膨張係数を有する基板51との熱膨張の差によって無機半導体膜や金属膜にストレスが負荷され、よい性能が得られないという不都合もある。
【0006】
また、液晶表示装置において、光線発生源であるランプは発光と同時に発熱するため、光学シートのうちランプ近傍は80℃から90℃程度の温度下に曝される。一方、光拡散シートは、上述のように耐熱性及び熱的寸法安定性があまり高くないため、熱による変形を受け、液晶画面の輝度ムラの発生を招来するおそれがある。
【0007】
なお、高バリア性シート及び光拡散シート以外の機能性シートも、同様に、基板51の比較的低い耐熱性及び熱的寸法安定性に起因して、熱変形、機能低下等の不都合を有している。
【0008】
本発明はこれらの不都合に鑑みてなされたものであり、優れた耐熱性及び熱的寸法安定性を有し、加えて良好な強度、ガスバリア性、透明性、柔軟性等の諸特性を有しており、例えば液晶表示装置用光学シート材、有機EL用バリア性シート材、有機薄膜太陽電池用シート材、有機トランジスタ用シート材、フレキシブル液晶用シート材等に好適に使用される耐熱性基板及びこれを用いた光学シートの提供を目的とするものである。
【課題を解決するための手段】
【0009】
上記課題を解決するためになされた本発明の耐熱性基板は、
耐熱層を備えており、
この耐熱層が、基材ポリマーと、この基材ポリマー中に含有するガラス繊維及び/又はガラスフレークとを有している。
【0010】
当該耐熱性基板は、基材ポリマー中に含有するガラス繊維及び/又はガラスフレークを有する耐熱層を備えることから、耐熱性及び熱的寸法安定性が飛躍的に向上し、加えて強度、ガスバリア性、耐久性等の諸特性も向上する。なお、耐熱層中に含有するガラス繊維及びガラスフレークが透明性を有しているため、当該耐熱性基板の透明性の低下を低減することができる。ここで、本発明の耐熱性基板は、上記耐熱層のみからなる場合、及び構成要素の一つとして上記耐熱層を有する場合を含む概念である。
【0011】
従って、例えば当該耐熱性基板を高バリア性シートに使用すると、上述のように当該耐熱性基板が優れた耐熱性及び熱的寸法安定性を有するため、ガスバリア層の積層時(例えば無機酸化物等の蒸着時)に耐熱性基板に生じる熱膨張が低減され、かかる耐熱性基板の熱膨張に起因して負荷されるガスバリア層へのストレスが低減される。そのため、当該耐熱性基板を備える高バリア性シートは、ガスバリア層へのピンホール、結晶粒界、クラック等の欠陥の発生が低減され、水蒸気、酸素等に対するガスバリア性が格段に向上する。また、かかる高バリア性シートは、上記有機EL等の新規用途へ使用される場合に無機半導体や金属が蒸着等の方法によって製膜されることがあるが、これらの無機半導体膜や金属膜との熱膨張の差が低減され、その結果、無機半導体膜や金属膜に負荷されるストレスが低減される。そのため、当該耐熱性基板を備える高バリア性シートは、上述の有機EL等の新規用途に好適に使用され、それらの性能の向上に寄与することができる。
【0012】
また、当該耐熱性基板は、合成樹脂製の基材フィルムを備え、この基材フィルムの少なくとも一方の面に上記耐熱層を積層するとよい。このように基材フィルムに耐熱層を積層した当該耐熱性基板は、優れた耐熱性及び熱的寸法安定性を有し、さらに製造の容易性を促進することができる。
【0013】
さらに、当該耐熱性基板は、合成樹脂製の一対の基材フィルムを備え、重畳される一対の基材フィルム間に上記耐熱層を積層してもよい。このように一対の基材フィルム間に耐熱層が積層された当該耐熱性基板は、上記手段と同様に優れた耐熱性及び熱的寸法安定性並びに優れた製造容易性を有し、加えて耐熱層の保護性や高バリア性シート等への2次加工(例えば無機半導体の蒸着等)の容易性を促進することができる。
【0014】
上記耐熱層の基材ポリマーとしては、熱硬化性樹脂又は放射線硬化型樹脂が好ましい。かかる熱硬化性樹脂又は放射線硬化型樹脂によれば、シート成形中にガラス繊維又はガラスフレークにシェアが掛かって短くなり、当該耐熱性基板の耐熱性及び熱的寸法安定性の改善効果が低下する不都合を低減することができる。
【0015】
上記基材フィルムの基材ポリマーとガラス繊維及びガラスフレークとの屈折率差としては0.01以下が好ましい。このようにガラス繊維及びガラスフレークと耐熱層の基材ポリマーとの屈折率差を上記範囲とすることで、ガラス繊維等の界面での屈折、反射等が低減され、ガラス繊維等の含有による当該耐熱性基板の光線透過率の低下を抑制することができる。例えば、当該手段によれば、全光線透過率を89%以上とし、光拡散シート、マイクロレンズシート等の光学シートに好適に使用することができる。
【0016】
当該耐熱性基板の線膨張係数としては、20ppm/℃以下が好ましい。このように当該耐熱性基板の線膨張係数を20ppm/℃以下とすることで、上述の液晶表示装置用光学シート材、有機EL用バリア性シート材、有機薄膜太陽電池用シート材、有機トランジスタ用シート材、フレキシブル液晶用シート材等に好適に使用される。
【0017】
上記ガラス繊維及びガラスフレークの含有量としては、基材ポリマー100質量部に対して1質量部以上80質量部以下が好ましい。このようにガラス繊維及びガラスフレークの含有量を上記範囲とすることで、耐熱性、熱的寸法安定性等の向上効果を奏しつつ、耐熱層の成形性及び透明性の低下を抑制することができる。
【0018】
上記ガラス繊維の平均長さとしては1mm以上25mm以下、ガラス繊維の平均径としては6μm以上17μm以下、ガラスフレークの平均幅としては1μm以上3000μm以下、ガラスフレークの平均厚さとしては0.1μm以上20μm以下が好ましい。ガラス繊維及びガラスフレークのサイズを上記範囲とすることで、耐熱層中での均一分散性の低下を抑制し、かつ当該耐熱性基板の耐熱性、熱的寸法安定性等を向上効果を効果的に奏することができる。
【0019】
上記課題を解決するためになされた本発明の光学シートは、当該耐熱性基板と、この耐熱性基板の一方の面に積層される光学層とを備えている。当該光学シートは、上述のように当該耐熱性基板が優れた耐熱性及び熱的寸法安定性を有するため、耐熱性及び熱的寸法安定性が飛躍的に向上する。そのため、当該光学シートは、例えば液晶表示装置に使用すると、ランプの発熱によって高温下に曝されても、熱による撓みや黄変等が少ないため、液晶表示装置の輝度ムラ及び輝度の低下を抑えることができる。
【0020】
上記光学層としては、複数の光拡散剤と、そのバインダーとを有することができる。当該光学シートは、いわゆる光拡散シートであり、光学層中の複数の光拡散剤により透過光線を拡散させる機能を有し、耐熱性基板により優れた耐熱性及び熱的寸法安定性を有している。
【0021】
また、上記光学層としては、複数のマイクロレンズから構成されるマイクロレンズアレイを有することもできる。当該光学シートは、いわゆるマイクロレンズシートであり、マイクロレンズアレイにより透過光線に対して高い集光、法線方向側への屈折、拡散等の光学的機能を有し、耐熱性基板により優れた耐熱性及び熱的寸法安定性を有している。
【0022】
上記耐熱性基板の他方の面に、バインダー中にビーズが分散したスティッキング防止層を備えるとよい。このように耐熱性基板の他方の面にスティッキング防止層を備えることで、例えば液晶表示装置において、当該光学シートと裏面側に配設される導光板、プリズムシート等とのスティッキングが防止される。
【発明の効果】
【0023】
以上説明したように、本発明の耐熱性基板は、高い耐熱性及び熱的寸法安定性を有し、加えて良好な強度、ガスバリア性、透明性、柔軟性等の諸特性を有している。そのため、当該耐熱性基板は、非常に高いガスバリア性等の諸特性が要求される例えば有機EL用バリア性シート材、有機薄膜太陽電池用シート材、有機トランジスタ用シート材、フレキシブル液晶用シート材等に好適に使用される。また、本発明の光学シートは、高い耐熱性及び熱的寸法安定性を有し、例えば液晶表示装置の輝度ムラ及び輝度の低下を抑え、品質及び耐久性を促進させることができる。
【発明を実施するための最良の形態】
【0024】
以下、適宜図面を参照しつつ本発明の実施の形態を詳説する。図1は本発明の一実施形態に係る耐熱性基板を示す模式的断面図、図2は図1の耐熱性基板とは異なる形態に係る耐熱性基板を示す模式的断面図、図3は図1及び図2の耐熱性基板とは異なる形態に係る耐熱性基板を示す模式的断面図、図4は図1の耐熱性基板を用いた光学シート(光拡散シート)を示す模式的断面図、図5(a)及び(b)は図1の耐熱性基板を用いた光学シート(マイクロレンズシート)を示す模式的平面図及び模式的断面図である。
【0025】
図1の耐熱性基板1は、耐熱層2のみから構成されている。この耐熱層2は、基材ポリマーと、この基材ポリマー中に含有するガラス繊維及び/又はガラスフレークとを有している。
【0026】
この基材ポリマーとしては、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂等が挙げられる。上記樹脂の中でも、高い耐熱性、熱的寸法安定性、水蒸気等に対するガスバリア性、強度、耐候性、耐久性等を有するポリエステル系樹脂、フッ素系樹脂及び環状ポリオレフィン系樹脂が好ましい。
