説明

車両用無段変速機の変速制御装置

【課題】無段変速機の変速に際して出力回転速度の検出精度が悪化する極低回転速度領域であっても目標変速比を適切に設定して変速制御性を向上することができる車両用無段変速機の変速制御装置を提供する。
【解決手段】出力回転速度判定手段172により出力軸回転速度NOUTが変速開始回転速度N1より小さいと判定された場合には、目標変速比設定手段154により、目標入力軸回転速度NINと実際の出力軸回転速度NOUTとに基づいて目標変速比γが算出されることに替えて、目標変速比γとして実際の変速比γを最大変速比γmaxとするための所定変速比γ’が設定されるので、実際の出力軸回転速度NOUTが変速開始回転速度N1より小さくなって出力軸回転速度NOUTの検出精度が悪化する極低回転速度領域であっても、実変速比γが確実に最大変速比γmaxとなるよう変速制御を実行することができて、変速制御性を向上することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両用無段変速機の変速制御装置に係り、特に、無段変速機の変速を実行する際の目標変速比を設定する技術に関するものである。
【背景技術】
【0002】
車両用無段変速機の変速制御装置において、目標入力回転速度と検出された出力回転速度とに基づいて目標変速比を算出し、実際の変速比がその目標変速比となるように変速を実行することが良く知られている。
【0003】
例えば、特許文献1に記載された無段変速機の制御装置がそれである。この特許文献1には、固定シーブおよび可動シーブを備えた有効径が可変のプライマリプーリおよびセカンダリプーリと、それら両プーリに巻き掛けられたベルトとを有するベルト式無段変速機の変速制御装置において、目標プライマリプーリ回転速度(目標入力回転速度に相当)と回転速度センサにより検出されたセカンダリプーリ回転速度(出力回転速度に相当)とに基づいて目標変速比(=目標プライマリプーリ回転速度/セカンダリプーリ回転速度)を算出し、実際の変速比がその目標変速比となるように変速を行うことが、より具体的には可動シーブのシーブ位置を目標変速比に1対1に対応する目標シーブ位置となるように制御することにより実際の変速比が目標変速比となるように変速を行うことが記載されている。
【0004】
このように、目標変速比を設定(算出)するに当たっては出力回転速度が用いられる。しかし、この出力回転速度は回転速度センサによる検出値であり、外乱要因に基づく回転速度の変動がノイズ(外乱成分)として出力回転速度に含まれる場合があることから、この回転速度の変動が目標変速比の変化率に大きく影響する可能性がある。そこで、上記特許文献1では、検出された出力回転速度に対して上記ノイズを取り除くためのフィルタ処理を実行し、そのフィルタ処理後の出力回転速度に基づいて目標変速比を算出することによって、目標変速比に対する外乱要因の影響を防止(或いは抑制)することが提案されている。
【0005】
【特許文献1】特開2006−17182号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところで、回転速度センサによって検出される出力回転速度は、上述したように外乱要因の影響を受けるだけではなく、実際の出力回転速度が極低回転速度領域にある場合には、回転速度センサの特性上、出力回転速度の検出精度それ自体が悪化する可能性がある。つまり、回転速度に応じて周波数が変化する交流電圧から変換された所定時間内のパルス信号の数に基づいて出力回転速度を検出するような良く知られた電磁ピックアップ式回転速度センサ等を用いる場合に、出力回転速度が極めて零に近い極低回転速度領域にあると、所定時間内のパルス信号の数にばらつきが生じたり、パルス信号の出力タイミングが遅くなったりして検出精度自体が悪化する可能性がある。
【0007】
そうすると、通常は目標変速比として最大変速比が算出されて実際の変速比がその最大変速比となるように変速制御が行われる出力回転速度の極低回転速度領域において、検出される出力回転速度の変動によって算出される目標変速比が振動的になってしまい、変速制御性が悪化するという問題が発生する可能性があった。
【0008】