【0027】
上記ポリエステル系樹脂としては、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等が挙げられる。これらのポリエステル系樹脂の中でも、耐熱性、熱的寸法安定性、ガスバリア性等の諸特性が優れるポリエチレンナフタレートが特に好ましい。
【0028】
上記ポリエチレンナフタレートは、ナフタレンジカルボン酸とエチレングリコールとから導かれるエチレンナフタレート単位を主成分とする。このナフタレンジカルボン酸としては、例えば2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、2,5−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸等が挙げられ、特に2,6−ナフタレンジカルボン酸が好ましい。
【0029】
上記ポリエチレンナフタレートにおけるエチレンナフタレート単位の含有量としては、85モル%以上が好ましく、90モル%以上が特に好ましい。エチレンナフタレート単位の含有量が上記範囲未満であると、耐熱層2の耐熱性やガスバリア性などが低下するおそれがある。
【0030】
上記ポリエチレンナフタレートは、ナフタレンジカルボン酸以外のジカルボン酸、及び/又はエチレングリコール以外のジヒドロキシ化合物から導かれるエステル単位を含有してもよい。他のジカルボン酸類としては、例えばテレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸等の芳香族ジカルボン酸、及びこれらのエステル誘導体が挙げられる。他のジヒドロキシ化合物としては、例えばトリメチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、ドデカメチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどの脂肪族グリコール、シクロヘキサンジメタノールなどの脂環族グリコール、ビスフェノール類、ハイドロキノン、2,2−ビス(4−β−ヒドロキシエトキシフェニル)プロパンなどの芳香族ジオール類、及びこれらのエステル誘導体が挙げられる。
【0031】
上記ポリエチレンナフタレートの製造方法としては、特に限定されず公知の方法が採用される。具体的には、(a)2,6−ナフタレンジカルボン酸とエチレングリコ−ル、及び/又は、第三成分を直接反応させて水を留去しエステル化した後、減圧下に重縮合を行う直接エステル化法、(b)ジメチル−2,6−ナフタレンジカルボキシレートとエチレングリコール、及び/又は、第三成分を反応させてメチルアルコールを留去しエステル交換させた後、減圧下に重縮合を行うエステル交換法により製造される。かかるエステル交換法においては、エステル交換触媒としてMg、Mn、Ca、Zn等のカルボン酸金属塩化合物、重縮合触媒としてGe、Sb、Ti等の化合物が用いられる。また、エステル交換触媒の活性をなくすためにエステル交換反応終了後、燐酸、トリメチルフォスフェイト等のリン化合物を添加することができる。直接エステル化法においては、重縮合触媒としてGe、Sb、Tiの化合物が用いられる。
【0032】
上記フッ素系樹脂としては、例えばポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとの共重合体からなるペルフルオロアルコキシ樹脂(PFA)、テトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマー(FEP)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとヘキサフルオロプロピレンとのコポリマー(EPE)、テトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)、ポリクロロトリフルオロエチレン樹脂(PCTFE)、エチレンとクロロトリフルオロエチレンとのコポリマー(ECTFE)、フッ化ビニリデン系樹脂(PVDF)、フッ化ビニル系樹脂(PVF)等が挙げられる。これらのフッ素系樹脂の中でも、強度、耐熱性、耐候性等に優れるポリフッ化ビニル系樹脂(PVF)やテトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)が特に好ましい。
【0033】
上記環状ポリオレフィン系樹脂としては、例えばa)シクロペンタジエン(及びその誘導体)、ジシクロペンタジエン(及びその誘導体)、シクロヘキサジエン(及びその誘導体)、ノルボルナジエン(及びその誘導体)等の環状ジエンを重合させてなるポリマー、b)当該環状ジエンとエチレン、プロピレン、4−メチル−1−ペンテン、スチレン、ブタジエン、イソプレン等のオレフィン系モノマーの1種又は2種以上とを共重合させてなるコポリマー等が挙げられる。これらの環状ポリオレフィン系樹脂の中でも、強度、耐熱性、耐候性等に優れるシクロペンタジエン(及びその誘導体)、ジシクロペンタジエン(及びその誘導体)又はノルボルナジエン(及びその誘導体)等の環状ジエンのポリマーが特に好ましい。
【0034】
また、耐熱層2の基材ポリマーとしては、熱硬化性樹脂又は放射線硬化型樹脂が好ましい。かかる熱硬化性樹脂又は放射線硬化型樹脂によれば、シート成形中にガラス繊維等にシェアが掛かって短くなり、耐熱層2の熱膨張の改善効果が得られないという不都合を低減することができる。
【0035】
上記熱硬化性樹脂としては、特に限定されないが、例えばエポキシ系樹脂、ビニルエステル樹脂、メタクリル酸メチル(MMA)樹脂、不飽和ポリエステル系樹脂、フェノール樹脂、アクリルシロップ樹脂、熱硬化エチレン酢酸ビニル共重合体、ユリア樹脂、メラミン樹脂、ウレタン樹脂、DAP(ジアリールフタレート)樹脂等が挙げられる。これら熱硬化性樹脂の中でも、特にエポキシ系樹脂が好ましい。これらの熱硬化性樹脂はいずれも常温もしくは加熱下で硬化するものである。これらの熱硬化性樹脂は単独もしくは複数混合されて主として含浸により繊維材料と複合化する。
【0036】
上記放射線硬化型樹脂としては、紫外線、電子線等の放射線の照射によって架橋硬化する樹脂であり、光重合性プレポリマーを含む樹脂組成物から形成される。この光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましい。このアクリル系プレポリマーとしては、例えばウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用される。
【0037】
上記放射線硬化型樹脂を形成する樹脂組成物には、耐熱層2の硬度を調整する目的で、光重合性モノマーを添加することができる。この光重合性モノマーとしては、例えば2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、ブトキシエチルアクリレート等の単官能アクリルモノマー、1、6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート等の2官能アクリルモノマー、ジペンタエリスリトールヘキサアクリレート、トリメチルプロパントリアクリレート、ペンタエリスリトールトリアクリレート等の多官能モノマー等の1種若しくは2種以上が使用される。
【0038】
また、上記放射線硬化型樹脂を形成する樹脂組成物には、紫外線照射により硬化させる場合、光重合開始剤や光重合促進剤等の添加剤を含有することが好ましい。この光重合開始剤としては、例えばアセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾイルベンゾエート、α−アシロキシムエステル、チオキサンソン類等が挙げられる。光重合促進剤は、硬化時の空気による重合障害を軽減させて硬化速度を速めることができるものであり、例えばp−ジメチルアミノ安息香酸イソアミルエステル、p−ジメチルアミノ安息香酸エチルエステルなどが挙げられる。
【0039】
上記放射線硬化型樹脂を形成する樹脂組成物に放射線を照射する方法としては、(a)例えば超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等を用いた紫外線照射方法、(b)例えばコックロフトワルトン型、バンデルグラフ型、共変圧器型、絶縁コア変圧器型、ダイナミトロン型、高周波型等の各種電子加速器を用いた電子線照射方法が採用される。
【0040】
上記ガラス繊維の平均長さとしては、1mm以上25mm以下が好ましく、2mm以上10mm以下が特に好ましい。また、上記ガラス繊維の平均径としては、6μm以上17μm以下が好ましく、8μm以上12μm以下が特に好ましい。ガラス繊維の平均長さ及び平均径が上記範囲より小さいと、耐熱層2中でのガラス繊維の均一分散性が低下するおそれがある。一方、ガラス繊維の平均長さ及び平均径が上記範囲を超えると、当該耐熱性基板1の耐熱性、熱的寸法安定性等を向上させる効果が低下するおそれがある。
【0041】