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、無段変速機の変速に際して出力回転速度の検出精度が悪化する極低回転速度領域であっても目標変速比を適切に設定して変速制御性を向上することができる車両用無段変速機の変速制御装置を提供することにある。
【課題を解決するための手段】
【0009】
かかる目的を達成するための請求項1にかかる発明の要旨とするところは、(a) 無段変速機が配設された車両において、目標入力回転速度と検出された出力回転速度とに基づいて目標変速比を算出し、実際の変速比がその目標変速比となるように変速を行う車両用無段変速機の変速制御装置であって、(b) 車速関連値が所定車速関連値より小さいか否かを判定する車速関連値判定手段と、(c) 前記車速関連値判定手段により前記車速関連値が所定車速関連値より小さいと判定された場合には、前記目標変速比を算出することに替えて、その目標変速比として前記実際の変速比を最大変速比とするための所定変速比を設定する目標変速比設定手段とを、含むことにある。
【発明の効果】
【0010】
このようにすれば、車速関連値判定手段により車速関連値が所定車速関連値より小さいと判定された場合には、目標入力回転速度と検出された出力回転速度とに基づいて目標変速比が算出されることに替えて、目標変速比設定手段によりその目標変速比として実際の変速比を最大変速比とするための所定変速比が設定されるので、車速関連値が所定車速関連値より小さくなって検出される出力回転速度の検出精度が悪化する極低回転速度領域であっても、実際の変速比が確実にその最大変速比となるよう変速制御を実行することができて、変速制御性を向上することができる。
【0011】
ここで、請求項2にかかる発明は、請求項1に記載の車両用無段変速機の変速制御装置において、前記所定変速比は、前記最大変速比に所定値を加えた値である。このようにすれば、無段変速機や変速制御装置等のハードにばらつきがあったとしても、実際の変速比を一層確実に最大変速比とすることができる。
【0012】
ここで、好適には、前述無段変速機は、前記無段変速機は、動力伝達部材として機能する伝動ベルトが有効径が可変である一対の可変プーリに巻き掛けられ変速比が無段階に連続的に変化させられる形式のベルト式無段変速機、共通の軸心まわりに回転させられる一対のコーン部材とその軸心と交差する回転中心回転可能な複数個のローラがそれら一対のコーン部材の間で挟圧されそのローラの回転中心と軸心との交差角が変化させられることによって変速比が連続的に変化させられる形式のトロイダル型無段変速機等により構成される。
【0013】
また、好適には、前記車速関連値とは、車両の速度である車速に1対1に対応する関連値(相当値)であって、車速関連値としてその車速はもちろんのことその他に、例えば前記出力回転速度、車軸の回転速度、プロペラシャフトの回転速度、差動歯車装置の出力軸の回転速度などが用いられる。
【発明を実施するための最良の形態】
【0014】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
【実施例】
【0015】
図1は、本発明が適用された車両用駆動装置10の構成を説明する骨子図である。この車両用駆動装置10は横置き型自動変速機であって、FF(フロントエンジン・フロントドライブ)型車両に好適に採用されるものであり、走行用の動力源としてエンジン12を備えている。内燃機関にて構成されているエンジン12の出力は、エンジン12のクランク軸、流体式伝動装置としてのトルクコンバータ14から前後進切換装置16、ベルト式の無段変速機(CVT)18、減速歯車装置20を介して差動歯車装置22に伝達され、左右の駆動輪24L、24Rへ分配される。
【0016】
トルクコンバータ14は、エンジン12のクランク軸に連結されたポンプ翼車14p、およびトルクコンバータ14の出力側部材に相当するタービン軸34を介して前後進切換装置16に連結されたタービン翼車14tを備えており、流体を介して動力伝達を行うようになっている。また、それ等のポンプ翼車14pおよびタービン翼車14tの間にはロックアップクラッチ26が設けられており、油圧制御回路100(図2、図3参照)内の図示しないロックアップコントロールバルブ(L/C制御弁)などによって係合側油室および解放側油室に対する油圧供給が切り換えられることにより、係合または解放されるようになっており、完全係合させられることによってポンプ翼車14pおよびタービン翼車14tは一体回転させられる。ポンプ翼車14pには、無段変速機18を変速制御したりベルト挟圧力を発生させたり、ロックアップクラッチ26を係合解放制御したり、或いは各部に潤滑油を供給したりするための油圧をエンジン12により回転駆動されることにより発生する機械式のオイルポンプ28が連結されている。