上記ガラスフレークの形状としては、例えば平板状、鱗片状、波板状、円筒面状等が挙げられ、耐熱性、ガスバリア性等の向上効果の面から平板状が特に好ましい。ガラスフレークの平均幅(所定の方向を基準とする幅の平均値)としては、1μm以上3000μm以下が好ましく、5μm以上1000μm以下が特に好ましい。また、ガラスフレークの平均厚さとしては、0.1μm以上20μm以下が好ましく、0.5μm以上10μm以下が特に好ましい。ガラスフレークの平均幅及び平均厚さが上記範囲より小さいと、耐熱層2中でのガラスフレークの均一分散性が低下するおそれがある。一方、ガラスフレークの平均幅及び平均厚さが上記範囲を超えると、当該耐熱性基板1の耐熱性、熱的寸法安定性等を向上させる効果が低下し、当該耐熱性基板1の表面粗さが低下するおそれがある。
【0042】
上記ガラス繊維及びガラスフレークと耐熱層2の基材ポリマーとの屈折率差としては、0.01以下が好ましく、0.002以上0.007以下が特に好ましい。このようにガラス繊維及びガラスフレークと耐熱層2の基材ポリマーとの屈折率差を上記範囲とすることで、ガラス繊維等の界面での屈折、反射等が低減され、ガラス繊維等の含有による当該耐熱性基板1の光線透過率の低下を抑制することができる。例えば、ガラス繊維及びガラスフレークの材料としてEガラスを使用する場合、Eガラスの組成成分から酸化ホウ素やフッ素化合物成分を除くことで、屈折率を大きくし、上記基材ポリマーの屈折率に近づけることができる。
【0043】
上記ガラス繊維及びガラスフレークとしては、シランカップリング剤で表面処理されているものが好ましい。シランカップリング剤の表面処理により、ガラス繊維及びガラスフレークと耐熱層2のマトリックス樹脂との接着性を高めることができる。このシランカップリング剤としては、例えばγ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)N’−β’(アミノエチル)−γ−アミノプロピルトリエトキシシランなどが挙げられる。これらのシランカップリング剤の中でも、耐熱層2の透明性を阻害しないγ−アミノプロピルトリエトキシシラン又はγ−アミノプロピルトリメトキシシランが好ましい。
【0044】
上記シランカップリング剤の固形分換算の付着率としては0.1質量%以上0.5重量%以下が好ましい。シランカップリング剤の固形分付着率が上記範囲より小さいと、上述のガラス繊維及びガラスフレークと耐熱層2のマトリックス樹脂との接着性を高める効果が低下するおそれがある。一方、シランカップリング剤の固形分付着率が上記範囲を超えると、耐熱層2への着色が目立つおそれがある。
【0045】
上記ガラス繊維及びガラスフレークとしては、その表面が集束剤でコーティングされているものが好ましい。このように集束剤でコーティングされたガラス繊維及びガラスフレークは、耐熱層2中での均一分散性が向上し、かつガラス繊維及びガラスフレーク同士が擦れて耐熱性、引張強度等が低下してしまう不都合を防止する結果、当該耐熱性基板1の耐熱性、熱的寸法安定性等の諸特性を向上させることができる。この集束剤としては、基材ポリマーとの接着性及び安定性を考慮して適宜選択され、例えばポリカーボネート系樹脂に対してはウレタン系、エポキシ系等が好ましく、ポリエステル系樹脂に対してはポリアミド系が好ましい。
【0046】
上記集束剤の固形分換算の付着率としては0.2質量%以上3重量%以下が好ましい。集束剤の固形分付着率が上記範囲より小さいと、集束剤成分がガラス繊維又はガラスフレーク全体に行き渡らなくなり、上述の均一分散性などの効果が低下するおそれがある。一方、集束剤の固形分付着率が上記範囲を超えると、前記効果が頭打ちになるばかりか、ガラス繊維及びガラスフレークの配合量の低下を招来するおそれがある。
【0047】
上記ガラス繊維及びガラスフレークの含有量としては、基材ポリマー100質量部に対し、1質量部以上80質量部以下が好ましく、5質量部以上60質量部以下が特に好ましい。ガラス繊維及びガラスフレークの含有量が上記範囲より小さいと、耐熱性、熱的寸法安定性等の向上が不十分になるおそれがある。一方、ガラス繊維及びガラスフレークの含有量が上記範囲を超えると、耐熱層2の成形が困難になり、透明性も低下するおそれがある。
【0048】
なお、耐熱層2の基材ポリマーとしては、上記合成樹脂を1種又は2種以上混合して使用することができる。また、耐熱層2を形成するための組成物には、加工性、耐熱性、耐候性、機械的性質、寸法安定性等を改良、改質する目的で、種々の添加剤等を混合することができる。かかる添加剤としては、例えば滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定化剤、充填剤、強化繊維、補強剤、帯電防止剤、難燃剤、耐炎剤、発泡剤、防カビ剤、顔料等が挙げられる。上記耐熱層2の成形方法としては、特に限定されず、例えば押出し法、キャスト成形法、Tダイ法、切削法、インフレーション法等の公知の方法が採用される。
【0049】
耐熱層2の厚み(平均厚み)の下限としては、10μmが好ましく、20μmが特に好ましい。一方、耐熱層2の厚みの上限としては、250μmが好ましく、188μmが特に好ましい。耐熱層2の厚みが上記下限未満であると、例えば高バリア性シート、光拡散シート等への2次加工の際にカールが発生しやすくなってしまう、取扱いが困難になる等の不都合が発生する。逆に、耐熱層2の厚みが上記上限を超えると、当該耐熱性基板1ひいてはこれを用いた高バリア性シート、光拡散シート等の機能性シートの薄型化及び軽量化の要請に反することになる。
【0050】
当該耐熱性基板1は、耐熱層2中にガラス繊維及び/又はガラスフレークを含有することから、耐熱性及び熱的寸法安定性が飛躍的に向上し、加えて強度、ガスバリア性、耐久性等の諸特性も向上する。特に、ガラスフレークを耐熱層2のフィルム面と略平行に配設することで当該耐熱性基板1のガスバリア性をより高めることができる。なお、含有するガラス繊維及びガラスフレークは透明であるため、当該耐熱性基板1の透明性の低下が低減される。
【0051】
従って、当該耐熱性基板1を高バリア性シートに使用すると、上述のように当該耐熱性基板1が優れた耐熱性及び熱的寸法安定性を有するため、ガスバリア層の積層時(例えば無機酸化物等の蒸着時)に耐熱性基板1に生じる熱膨張が低減され、耐熱性基板1の熱膨張に起因して負荷されるガスバリア層へのストレスが低減される。そのため、当該耐熱性基板1を備える高バリア性シートは、ガスバリア層へのピンホール、結晶粒界、クラック等の欠陥の発生が低減され、水蒸気、酸素等に対するガスバリア性が格段に向上する。また、かかる高バリア性シートは、上記有機EL等の新規用途へ使用される場合に無機半導体や金属が蒸着等の方法によって製膜されることがあるが、これらの無機半導体膜や金属膜との熱膨張の差が低減され、その結果、無機半導体膜や金属膜に負荷されるストレスが低減される。そのため、当該耐熱性基板1を備える高バリア性シートは、上述の有機EL等の新規用途に好適に使用され、それらの性能の向上に寄与することができる。
【0052】
当該耐熱性基板1の線膨張係数としては、20ppm/℃以下が好ましく、5ppm/℃以上15ppm/℃以下が特に好ましい。かかる低線膨張係数の耐熱性基板1を例えば高バリア性シートに使用することで、ガスバリア層の積層時(具体的には、無機酸化物等の蒸着時)の熱膨張に起因するガスバリア層への欠陥の発生が低減される。また、かかる低線膨張係数の耐熱性基板1を例えば液晶表示装置の光学シートに使用することで、ランプの熱による光学シートの熱撓みが低減され、液晶表示装置の輝度ムラ、輝度低下等の不都合を抑制することができる。
【0053】
図2の耐熱性基板11は、基材フィルム12と、この基材フィルム12の一方の面に積層される耐熱層2とを備えている。
【0054】
基材フィルム12は、基材ポリマー等から構成される。この基材ポリマーとしては、上記耐熱層2の基材ポリマーと同様のものが使用される。また、基材フィルム12の厚み、製造方法、基材ポリマー以外の添加剤等も、上記耐熱層2と同様である。
【0055】
この耐熱層2は、図1の耐熱性基板1と同様であるため、同一番号を付して説明を省略する。但し、当該耐熱性基板11の耐熱層2は、製造容易性の面から、基材ポリマーとして熱硬化性樹脂又は放射線硬化型樹脂を用い、耐熱層2を形成する樹脂組成物をコーティング等の手段で基材フィルム12の表面に積層し、加熱、放射線照射等の手段で硬化させるとよい。なお、耐熱層2を形成する樹脂組成物(基材ポリマー、ガラス繊維又はガラスフレーク、添加剤等)の混合方法としては、例えば超音波分散機、ホモジナイザー、サンドミル等を用いた公知の分散方法が採用される。また、当該樹脂組成物のコーティングには、例えばバーコーター、ブレードコーター、スピンコーター、ロールコーター、グラビアコーター、フローコーター、スプレー、スクリーン印刷等が用いられる。
【0056】
当該耐熱性基板11は、耐熱層2によって優れた耐熱性及び熱的寸法安定性を有している。また、当該耐熱性基板11は、上記製造方法を採用することで、製造の容易性及び製造コストの低減化を促進することができる。
【0057】
図3の耐熱性基板21は、重畳される一対の基材フィルム12と、この一対の基材フィルム12間に積層される耐熱層2とを備えている。