【0017】
前後進切換装置16は、ダブルピニオン型の遊星歯車装置を主体として構成されており、トルクコンバータ14のタービン軸34はサンギヤ16sに一体的に連結され、無段変速機18の入力軸36はキャリア16cに一体的に連結されている一方、キャリア16cとサンギヤ16sは前進用クラッチC1を介して選択的に連結され、リングギヤ16rは後進用ブレーキB1を介してハウジングに選択的に固定されるようになっている。前進用クラッチC1および後進用ブレーキB1は断続装置に相当するもので、何れも油圧シリンダによって摩擦係合させられる油圧式摩擦係合装置である。
【0018】
そして、前進用クラッチC1が係合させられるとともに後進用ブレーキB1が解放されると、前後進切換装置16は一体回転状態とされることによりタービン軸34が入力軸36に直結され、前進用動力伝達経路が成立(達成)させられて、前進方向の駆動力が無段変速機18側へ伝達される。また、後進用ブレーキB1が係合させられるとともに前進用クラッチC1が解放されると、前後進切換装置16は後進用動力伝達経路が成立(達成)させられて、入力軸36はタービン軸34に対して逆方向へ回転させられるようになり、後進方向の駆動力が無段変速機18側へ伝達される。また、前進用クラッチC1および後進用ブレーキB1が共に解放されると、前後進切換装置16は動力伝達を遮断するニュートラル(遮断状態)になる。
【0019】
無段変速機18は、入力軸36に設けられた入力側部材である有効径が可変の入力側可変プーリ(プライマリプーリ)42と、出力軸44に設けられた出力側部材である有効径が可変の出力側可変プーリ(セカンダリプーリ)46と、それ等の可変プーリ42、46に巻き掛けられた伝動ベルト48とを備えており、可変プーリ42、46と伝動ベルト48との間の摩擦力を介して動力伝達が行われる。
【0020】
可変プーリ42および46は、入力軸36および出力軸44にそれぞれ固定された固定回転体である入力側固定シーブ42aおよび出力側固定シーブ46aと、入力軸36および出力軸44に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた可動回転体である入力側可動シーブ42bおよび出力側可動シーブ46bと、それらの間のV溝幅を変更する推力を付与する油圧アクチュエータとしての入力側油圧シリンダ(プライマリプーリ側油圧シリンダ)42cおよび出力側油圧シリンダ(セカンダリプーリ側油圧シリンダ)46cとを備えて構成されており、入力側油圧シリンダ42cへの作動油の供給排出流量が油圧制御回路100によって制御されることにより、両可変プーリ42、46のV溝幅が変化して伝動ベルト48の掛かり径(有効径)が変更され、変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が連続的に変化させられる。また、出力側油圧シリンダ46cの油圧(ベルト挟圧Pd)が油圧制御回路100によって調圧制御されることにより、伝動ベルト48が滑りを生じないようにベルト挟圧力が制御される。このような制御の結果として、入力側油圧シリンダ42cの油圧(変速制御圧Pin)が生じるのである。
【0021】
図2は、図1の車両用駆動装置10などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。電子制御装置50は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御や無段変速機18の変速制御およびベルト挟圧力制御やロックアップクラッチ26のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用や無段変速機18およびロックアップクラッチ26の油圧制御用等に分けて構成される。
【0022】
電子制御装置50には、エンジン回転速度センサ52により検出されたクランク軸回転角度(位置)ACR(°)およびエンジン12の回転速度(エンジン回転速度)Nに対応するクランク軸回転速度を表す信号、タービン回転速度センサ54により検出されたタービン軸34の回転速度(タービン回転速度)Nを表す信号、入力軸回転速度センサ56により検出された無段変速機18の入力回転速度である入力側可変プーリ42の回転速度(入力側可変プーリ回転速度)すなわち入力軸36の回転速度(入力軸回転速度)NINを表す信号、電磁ピックアップ式の出力軸回転速度センサ58により検出された無段変速機18の出力回転速度である出力側可変プーリ46の回転速度(出力側可変プーリ回転速度)すなわち車速Vに関連する車速関連値に対応する出力軸44の回転速度(出力軸回転速度)NOUTを表す信号、スロットルセンサ60により検出されたエンジン12の吸気配管32(図1参照)に備えられた電子スロットル弁30のスロットル弁開度θTHを表すスロットル弁開度信号、冷却水温センサ62により検出されたエンジン12の冷却水温Tを表す信号、CVT油温センサ64により検出された無段変速機18等の作動油温度(油温)TCVTを表す信号、アクセル開度センサ66により検出されたアクセルペダル68の操作量であるアクセル開度Accを表すアクセル開度信号、フットブレーキスイッチ70により検出された常用ブレーキであるフットブレーキの操作の有無BONを表すブレーキ操作信号、レバーポジションセンサ72により検出されたシフトレバー74のレバーポジション(操作位置)PSHを表す操作位置信号などが供給されている。
【0023】
また、電子制御装置50からは、エンジン12の出力制御の為のエンジン出力制御指令信号S、例えば電子スロットル弁30の開閉を制御するためのスロットルアクチュエータ76を駆動するスロットル信号や燃料噴射装置78から噴射される燃料の量を制御するための噴射信号や点火装置80によるエンジン12の点火時期を制御するための点火時期信号などが出力される。また、無段変速機18の変速比γを変化させる為の変速制御指令信号S例えば入力側油圧シリンダ42cへの作動油の流量を制御するソレノイド弁DS1およびソレノイド弁DS2を駆動するための指令信号、伝動ベルト48の挟圧力を調整させる為の挟圧力制御指令信号S例えばベルト挟圧Pdを調圧するリニアソレノイド弁SLSを駆動するための指令信号、ライン油圧Pを制御させる為のライン油圧制御指令信号SPL例えばライン油圧Pを調圧するリニアソレノイド弁SLTを駆動するための指令信号などが油圧制御回路100へ出力される。
【0024】
シフトレバー74は、例えば運転席の近傍に配設され、順次位置させられている5つのレバーポジション「P」、「R」、「N」、「D」、および「L」(図3参照)のうちの何れかへ手動操作されるようになっている。
【0025】
「P」ポジション(レンジ)は車両用駆動装置10の動力伝達経路を解放しすなわち車両用駆動装置10の動力伝達が遮断されるニュートラル状態(中立状態)とし且つメカニカルパーキング機構によって機械的に出力軸44の回転を阻止(ロック)するための駐車ポジション(位置)であり、「R」ポジションは出力軸44の回転方向を逆回転とするための後進走行ポジション(位置)であり、「N」ポジションは車両用駆動装置10の動力伝達が遮断されるニュートラル状態とするための中立ポジション(位置)であり、「D」ポジションは無段変速機18の変速を許容する変速範囲で自動変速モードを成立させて自動変速制御を実行させる前進走行ポジション(位置)であり、「L」ポジションは強いエンジンブレーキが作用させられるエンジンブレーキポジション(位置)である。このように、「P」ポジションおよび「N」ポジションは車両を走行させないときに選択される非走行ポジションであり、「R」ポジション、「D」ポジションおよび「L」ポジションは車両を走行させるときに選択される走行ポジションである。
【0026】
図3は、油圧制御回路100のうち無段変速機18のベルト挟圧力制御および変速比制御に関する要部を示す油圧回路図である。図3において、油圧制御回路100は、伝動ベルト48が滑りを生じないように出力側油圧シリンダ46cの油圧であるベルト挟圧Pdを調圧する挟圧力コントロールバルブ110、無段変速機18の変速を行うために入力側油圧シリンダ42cに給排される作動油量を調整する変速制御弁、すなわち変速比γが連続的に変化させられるように入力側油圧シリンダ42cへの作動油の流量を制御する変速比コントロールバルブUP114および変速比コントロールバルブDN116等を備えている。その他図示しないが、前進用クラッチC1および後進用ブレーキB1が係合或いは解放されるようにシフトレバー74の操作に従って油路が機械的に切り換えられるマニュアルバルブ等を備えている。