【0058】
この基材フィルム12は上記図2の耐熱性基板11と同様であり、耐熱層2は図1の耐熱性基板1と同様であるため、同一番号を付して説明を省略する。但し、当該耐熱性基板21の耐熱層2も、上記図2の耐熱性基板11と同様に、基材ポリマーとして熱硬化性樹脂又は放射線硬化型樹脂を用い、耐熱層2を形成する樹脂組成物をコーティング等の手段で一対の基材フィルム12間に積層し、加熱、放射線照射等の手段で硬化させるとよい。なお、耐熱層2の基材ポリマーとして放射線硬化型樹脂を用いる場合、一方の基材フィルム12は放射線の透過性を有する必要がある。
【0059】
当該耐熱性基板21は、耐熱層2によって優れた耐熱性及び熱的寸法安定性を有している。また、当該耐熱性基板21は、耐熱層2が一対の基材フィルム12で被覆及び保護されているため、耐熱性及び熱的寸法安定性の劣化が低減される。さらに、当該耐熱性基板21は、上記製造方法を採用することで、製造の容易性及び製造コストの低減化を促進することができる。また、当該耐熱性基板21は、耐熱層2の両側に一対の基材フィルム12が積層されているため、両面の平滑性が促進され、高バリア性シート等への2次加工(例えば無機半導体の蒸着等)が容易になる。
【0060】
図4の光学シート31は、透過光線を拡散させる光拡散機能(詳細には、拡散させつつ法線方向側へ集光させる方向性拡散機能)を有する光拡散シートである。当該光学シート31は、耐熱性基板1と、この耐熱性基板1の表面に積層される光学層(光拡散層)32と、耐熱性基板1の裏面に積層されるスティッキング防止層33とを備えている。当該光学シート31の耐熱性基板1は、図1の耐熱性基板1と同様であるため、同一番号を付して説明を省略する。
【0061】
光学層32は、耐熱性基板1表面に略均一に配設される複数の光拡散剤34と、その複数の光拡散剤34のバインダー35とを備えている。かかる複数の光拡散剤34は、バインダー35で被覆されている。このように光学層32中に含有する複数の光拡散剤34によって、光学層32を裏側から表側に透過する光線を均一に拡散させることができる。また、複数の光拡散剤34によって光学層32の表面に微細な凹凸が略均一に形成されている。このように光学シート31表面に形成される微細な凹凸のレンズ的屈折作用により、光線をより良く拡散させることができる。なお、光学層32の平均厚みは、特には限定されないが、例えば1μm以上30μm以下程度とされている。
【0062】
光拡散剤34は、光線を拡散させる性質を有する粒子であり、無機フィラーと有機フィラーに大別される。無機フィラーとしては、例えばシリカ、水酸化アルミニウム、酸化アルミニウム、酸化亜鉛、硫化バリウム、マグネシウムシリケート、又はこれらの混合物を用いることができる。有機フィラーの材料としては、例えばアクリル樹脂、アクリロニトリル樹脂、ポリウレタン、ポリ塩化ビニル、ポリスチレン、ポリアクリロニトリル、ポリアミド等を用いることができる。中でも、透明性が高いアクリル樹脂が好ましく、ポリメチルメタクリレート(PMMA)が特に好ましい。
【0063】
光拡散剤34の形状としては、特に限定されるものではなく、例えば球状、紡錘形状、針状、棒状、立方状、板状、鱗片状、繊維状などが挙げられ、中でも光拡散性に優れる球状のビーズが好ましい。
【0064】
光拡散剤34の平均粒子径の下限としては、1μm、特に2μm、さらに5μmが好ましい。一方、光拡散剤34の平均粒子径の上限としては、50μm、特に20μm、さらに15μmが好ましい。光拡散剤34の平均粒子径が上記範囲未満であると、光拡散剤34によって形成される光学層32表面の凹凸が小さくなり、光拡散シートとして必要な光拡散性を満たさないおそれがある。逆に、光拡散剤34の平均粒子径が上記範囲を越えると、光学シート31の厚さが増大し、かつ、均一な拡散が困難になる。
【0065】
光拡散剤34の配合量(バインダー35の形成材料であるポリマー組成物中の基材ポリマー100部に対する固形分換算の配合量)の下限としては10部、特に20部、さらに50部が好ましく、この配合量の上限としては500部、特に300部、さらに200部が好ましい。これは、光拡散剤34の配合量が上記範囲未満であると、光拡散性が不十分となってしまい、一方、光拡散剤34の配合量が上記範囲を越えると光拡散剤34を固定する効果が低下することからである。なお、プリズムシートの表面側に配設される所謂上用光拡散シートの場合、高い光拡散性を必要とされないため、光拡散剤34の配合量としては10部以上40部以下、特に10部以上30部以下が好ましい。
【0066】
バインダー35は、基材ポリマーを含むポリマー組成物を架橋硬化させることで形成される。このバインダー35によって耐熱性基板1表面に光拡散剤34が略等密度に配置固定される。なお、このバインダー35を形成するためのポリマー組成物は、基材ポリマーの他に例えば微小無機充填剤、硬化剤、可塑剤、分散剤、各種レベリング剤、紫外線吸収剤、抗酸化剤、粘性改質剤、潤滑剤、光安定化剤等が適宜配合されてもよい。
【0067】
上記基材ポリマーとしては、特に限定されるものではなく、例えばアクリル系樹脂、ポリウレタン、ポリエステル、フッ素系樹脂、シリコーン系樹脂、ポリアミドイミド、エポキシ樹脂、紫外線硬化型樹脂等が挙げられ、これらのポリマーを1種又は2種以上混合して使用することができる。特に、上記基材ポリマーとしては、加工性が高く、塗工等の手段で容易に光学層32を形成することができるポリオールが好ましい。また、バインダー35に用いられる基材ポリマー自体は、光線の透過性を高める観点から透明が好ましく、無色透明が特に好ましい。
【0068】
上記ポリオールとしては、例えば水酸基含有不飽和単量体を含む単量体成分を重合して得られるポリオールや、水酸基過剰の条件で得られるポリエステルポリオールなどが挙げられ、これらを単体で又は2種以上混合して使用することができる。
【0069】
水酸基含有不飽和単量体としては、(a)例えばアクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、アリルアルコール、ホモアリルアルコール、ケイヒアルコール、クロトニルアルコール等の水酸基含有不飽和単量体、(b)例えばエチレングリコール、エチレンオキサイド、プロピレングリコール、プロピレンオキサイド、ブチレングリコール、ブチレンオキサイド、1,4−ビス(ヒドロキシメチル)シクロヘキサン、フェニルグリシジルエーテル、グリシジルデカノエート、プラクセルFM−1(ダイセル化学工業株式会社製)等の2価アルコール又はエポキシ化合物と、例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸等の不飽和カルボン酸との反応で得られる水酸基含有不飽和単量体などが挙げられる。これらの水酸基含有不飽和単量体から選択される1種又は2種以上を重合してポリオールを製造することができる。
【0070】
また上記ポリオールは、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸tert−ブチル、アクリル酸エチルヘキシル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸tert−ブチル、メタクリル酸エチルヘキシル、メタクリル酸グリシジル、メタクリル酸シクロヘキシル、スチレン、ビニルトルエン、1−メチルスチレン、アクリル酸、メタクリル酸、アクリロニトリル、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、酢酸アリル、アジピン酸ジアリル、イタコン酸ジアリル、マレイン酸ジエチル、塩化ビニル、塩化ビニリデン、アクリルアミド、N−メチロールアクリルアミド、N−ブトキシメチルアクリルアミド、ジアセトンアクリルアミド、エチレン、プロピレン、イソプレン等から選択される1種又は2種以上のエチレン性不飽和単量体と、上記(a)及び(b)から選択される水酸基含有不飽和単量体とを重合することで製造することもできる。
【0071】
水酸基含有不飽和単量体を含む単量体成分を重合して得られるポリオールの数平均分子量は1000以上500000以下であり、好ましくは5000以上100000以下である。また、その水酸基価は5以上300以下、好ましくは10以上200以下、さらに好ましくは20以上150以下である。
【0072】
水酸基過剰の条件で得られるポリエステルポリオールは、(c)例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、ヘキサメチレングリコール、デカメチレングリコール、2,2,4−トリメチル−1,3−ペンタンジオール、トリメチロールプロパン、ヘキサントリオール、グリセリン、ペンタエリスリトール、シクロヘキサンジオール、水添ビスフェノールA、ビス(ヒドロキシメチル)シクロヘキサン、ハイドロキノンビス(ヒドロキシエチルエーテル)、トリス(ヒドロキシエチル)イソシヌレート、キシリレングリコール等の多価アルコールと、(d)例えばマレイン酸、フマル酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、トリメット酸、テレフタル酸、フタル酸、イソフタル酸等の多塩基酸とを、プロパンジオール、ヘキサンジオール、ポリエチレングリコール、トリメチロールプロパン等の多価アルコール中の水酸基数が前記多塩基酸のカルボキシル基数よりも多い条件で反応させて製造することができる。