【0027】
ライン油圧Pは、エンジン12により回転駆動される機械式のオイルポンプ28(図1参照)から出力(発生)される作動油圧を元圧として、例えばリリーフ型のプライマリレギュレータバルブ(ライン油圧調圧弁)によりリニアソレノイド弁SLTの出力油圧である制御油圧PSLTに基づいてエンジン負荷等に応じた値に調圧されるようになっている。
【0028】
モジュレータ油圧Pは、制御油圧PSLTおよびリニアソレノイド弁SLSの出力油圧である制御油圧PSLSの元圧となるものであると共に、電子制御装置50によってデューティ制御されるノーマルクローズ型のソレノイド弁DS1の出力油圧である制御油圧PDS1およびノーマルクローズ型のソレノイド弁DS2の出力油圧である制御油圧PDS2の元圧となるものであって、ライン油圧Pを元圧としてモジュレータバルブ120により一定圧に調圧されるようになっている。
【0029】
前記変速比コントロールバルブUP114は、軸方向へ移動可能に設けられることによりライン油圧Pを入力ポート114iから入出力ポート114jを経て入力側可変プーリ42へ供給可能且つ入出力ポート114kを閉弁するアップシフト位置と入力側可変プーリ42が入出力ポート114jを介して入出力ポート114kと連通させられる原位置とに位置させられるスプール弁子114aと、そのスプール弁子114aを原位置側に向かって付勢する付勢手段としてのスプリング114bと、そのスプリング114bを収容し且つスプール弁子114aに原位置側に向かう推力を付与するために制御油圧PDS2を受け入れる油室114cと、スプール弁子114aにアップシフト位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室114dとを備えている。
【0030】
また、変速比コントロールバルブDN116は、軸方向へ移動可能に設けられることにより入出力ポート116jが排出ポートEXと連通させられるダウンシフト位置と入出力ポート116jと排出ポートEXとの連通が遮断させられる原位置とに位置させられるスプール弁子116aと、そのスプール弁子116aを原位置側に向かって付勢する付勢手段としてのスプリング116bと、そのスプリング116bを収容し且つスプール弁子116aに原位置側に向かう推力を付与するために制御油圧PDS1を受け入れる油室116cと、スプール弁子116aにダウンシフト位置側に向かう推力を付与するために制御油圧PDS2を受け入れる油室116dとを備えている。
【0031】
このように構成された変速比コントロールバルブUP114および変速比コントロールバルブDN116において、中心線より左側半分に示すようにスプール弁子114aがスプリング114bの付勢力に従って原位置に保持されている状態では、入出力ポート114jと入出力ポート114kとが連通させられ、入力側可変プーリ42(入力側油圧シリンダ42c)の作動油が入出力ポート116jへ流通することが許容される。また、中心線より右側半分に示すようにスプール弁子116aがスプリング116bの付勢力に従って原位置に保持されている状態では、入出力ポート116jと排出ポートEXとの連通が遮断させられ、入出力ポート116jから排出ポートEXへの作動油の流通が阻止される。
【0032】
また、制御油圧PDS1が油室114dへ供給されると、中心線より右側半分に示すようにスプール弁子114aがその制御油圧PDS1に応じた推力によりスプリング114bの付勢力に抗してアップシフト位置側へ移動させられ、ライン油圧Pが制御油圧PDS1に対応する流量で入力ポート114iから入出力ポート114jを経て入力側油圧シリンダ42cへ供給されると共に、入出力ポート114kが遮断されて変速比コントロールバルブDN116側への作動油の流通が阻止される。これにより、入力側油圧シリンダ42c内の流量が増大させられ、入力側油圧シリンダ42cにより入力側可動シーブ42bのシーブ位置Xが入力側固定シーブ42a側へ移動させられ、入力側可変プーリ42のV溝幅が狭くされて変速比γが小さくされるすなわち無段変速機18がアップシフトされる。尚、このとき出力側可変プーリ46のV溝幅が広くされるが、後述するように挟圧力コントロールバルブ110により伝動ベルト48が滑りを生じないように出力側油圧シリンダ46cのベルト挟圧Pdが調圧させられる。