【0073】
かかる水酸基過剰の条件で得られるポリエステルポリオールの数平均分子量は500以上300000以下であり、好ましくは2000以上100000以下である。また、その水酸基価は5以上300以下、好ましくは10以上200以下、さらに好ましくは20以上150以下である。
【0074】
当該ポリマー組成物の基材ポリマーとして用いられるポリオールとしては、上記ポリエステルポリオール、及び、上記水酸基含有不飽和単量体を含む単量体成分を重合して得られ、かつ、(メタ)アクリル単位等を有するアクリルポリオールが好ましい。かかるポリエステルポリオール又はアクリルポリオールを基材ポリマーとするバインダー35は耐候性が高く、光学層32の黄変等を抑制することができる。なお、このポリエステルポリオールとアクリルポリオールのいずれか一方を使用してもよく、両方を使用してもよい。
【0075】
なお、上記ポリエステルポリオール及びアクリルポリオール中の水酸基の個数は、1分子当たり2個以上であれば特に限定されないが、固形分中の水酸基価が10以下であると架橋点数が減少し、耐溶剤性、耐水性、耐熱性、表面硬度等の被膜物性が低下する傾向がある。
【0076】
バインダー35を形成するポリマー組成物中に微小無機充填剤を含有するとよい。このバインダー35中に微小無機充填剤を含有することで、光学層32ひいては光学シート31の耐熱性が向上する。この微小無機充填剤を構成する無機物としては、特に限定されるものではなく、無機酸化物が好ましい。この無機酸化物は、金属元素が主に酸素原子との結合を介して3次元のネットワークを構成した種々の含酸素金属化合物と定義される。また無機酸化物を構成する金属元素としては、例えば元素周期律表第2族〜第6族から選ばれる元素が好ましく、元素周期律表第3族〜第5族から選ばれる元素がさらに好ましい。特に、Si、Al、Ti及びZrから選択される元素が好ましく、金属元素がSiであるコロイダルシリカが、耐熱性向上効果及び均一分散性の面で微小無機充填剤として最も好ましい。また、微小無機充填剤の形状は、球状、針状、板状、鱗片状、破砕状等の任意の粒子形状でよく、特に限定されない。
【0077】
微小無機充填剤の平均粒子径の下限としては、5nmが好ましく、10nmが特に好ましい。一方、微小無機充填剤の平均粒子径の上限としては50nmが好ましく、25nmが特に好ましい。これは、微小無機充填剤の平均粒子径が上記範囲未満では、微小無機充填剤の表面エネルギーが高くなり、凝集等が起こりやすくなるためであり、逆に、平均粒子径が上記範囲を超えると、短波長の影響で白濁し、光学シート31の透明性を完全に維持することができなくなることからである。
【0078】
微小無機充填剤の基材ポリマー100部に対する配合量(無機物成分のみの配合量)の下限としては固形分換算で5部が好ましく、50部が特に好ましい。一方、微小無機充填剤の上記配合量の上限としては500部が好ましく、200部がより好ましく、100部が特に好ましい。これは、微小無機充填剤の配合量が上記範囲未満であると、光学シート31の耐熱性を十分に発現することができなくなってしまうおそれがあり、逆に、配合量が上記範囲を越えると、ポリマー組成物中への配合が困難になり、光学層32の光線透過率が低下するおそれがあることからである。
【0079】
上記微小無機充填剤としては、その表面に有機ポリマーが固定されたものを用いるとよい。このように有機ポリマー固定微小無機充填剤を用いることで、バインダー35中での分散性やバインダー35との親和性の向上が図られる。この有機ポリマーについては、その分子量、形状、組成、官能基の有無等に関して特に限定はなく、任意の有機ポリマーを使用することができる。また有機ポリマーの形状については、直鎖状、分枝状、架橋構造等の任意の形状のものを使用することができる。
【0080】
上記有機ポリマーを構成する具体的な樹脂としては、例えば、(メタ)アクリル樹脂、ポリスチレン、ポリ酢酸ビニル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンテレフタレート等のポリエステルおよびこれらの共重合体やアミノ基、エポキシ基、ヒドロキシル基、カルボキシル基等の官能基で一部変性した樹脂等が挙げられる。中でも、(メタ)アクリル系樹脂、(メタ)アクリル−スチレン系樹脂、(メタ)アクリル−ポリエステル系樹脂等の(メタ)アクリル単位を含む有機ポリマーを必須成分とするものが被膜形成能を有し好適である。他方、上記ポリマー組成物の基材ポリマーと相溶性を有する樹脂が好ましく、従ってポリマー組成物に含まれる基材ポリマーと同じ組成であるものが最も好ましい。
【0081】
なお、微小無機充填剤は、微粒子内に有機ポリマーを包含していてもよい。このことにより、微小無機充填剤のコアである無機物に適度な軟度および靱性を付与することができる。
【0082】
上記有機ポリマーにはアルコキシ基を含有するものを用いるとよく、その含有量としては有機ポリマーを固定した微小無機充填剤1g当たり0.01mmol以上50mmol以下が好ましい。かかるアルコキシ基により、バインダー35を構成するマトリックス樹脂との親和性や、バインダー35中での分散性を向上させることができる。
【0083】
上記アルコキシ基は、微粒子骨格を形成する金属元素に結合したRO基を示す。このRは置換されていてもよいアルキル基であり、微粒子中のRO基は同一であっても異なっていてもよい。Rの具体例としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル等が挙げられる。微小無機充填剤を構成する金属と同一の金属アルコキシ基を用いるのが好ましく、微小無機充填剤がコロイダルシリカである場合には、シリコンを金属とするアルコキシ基を用いるのが好ましい。
【0084】
有機ポリマーを固定した微小無機充填剤中の有機ポリマーの含有率については、特に制限されるものではないが、微小無機充填剤を基準にして0.5質量%以上50質量%以下が好ましい。
【0085】
微小無機充填剤に固定する上記有機ポリマーとして水酸基を有するものを用い、バインダー35を構成するポリマー組成物中に水酸基と反応するような官能基を2個以上有する多官能イソシアネート化合物、メラミン化合物およびアミノプラスト樹脂から選ばれる少なくとも1種のものを含有するとよい。これにより、微小無機充填剤とバインダー35のマトリックス樹脂とが架橋構造で結合され、保存安定性、耐汚染性、可撓性、耐候性、保存安定性等が良好になり、さらに得られる被膜が光沢を有するものとなる。
【0086】
上記多官能イソシアネート化合物としては、脂肪族、脂環族、芳香族及びその他の多官能イソシアネート化合物やこれらの変性化合物を挙げることができる。この多官能イソシアネート化合物の具体例としては、例えばトリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、2,2,4−トリメチルヘキシルメタンジイソシアネート、メチルシクロヘキサンジイソシアネート、1,6−ヘキサメチレンジイソシアネートのビウレット体、イソシアヌレート体等の3量体等;これらの多官能イソシアネート類とプロパンジオール、ヘキサンジオール、ポリエチレングリコール、トリメチロールプロパン等の多価アルコールとの反応により生成される2個以上のイソシアネート基が残存する化合物;これらの多官能イソシアネート化合物をエタノール、ヘキサノール等のアルコール類、フェノール、クレゾール等のフェノール性水酸基を有する化合物、アセトオキシム、メチルエチルケトキシム等のオキシム類、ε−カプロラクタム、γ−カプロラクタム等のラクタム類等のブロック剤で封鎖したブロックド多官能イソシアネート化合物などを挙げることができる。なお、上記多官能イソシアネート化合物は1種又は2種以上混合して使用することができる。中でも、被膜の黄変色を防止するために、芳香環に直接結合したイソシアネート基を有しない無黄変性多官能イソシアネート化合物が好ましい。
【0087】
上記メラミン化合物としては、例えばジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミン、イソブチルエーテル型メラミン、n−ブチルエーテル型メラミン、ブチル化ベンゾグアナミン等を挙げることができる。
【0088】
上記アミノプラスト樹脂としては、例えばアルキルエーテル化メラミン樹脂、尿素樹脂、ベンゾグアナミン樹脂等が挙げられ、これらのアミノプラスト樹脂の単体又は2種以上の混合物もしくは共縮合物を使用できる。このアルキルエーテル化メラミン樹脂とは、アミノトリアジンをメチロール化し、シクロヘキサノールまたは炭素数1〜6のアルカノールでアルキルエーテル化して得られるものであり、ブチルエーテル化メラミン樹脂、メチルエーテル化メラミン樹脂、メチルブチル混合メラミン樹脂が代表的なものである。また硬化を促進させるためのスルホン酸系触媒、例えばパラトルエンスルホン酸及びそのアミン塩等を使用することができる。