【0033】
また、制御油圧PDS2が油室116dへ供給されると、中心線より左側半分に示すようにスプール弁子116aがその制御油圧PDS2に応じた推力によりスプリング116bの付勢力に抗してダウンシフト位置側へ移動させられ、入力側油圧シリンダ42cの作動油が制御油圧PDS2に対応する流量で入出力ポート114jから入出力ポート114kさらに入出力ポート116jを経て排出ポートEXから例えば大気圧油路へ排出される。これにより、入力側油圧シリンダ42c内の流量が減少させられ、入力側油圧シリンダ42cにより入力側可動シーブ42bのシーブ位置Xが入力側固定シーブ42aとは反対側へ移動させられ、入力側可変プーリ42のV溝幅が広くされて変速比γが大きくされるすなわち無段変速機18がダウンシフトされる。尚、このとき出力側可変プーリ46のV溝幅が狭くされ、後述するように挟圧力コントロールバルブ110により伝動ベルト48が滑りを生じないように出力側油圧シリンダ46cのベルト挟圧Pdが調圧させられる。
【0034】
このように、ライン油圧Pは変速制御圧Pinの元圧となるものであって、制御油圧PDS1が出力されると変速比コントロールバルブUP114に入力されたライン油圧Pが入力側油圧シリンダ42cへ供給されて変速制御圧Pinが高められて連続的にアップシフトされ、制御油圧PDS2が出力されると入力側油圧シリンダ42cの作動油が排出ポートEXから排出されて変速制御圧Pinが低められて連続的にダウンシフトされる。
【0035】
前記シーブ位置Xは、変速比γが1であるときの入力側可動シーブ42bの位置を基準位置すなわちシーブ位置X=0として、軸と平行方向におけるその基準位置からの入力側可動シーブ42bの絶対位置を表すものである。例えば、入力側可変プーリ42のV溝幅が広くされる側を正(+)とし、入力側可変プーリ42のV溝幅が狭くされる側を負(−)とする(図1参照)。
【0036】
また、制御油圧PDS1は変速比コントロールバルブDN116の油室116cに供給され、制御油圧PDS2に拘らずその変速比コントロールバルブDN116を原位置に保持してダウンシフトを制限する一方、制御油圧PDS2は変速比コントロールバルブUP114の油室114cに供給され、制御油圧PDS1に拘らずその変速比コントロールバルブUP114を原位置に保持してアップシフトを禁止するようになっている。つまり、制御油圧PDS1および制御油圧PDS2が共に供給されないときはもちろんであるが、制御油圧PDS1および制御油圧PDS2が共に供給されるときにも、変速比コントロールバルブUP114および変速比コントロールバルブDN116は何れも原位置に保持されている状態とされる。これにより、電気系統の故障などでソレノイド弁DS1、DS2の一方が機能しなくなり、制御油圧PDS1または制御油圧PDS2が最大圧で出力され続けるオンフェール時となった場合でも、急なアップシフトやダウンシフトが生じたり、その急変速に起因してベルト滑りが発生したりすることが防止される。
【0037】
前記挟圧力コントロールバルブ110は、入力ポート110iを開閉してライン油圧Pを入力ポート110iから出力ポート110tを経て出力側可変プーリ46(出力側油圧シリンダ46c)へベルト挟圧Pdを供給可能にする図示しないスプール弁子と、そのスプール弁子を開弁方向へ付勢する付勢手段としてのスプリング110bと、スプール弁子に開弁方向の推力を付与するために制御油圧PSLSを受け入れる油室110cと、スプール弁子に閉弁方向の推力を付与するために出力ポート110tから出力されたベルト挟圧Pdを受け入れるフィードバック油室110dとを備えている。
【0038】
このように構成された挟圧力コントロールバルブ110において、伝動ベルト48が滑りを生じないように制御油圧PSLSをパイロット圧としてライン油圧Pが連続的に調圧制御されることにより、出力ポート110tからベルト挟圧Pdが出力される。このように、ライン油圧Pはベルト挟圧Pdの元圧となるものである。尚、出力ポート110tと出力側油圧シリンダ46cとの間の油路には油圧センサ122が設けられており、この油圧センサ122によりベルト挟圧Pdが検出される。
【0039】
図4は、電子制御装置50による制御機能の要部を説明する機能ブロック線図である。
【0040】
図4において、目標シーブ位置設定手段150は、無段変速機18を変速制御するための目標値として目標シーブ位置Xtを設定する。具体的には、目標シーブ位置設定手段150は、入力軸回転速度NINの目標入力軸回転速度NINを設定する目標入力回転設定手段152と、目標入力軸回転速度NINを目標変速比γに変換する目標変速比設定手段154とを備え、目標変速比γをシーブ位置Xに変換して目標シーブ位置Xtを設定する。
【0041】
例えば、前記目標入力回転設定手段152は、図5に示すようなアクセル開度Accをパラメータとして車速関連値例えば出力軸回転速度NOUTと無段変速機18の目標入力回転速度である目標入力軸回転速度NINとの予め定められて記憶された関係(変速マップ)から実際の出力軸回転速度NOUTおよびアクセル開度Accで示される車両状態に基づいて目標入力軸回転速度NINを設定する。
【0042】
また、前記目標変速比設定手段154は、前記目標入力回転設定手段152により設定された目標入力軸回転速度NINと実際の出力軸回転速度NOUTとに基づいて目標変速比γ(=NIN/NOUT)を設定(算出)する。
【0043】
また、前記目標シーブ位置設定手段150は、図6に示すような変速比γとその変速比γに対して一義的に定まるシーブ位置Xとの予め定められて記憶された関係(シーブ位置マップ)から前記目標変速比設定手段154により設定された目標変速比γに基づいて目標シーブ位置Xtを設定する。
【0044】
ここで、本実施例の変速制御においては、無段変速機18を変速制御するための目標値として上記目標シーブ位置Xtを設定し、実際のシーブ位置(以下、実シーブ位置という)Xを目標シーブ位置Xtとなるように制御することによって、すなわち目標シーブ位置Xtと実シーブ位置Xとの制御偏差ΔX(=Xt−X)に基づくフィードバック制御を実行することによって、実際の変速比(以下、実変速比という)γが目標変速比γとなるように変速を行うものである。以下に、そのフィードバック制御について詳細に説明する。
【0045】
フィードバック出力流量算出手段156は、前記目標シーブ位置設定手段150により設定された目標シーブ位置Xtと実シーブ位置Xとの制御偏差ΔXに基づいてフィードバック制御の実行に必要なフィードバック補正量としてのフィードバック出力流量QFBを算出する。すなわち、無段変速機18の変速制御に必要な変速制御量としての変速制御弁(変速比コントロールバルブUP114および変速比コントロールバルブDN116)の出力流量QFBを算出する。
【0046】
例えば、フィードバック出力流量算出手段156、次式(1)に従ってフィードバック出力流量QFBを算出する。尚、ΔX(i)(=Xt(i)−X(i))は繰り返し実行される制御作動(図10参照)におけるi回目の目標シーブ位置Xtと実シーブ位置Xとの制御偏差ΔXであり、Cはフィードバックゲインである。また、上記実シーブ位置Xは、例えば前記シーブ位置マップから電子制御装置50によって算出される実変速比γ(=実際の入力軸回転速度NIN/実際の出力軸回転速度NOUT)に基づいて算出される。
FB(i)=C×ΔX(i)+C×∫dΔX(i)dt ・・・(1)
【0047】
推定差圧算出手段158は、変速制御弁(変速比コントロールバルブUP114および変速比コントロールバルブDN116)の前後差圧の推定値(以下、推定バルブ差圧という)ΔPを算出する。この変速制御弁の前後差圧は、例えばアップシフト時では上流側油圧であるライン油圧Pと下流側油圧である変速制御圧Pinとの差圧(=P−Pin)であり、また変速比コントロールバルブDN116の排出ポートEXを介して大気圧への排出となるダウンシフト時では変速制御圧Pinである。具体的には、推定差圧算出手段158は、変速制御圧Pinの推定値(以下、推定Pin圧という)を算出する推定Pin算出手段160と、実際のライン油圧Pの推定値(以下、推定ライン油圧という)を算出する推定P算出手段162とを備え、その推定Pin圧と推定ライン油圧とに基づいて推定バルブ差圧ΔPを算出する。