【0089】
上記基材ポリマーとしてはシクロアルキル基を有するポリオールが好ましい。このように、バインダー35を構成する基材ポリマーとしてのポリオール中にシクロアルキル基を導入することで、バインダー35の撥水性、耐水性等の疎水性が高くなり、高温高湿条件下での当該光学シート31の耐撓み性、寸法安定性等が改善される。また、光学層32の耐候性、硬度、肉持感、耐溶剤性等の塗膜基本性能が向上する。さらに、表面に有機ポリマーが固定された微小無機充填剤との親和性及び微小無機充填剤の均一分散性がさらに良好になる。
【0090】
上記シクロアルキル基としては特に限定されず、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリデシル基、シクロテトラデシル基、シクロペンタデシル基、シクロヘキサデシル基、シクロヘプタデシル基、シクロオクタデシル基等が挙げられる。
【0091】
上記シクロアルキル基を有するポリオールは、シクロアルキル基を有する重合性不飽和単量体を共重合することで得られる。このシクロアルキル基を有する重合性不飽和単量体とは、シクロアルキル基を分子内に少なくとも1つ有する重合性不飽和単量体である。この重合性不飽和単量体としては特に限定されず、例えば、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、tert−ブチルシクロヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート等が挙げられる。
【0092】
また、ポリマー組成物中には硬化剤としてイソシアネートを含有するとよい。このようにポリマー組成物中にイソシアネート硬化剤を含有することで、より一層強固な架橋構造となり、光学層32の被膜物性がさらに向上する。このイソシアネートとしては上記多官能イソシアネート化合物と同様の物質が用いられる。中でも、被膜の黄変色を防止する脂肪族系イソシアネートが好ましい。
【0093】
特に、基材ポリマーとしてポリオールを用いる場合、ポリマー組成物中に配合する硬化剤としてヘキサメチレンジイソシアネート、イソフロンジイソシアネート及びキシレンジイソシアネートのいずれか1種もしくは2種以上混合して用いるとよい。これらの硬化剤を用いると、ポリマー組成物の硬化反応速度が大きくなるため、帯電防止剤として微小無機充填剤の分散安定性に寄与するカチオン系のものを使用しても、カチオン系帯電防止剤による硬化反応速度の低下を十分補うことができる。また、かかるポリマー組成物の硬化反応速度の向上はバインダー中への微小無機充填剤の均一分散性に寄与する。その結果、当該光学シート31は熱、紫外線等による撓みや黄変を格段に抑制することができる。
【0094】
さらに、ポリマー組成物中に帯電防止剤を混練するとよい。このように帯電防止剤が混練されたポリマー組成物からバインダー35を形成することで、当該光学シート31に帯電防止効果が発現され、ゴミを吸い寄せたり、プリズムシート等との重ね合わせが困難になる等の静電気の帯電により発生する不都合を防止することができる。また、帯電防止剤を表面にコーティングすると表面のベタツキや汚濁が生じてしまうが、このようにポリマー組成物中に混練することでかかる弊害は低減される。この帯電防止剤としては、特に限定されるものではなく、例えばアルキル硫酸塩、アルキルリン酸塩等のアニオン系帯電防止剤、第四アンモニウム塩、イミダゾリン化合物等のカチオン系帯電防止剤、ポリエチレングリコール系、ポリオキシエチレンソルビタンモノステアリン酸エステル、エタノールアミド類等のノニオン系帯電防止剤、ポリアクリル酸等の高分子系帯電防止剤などが用いられる。中でも、帯電防止効果が比較的大きいカチオン系帯電防止剤が好ましく、少量の添加で帯電防止効果が奏される。
【0095】
スティッキング防止層33は、耐熱性基板1の裏面に配設される複数のビーズ36と、この複数のビーズ36のバインダー37とを備えている。このバインダー37も、上記光学層32のバインダー35と同様のポリマー組成物を架橋硬化させることで形成される。また、ビーズ36の材料としては光学層32の光拡散剤34と同様のものが用いられる。なお、このスティッキング防止層33の厚み(ビーズ36が存在しない部分でのバインダー37部分の厚み)は特には限定されないが、例えば1μm以上10μm以下程度とされている。
【0096】
このビーズ36の配合量は比較的少量とされ、ビーズ36は互いに離間してバインダー37中に分散している。また、ビーズ36の多くは、その下端がバインダー37からごく少量突出している。そのため、この光学シート31を導光板と積層すると、突出したビーズ36の下端が導光板等の表面に当接し、光学シート31の裏面全面が導光板等と当接することがない。これにより、光学シート31と導光板等とのスティッキングが防止され、液晶表示装置の画面の輝度ムラが抑えられる。
【0097】
次に、光学シート31の製造方法を説明する。当該光学シート31の製造方法は、(a)バインダー35を構成するポリマー組成物に光拡散剤34を混合することで光学層用組成物を製造する工程と、(b)この光学層用組成物を耐熱性基板1の表面に積層し、硬化させることで光学層32を形成する工程と、(c)バインダー37を構成するポリマー組成物にビーズ36を混合することでスティッキング防止層用組成物を製造する工程と、(d)このスティッキング防止層用組成物を耐熱性基板1の裏面に積層し、硬化させることでスティッキング防止層33を積層する工程とを有する。上記光学層用組成物及びスティッキング防止層用組成物を耐熱性基板1に積層する手段としては、特に限定されるものではなく、例えばバーコーター、ブレードコーター、スピンコーター、ロールコーター、グラビアコーター、フローコーター、スプレー、スクリーン印刷等を用いたコーティング等が採用される。
【0098】
当該光学シート31は、光学層32中に含有する光拡散剤34の界面での反射や屈折及び光学層32表面に形成される微細凹凸での屈折により、高い光拡散機能(方向性拡散機能)を有している。また、当該光学シート31は、高い耐熱性及び熱的寸法安定性を有する耐熱性基板1を備えているため、優れた耐熱性及び熱的寸法安定性を有し、かつ高い強度、耐候性、ガスバリア性等の諸特性を有している。そのため、当該光学シート31は、液晶表示装置のバックライトユニットにおいて、ランプの発熱や紫外線照射に起因する撓みや黄変等の発生を抑制することができ、輝度ムラや輝度低下の発生を格段に低減することができる。
【0099】
図5の光学シート41は、高い集光、法線方向側への屈折、拡散等の光学的機能を有するマイクロレンズシートである。当該光学シート41は、耐熱性基板1と、この耐熱性基板1の表面に積層される光学層42とを備えている。当該光学シート41の耐熱性基板1は、図1の耐熱性基板1と同様であるため、同一番号を付して説明を省略する。
【0100】
光学層42は、耐熱性基板1の表面に積層されるシート状部43と、このシート状部43の表面に形成されるマイクロレンズアレイ44とを備えている。なお、光学層42は、シート状部43が存在せず、マイクロレンズアレイ44のみから構成することも可能である。つまり、耐熱性基板1の表面に直接マイクロレンズアレイ44を形成することも可能である。
【0101】
光学層42は、光線を透過させる必要があるので透明、特に無色透明の合成樹脂から形成されている。光学層42に用いられる合成樹脂としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル樹脂、ポリカーボネート、ポリスチレン、ポリオレフィン、セルロースアセテート、耐候性塩化ビニル、活性エネルギー線硬化型樹脂等が挙げられる。中でも、マイクロレンズアレイ44の成形性に優れる紫外線硬化型樹脂、電子線硬化型樹脂等の放射線硬化型樹脂や、透明性及び強度に優れるポリエチレンテレフタレートが特に好ましい。なお、光学層42には、上記の合成樹脂の他、例えばフィラー、可塑剤、安定化剤、劣化防止剤、分散剤等が配合されてもよい。
【0102】
マイクロレンズアレイ44は、多数のマイクロレンズ45から構成されている。このマイクロレンズ45は、半球状(半球に近似した形状を含む)とされ、耐熱性基板1の表面側に突設されている。なお、マイクロレンズ45は、上記半球状凸レンズに限定されず、半球状凹レンズのマイクロレンズも可能である。かかる半球状凹レンズのマイクロレンズも、上記マイクロレンズ45と同様に優れた光学的機能を有する。
【0103】
マイクロレンズ45は、耐熱性基板1の表面に比較的密にかつ幾何学的に配設されている。具体的にはマイクロレンズ45は、耐熱性基板1の表面において正三角形格子パターンで配設されている。従って、マイクロレンズ45のピッチ(P)及びレンズ間距離(S)は全て一定である。この配設パターンは、マイクロレンズ45を最も密に配設することができる。なお、マイクロレンズ45の配設パターンとしては、稠密充填可能な上記正三角形格子パターンに限定されず、例えば正方形格子パターンやランダムパターンも可能である。このランダムパターンによれば、当該光学シート41を他の光学部材と重ね合わせた際にモアレの発生が低減される。
【0104】
マイクロレンズ45の直径(D)の下限としては、10μm、特に100μm、さらに特に200μmが好ましい。一方、マイクロレンズ45の直径(D)の上限としては、1000μm、特に700μmが好ましい。マイクロレンズ45の直径(D)が10μmより小さいと、回析の影響が大きくなり、光学的性能の低下や色分解が起こり易く、品質の低下を招来する。一方、マイクロレンズ45の直径(D)が1000μmを超えると、厚さの増大や輝度ムラが生じやすく、品質の低下を招来する。また、マイクロレンズ45の直径(D)を100μm以上とすることで、単位面積当たりのマイクロレンズ45が少なくなる結果、マイクロレンズシートである当該光学シート41の大面積化が容易になり、製造時の技術的かつコスト的な負担が軽減される。
【0105】
マイクロレンズ45の表面粗さ(Ra)の下限としては、0.01μmが好ましく、0.03μmが特に好ましい。一方、マイクロレンズ45の表面粗さ(Ra)の上限としては、0.1μmが好ましく、0.07μmが特に好ましい。このようにマイクロレンズ45の表面粗さ(Ra)を上記下限以上とすることで、当該光学シート41のマイクロレンズアレイ44の成形性が比較的容易になり、製造面での技術的及びコスト的負担が軽減される。一方、マイクロレンズ45の表面粗さ(Ra)を上記上限未満とすることで、マイクロレンズ45表面での光の散乱が低減される結果、マイクロレンズ45による集光機能や法線方向側への屈折機能が高められ、かかる良好な光学的機能に起因して正面方向の高輝度化が図られる。
【0106】
マイクロレンズ45の高さ(H)の曲率半径(R)に対する高さ比(H/R)の下限としては、5/8が好ましく、3/4が特に好ましい。一方、この高さ比(H/R)の上限としては1が好ましい。このようにマイクロレンズ45の高さ比(H/R)を上記範囲とすることで、マイクロレンズ45におけるレンズ的屈折作用が効果的に奏され、当該光学シート41の集光等の光学的機能が格段に向上される。
【0107】
マイクロレンズ45のレンズ間距離(S;P−D)の直径(D)に対する間隔比(S/D)の上限としては1/2が好ましく、1/5が特に好ましい。このようにマイクロレンズ45のレンズ間距離(S)を上記上限以下とすることで、光学的機能に寄与しない平坦部が低減され、当該光学シート41の集光等の光学的機能が格段に向上される。
【0108】
マイクロレンズ45の充填率の下限としては、40%が好ましく、60%が特に好ましい。このようにマイクロレンズ45の充填率を上記下限以上とすることで、当該光学シート41表面におけるマイクロレンズ45の占有面積を高め、当該光学シート41の集光等の光学的機能が格段に向上される。
【0109】
光学層42を構成する素材の屈折率の下限としては1.3が好ましく、1.45が特に好ましい。一方、この素材の屈折率の上限としては1.8が好ましく、1.6が特に好ましい。この範囲の中でも、光学層42を構成する素材の屈折率としては1.5が最も好ましい。このように光学層42を構成する素材の屈折率を上記範囲とすることで、マイクロレンズ45におけるレンズ的屈折作用が効果的に奏され、当該光学シート41の集光等の光学的機能がさらに高められる。
【0110】
当該光学シート41の製造方法としては、上記構造のものが形成できれば特に限定されるものではなく、種々の方法が採用される。当該光学シート41の製造方法としては、具体的には、
(a)マイクロレンズアレイ44表面の反転形状を有するシート型に合成樹脂及び耐熱性基板1をこの順に積層し、シート型を剥がすこと当該光学シート41を形成する方法、
(b)シート化された樹脂を再加熱して耐熱性基板1と共にマイクロレンズアレイ44表面の反転形状を有する金型と金属板との間にはさんでプレスして形状を転写する方法、
(c)マイクロレンズアレイ44表面の反転形状を周面に有するロール型と他のロールとのニップに溶融状態の樹脂及び耐熱性基板1を通し、上記形状を転写する押出しシート成形法、
(d)耐熱性基板1に紫外線硬化型樹脂を塗布し、上記と同様の反転形状を有するシート型、金型又はロール型に押さえ付けて未硬化の紫外線硬化型樹脂に形状を転写し、紫外線をあてて紫外線硬化型樹脂を硬化させる方法、
(e)上記と同様の反転形状を有する金型又はロール型に未硬化の紫外線硬化性樹脂を充填塗布し、耐熱性基板1で押さえ付けて均し、紫外線をあてて紫外線硬化型樹脂を硬化させる方法、
(f)未硬化(液状)の紫外線硬化型樹脂等を微細なノズルから耐熱性基板1上にマイクロレンズ45を形成するよう射出又は吐出し、硬化させる方法、
(g)紫外線硬化型樹脂の代わりに電子線硬化型樹脂を使用する方法
などがある。
【0111】
なお、上記マイクロレンズアレイ44の反転形状を有する型(モールド)の製造方法としては、例えば基材上にフォトレジスト材料により斑点状の立体パターンを形成し、この立体パターンを加熱流動化により曲面化することでマイクロレンズアレイ模型を作製し、このマイクロレンズアレイ模型の表面に電鋳法により金属層を積層し、この金属層を剥離することで製造することができる。また、上記マイクロレンズアレイ模型の作製方法としては、上記(f)に記載の方法を採用することも可能である。
【0112】
上記製造方法によれば、任意形状のマイクロレンズアレイ44が容易かつ確実に形成される。従って、マイクロレンズアレイ44を構成するマイクロレンズ45の直径(D)、高さ比(H/R)、間隔比(S/D)、充填率等が容易かつ確実に調整され、その結果当該光学シート41の光学的機能が容易かつ確実に制御される。
【0113】
当該光学シート41は、マイクロレンズアレイ44によって高い集光、法線方向側への屈折、拡散等の光学的機能を有し、かつ、その光学的機能を容易かつ確実に制御することができる。そのため、当該光学シート41は、例えばバックライトユニットのプリズムシートへの入射光線のピーク方向を法線方向側への屈折に最適な傾斜角に制御することができる。また、当該光学シート41は、高い耐熱性及び熱的寸法安定性を有する耐熱性基板1を備えているため、優れた耐熱性及び熱的寸法安定性を有し、かつ高い強度、耐候性、ガスバリア性等の諸特性を有している。そのため、当該光学シート41は、液晶表示装置のバックライトユニットにおいて、ランプの発熱や紫外線照射に起因する撓みや黄変等の発生を抑制することができ、輝度ムラや輝度低下の発生を格段に低減することができる。
【0114】
次に、シミュレーションにより、当該光学シート41において高さ比(H/R)、間隔比(S/D)及び充填率を変化させた場合に正面輝度がどのように変化するかを示す。このシミュレーションにおける輝度の解析は、モンテカルロ法を用いたノンシーケンシャル光線追跡で行う。得られる正面輝度相対値は、各パラメーターを変化させた場合の相対的な正面輝度を示すものである。
【0115】
高さ比(H/R)と正面輝度相対値との関係を下記表1及び図6のグラフに示す。この表1及び図6のグラフは、高さ比(H/R)が5/8以上で正面輝度相対値が高くなり、高さ比(H/R)が3/4以上で特に高くなることを示している。また、高さ比(H/R)が1に近づくほど正面輝度相対値の増加量が低下している。
【0116】
【表1】

【0117】
間隔比(S/D)と正面輝度相対値との関係を下記表2及び図7のグラフに示す。この表2及び図7のグラフは、間隔比(S/D)が1/2以下で正面輝度相対値が高くなり、間隔比(S/D)が1/5以下で特に高くなることを示している。
【0118】
【表2】

【0119】
レンズ充填率と正面輝度相対値との関係を下記表3及び図8のグラフに示す。この表3及び図8のグラフは、レンズ充填率が40%以上で正面輝度相対値が正面輝度相対値が高くなり、レンズ充填率が60%以上でより高くなり、レンズ充填率が75%以上で特に高くなることを示している。
【0120】
【表3】

【0121】
なお、本発明の耐熱性基板及びこれを用いた光学シートは、上記実施形態に限定されるものではない。例えば、当該耐熱性基板は、紫外線吸収剤層、トップコート層等の他の層が積層されてもよく、基材フィルムと耐熱層とが接着剤層を介して積層されてもよい。また、当該光学シートは、図2又は図3の耐熱性基板に図4又図5の光学層が積層されてもよい。さらに、当該光学シートの光学層は、図4の光拡散層や図5のマイクロレンズアレイに限定されず、例えばストライプ状に配設される複数のプリズム部、シリンドリカルレンズ部等から構成してもよい。
【0122】
また、マイクロレンズアレイを構成するマイクロレンズは、長軸を法線方向に向けた楕円面の部分的形状に形成するとよい。このように長軸を法線方向に向けた楕円面の部分的形状を有するマイクロレンズによれば、球面収差ひいては光線のロスが低減され、透過光線に対する正面側への集光機能、拡散機能、法線方向側への変角機能等の光学的機能が高められる。この楕円面の長軸半径(R)の短軸半径(R)に対する扁平比(R/R)としては、マイクロレンズの球面収差を効果的に低減する趣旨から、1.05以上1.7以下が好ましい。
【0123】
さらに、マイクロレンズアレイを構成するマイクロレンズは、長軸が所定の平面方向と略平行に位置する楕円面の部分的形状に形成してもよい。このように長軸が所定の平面方向と略平行に位置する楕円面の部分的形状を有するマイクロレンズによれば、光学的機能に異方性を有し、具体的にはマイクロレンズの長軸と平行方向の光学的機能より長軸と垂直方向の光学的機能が大きくなる。
【0124】
本発明において、「マイクロレンズ」とは、界面が部分球面状の微小レンズを意味し、例えば半球状凸レンズ、半球状凹レンズ等が該当する。「直径(D)」とは、マイクロレンズの基底又は開口の直径を意味する。「高さ(H)」とは、マイクロレンズが凸レンズの場合にはマイクロレンズの基底面から最頂部までの垂直距離、マイクロレンズが凹レンズの場合にはマイクロレンズの開口面から最底部までの垂直距離を意味する。「レンズ間距離」とは、隣り合う一対のマイクロレンズ間の最短距離を意味する。「充填率」とは、表面投影形状における単位面積当たりのマイクロレンズの面積比を意味する。「正三角形格子パターン」とは、表面を同一形状の正三角形に区分し、その正三角形の各頂点にマイクロレンズを配設するパターンを意味する。
【実施例】
【0125】
以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。
【0126】
〈耐熱性基板の耐熱性試験〉
[実施例1]
ポリカーボネート100部とガラス繊維(旭ファイバーガラス(株)の「ECRガラス繊維」;繊維径18μm;繊維長4mm;nd=1.579)35部とを含有する樹脂組成物を用い、厚さが25μmとなるようシート形成することで実施例1の耐熱性基板を得た。
【0127】
[実施例2]
上記ガラス繊維の含有量を55部とした以外は上記実施例1と同様にして実施例2の耐熱性基板を得た。
【0128】
[実施例3]
上記ガラス繊維に替え、平均幅160μm、平均厚さ5μm、nd=1.53のガラスフレーク(日本板硝子製)を用いた以外は上記実施例1と同様にして実施例3の耐熱性基板を得た。
【0129】
[実施例4]
厚さ100μmの透明ポリエステル製の基材フィルム(東洋紡績(株)の「A−4300」)の表面に、エポキシ系樹脂(ジャパンエポキシレジン製の「エピコート828」)55部と硬化剤(日立化成製の「HN−2000」)45部とガラス繊維(繊維径13μm、繊維長4mm、nd=1.53)35部とを含有する樹脂組成物を積層、硬化して厚さ25μmの耐熱層を形成することで実施例4の耐熱性基板を得た。
【0130】
[比較例1]
上記樹脂組成物中にガラス繊維を含有しない以外は上記実施例1と同様にして比較例1の基板を得た。
【0131】
[特性の評価]
上記実施例1〜4の耐熱性基板及び比較例1の基板を用い、これらの線膨張係数を測定した。その結果を下記表4に示す。
【0132】
【表4】

【0133】
上記表4に示すように、比較例1の基板と比較して、実施例1〜4の耐熱性基板が高い耐熱性及び熱的寸法安定性を有している。また、実施例1及び実施例2の耐熱性基板を対比すると、ガラス繊維の含有量が大きいほど、高い耐熱性及び熱的寸法安定性を有している。
【0134】
〈光学シートの耐熱性試験〉
[実施例5]
アクリル系樹脂100部、平均粒子径15μmのアクリル系樹脂ビーズ(積水化成品工業(株)の「MBX−15」)100部、架橋剤10部及び帯電防止剤3部を含む光学層用樹脂組成物を用い、この光拡散層用樹脂組成物を上記実施例1の耐熱性基板の表面に20g/m(固形分換算)積層し、硬化させることで実施例1の光学シートを得た。
【0135】
[比較例2]
上記実施例1の耐熱性基板に替え、基板として厚さ100μmの透明ポリエステル製の基材フィルム(東洋紡績(株)の「A−4300」)を用いた以外は上記実施例5と同様にして比較例2の光学シートを得た。
【0136】
[特性の評価]
上記実施例5の光学シート及び比較例2の光学シートを用い、これらの光学シートの耐熱性を評価した。その結果を下記表5に示す。
【0137】
上記耐熱性は、各光学シートを12.3インチのバックライトユニットに組込み、60℃90%RHの環境試験器に投入し、ランプを点灯させて、1時間、2時間、4時間、8時間、12時間及び24時間経過後における光学シートの撓みの有無及びその程度をバックライトユニットの輝度ムラの発生具合から判定し、
(1)輝度ムラが全くなく、撓みが全く発生していない場合を◎、
(2)輝度ムラが殆どなく、極微小な撓みしか発生していない場合を○、
(3)若干の輝度ムラがあり、微小撓みが発生している場合を△、
(4)輝度ムラがあり、小撓みが発生している場合を×、
(5)明確な輝度ムラがあり、比較的大きな撓みが発生している場合を××、
として評価した。
【0138】
【表5】

【0139】
上記表5に示すように、ガラス繊維を含有する耐熱性基板を用いた実施例5の光学シートは、基板として単なるポリエステルフィルムを用いた比較例2の光学シートと比較して高い耐熱性を示している。
【産業上の利用可能性】
【0140】
以上のように、本発明の耐熱性基板は、食品、医薬品等の包装材料や液晶表示装置の光学シート用基板として有用であり、特に今日開発が進められている有機EL、有機薄膜太陽電池、有機トランジスタ、フレキシブル液晶等の構成材料として好適に使用される。
【図面の簡単な説明】
【0141】
【図1】本発明の一実施形態に係る耐熱性基板を示す模式的断面図
【図2】図1の耐熱性基板とは異なる形態に係る耐熱性基板を示す模式的断面図
【図3】図1及び図2の耐熱性基板とは異なる形態に係る耐熱性基板を示す模式的断面図
【図4】図1の耐熱性基板を用いた光学シート(光拡散シート)を示す模式的断面図
【図5】図1の耐熱性基板を用いた光学シート(マイクロレンズシート)を示す模式的平面図(a)及び模式的断面図(b)
【図6】高さ比(H/R)と正面輝度相対値との関係を示すグラフである。
【図7】間隔比(S/D)と正面輝度相対値との関係を示すグラフである。
【図8】レンズ充填率と正面輝度相対値との関係を示すグラフである。
【図9】従来の一般的な機能性シートを示す模式的断面図
【符号の説明】
【0142】
1 耐熱性基板
2 耐熱層
11 耐熱性基板
12 基材フィルム
21 耐熱性基板
31 光学シート
32 光学層
33 スティッキング防止層
34 光拡散剤
35 バインダー
36 ビーズ
37 バインダー
41 光学シート
42 光学層
43 シート状部
44 マイクロレンズアレイ
45 マイクロレンズ

【特許請求の範囲】
【請求項1】
耐熱層を備えており、
この耐熱層が、基材ポリマーと、この基材ポリマー中に含有するガラス繊維及び/又はガラスフレークとを有している耐熱性基板。
【請求項2】
合成樹脂製の基材フィルムを備えており、
この基材フィルムの少なくとも一方の面に上記耐熱層が積層されている請求項1に記載の耐熱性基板。
【請求項3】
合成樹脂製の一対の基材フィルムを備えており、
重畳される一対の基材フィルム間に上記耐熱層が積層されている請求項1に記載の耐熱性基板。
【請求項4】
上記耐熱層の基材ポリマーが熱硬化性樹脂である請求項1、請求項2又は請求項3に記載の耐熱性基板。
【請求項5】
上記耐熱層の基材ポリマーが放射線硬化型樹脂である請求項1、請求項2又は請求項3に記載の耐熱性基板。
【請求項6】
上記耐熱層の基材ポリマーとガラス繊維及びガラスフレークとの屈折率差が0.01以下である請求項1から請求項5のいずれか1項に記載の耐熱性基板。
【請求項7】
線膨張係数が20ppm/℃以下である請求項1から請求項6のいずれか1項に記載の耐熱性基板。
【請求項8】
上記ガラス繊維及びガラスフレークの含有量が、基材ポリマー100質量部に対して1質量部以上80質量部以下である請求項1から請求項7のいずれか1項に記載の耐熱性基板。
【請求項9】
上記ガラス繊維の平均長さが1mm以上25mm以下、ガラス繊維の平均径が6μm以上17μm以下、ガラスフレークの平均幅が1μm以上3000μm以下、ガラスフレークの平均厚さが0.1μm以上20μm以下である請求項1から請求項8のいずれか1項に記載の耐熱性基板。
【請求項10】
請求項1から請求項9のいずれか1項に記載の耐熱性基板と、
この耐熱性基板の一方の面に積層される光学層と
を備えている光学シート。
【請求項11】
上記光学層が、複数の光拡散剤と、そのバインダーとを有する請求項10に記載の光学シート。
【請求項12】
上記光学層が、複数のマイクロレンズから構成されるマイクロレンズアレイを有している請求項10に記載の光学シート。
【請求項13】
上記耐熱性基板の他方の面に、バインダー中にビーズが分散したスティッキング防止層を備えている請求項10、請求項11又は請求項12に記載の光学シート。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2006−26973(P2006−26973A)
【公開日】平成18年2月2日(2006.2.2)
【国際特許分類】
【出願番号】特願2004−206065(P2004−206065)
【出願日】平成16年7月13日(2004.7.13)
【出願人】(000165088)恵和株式会社 (63)
【Fターム(参考)】