【0048】
例えば、前記推定Pin算出手段160は、次式(2)〜(4)に従って推定Pin圧を算出する。尚、kINは入力側油圧シリンダ42cの遠心油圧係数、a、b、c、dは実験的に求められた係数、TINは無段変速機18への入力トルク、Pdは油圧センサ122により検出されたベルト挟圧、kOUTは出力側油圧シリンダ46cの遠心油圧係数である。
推定Pin圧=(WIN−kIN×NIN)/SIN ・・・(2)
IN=WOUT/(a+b×log10γ+c×TIN+d×NIN) ・・・(3)
OUT=Pd×SOUT+kOUT×NOUT ・・・(4)
【0049】
また、上記入力トルクTINは、エンジントルク推定値TE0、トルクコンバータ14のトルク比t、および入力慣性トルク等から算出される。例えば、このエンジントルク推定値TE0はスロットル弁開度θTHをパラメータとしてエンジン回転速度Nとエンジントルク推定値TE0との予め実験的に求めて記憶された図示しない関係(エンジントルクマップ)から実際のエンジン回転速度Nおよびスロットル弁開度θTHに基づいて算出され、トルク比tは(NIN/N)の関数であり、入力慣性トルクは入力軸回転速度NINの時間変化量から算出される。
【0050】
また、前記推定P算出手段162は、例えばライン油圧制御指令信号SPLとライン油圧Pとの予め実験的に求められて記憶された図示しない関係(ライン油圧特性)から電子制御装置50により出力されているライン油圧制御指令信号SPLに基づいて推定ライン油圧を算出する。
【0051】
また、前記推定差圧算出手段158は、前記推定P算出手段162により算出された推定ライン油圧と前記推定Pin算出手段160により算出された推定Pin圧とに基づいて、推定バルブ差圧ΔP(アップシフト時は推定ライン油圧−推定Pin圧、ダウンシフト時は推定Pin圧)を算出する。
【0052】
変速制御手段164は、前記フィードバック出力流量算出手段156により算出されたフィードバック出力流量QFBが得られる為の変速指令値としての変速制御指令信号Sを算出し、その変速制御指令信号Sを油圧制御回路100へ出力して無段変速機18の変速を実行する。例えば、変速制御手段164は、図7に示すような流量Qをパラメータとして推定バルブ差圧ΔPと変速制御指令信号SとしてのDuty値(駆動指令値)との予め実験的に求められて記憶された関係(逆変換流量マップ)から上記フィードバック出力流量QFBおよび前記推定差圧算出手段158により算出された推定バルブ差圧ΔPに基づいてDuty値を設定し、そのDuty値を油圧制御回路100へ出力して変速比γを連続的に変化させる。
【0053】
ベルト挟圧力設定手段166は、例えば図8に示すような伝達トルクに対応するアクセル開度Accをパラメータとして変速比γとベルト挟圧力Pdとのベルト滑りが生じないように予め実験的に求められて記憶された関係(ベルト挟圧力マップ)から実変速比γおよびアクセル開度Accで示される車両状態に基づいてベルト挟圧力Pdを設定する。つまり、ベルト挟圧力設定手段166は、ベルト挟圧力Pdが得られる為の出力側油圧シリンダ46cのベルト挟圧Pdを設定する。
【0054】
ベルト挟圧力制御手段168は、出力側油圧シリンダ46cのベルト挟圧Pdを前記ベルト挟圧力設定手段166により設定されたベルト挟圧力Pdが得られる為のベルト挟圧Pdに調圧する挟圧力制御指令信号Sを油圧制御回路100へ出力してベルト挟圧力Pdすなわち可変プーリ42、46と伝動ベルト48との間の摩擦力を増減させる。
【0055】
油圧制御回路100は、上記変速制御指令信号Sに従って無段変速機18の変速が実行されるようにソレノイド弁DS1およびソレノイド弁DS2を作動させて入力側油圧シリンダ42cへの作動油の供給・排出量を制御すると共に、上記挟圧力制御指令信号Sに従ってベルト挟圧力Pdが増減されるようにリニアソレノイド弁SLSを作動させてベルト挟圧Pdを調圧する。
【0056】
エンジン出力制御手段170は、エンジン12の出力制御の為にエンジン出力制御指令信号S、例えばスロットル信号や噴射信号や点火時期信号などをそれぞれスロットルアクチュエータ76や燃料噴射装置78や点火装置80へ出力する。例えば、エンジン出力制御手段170は、アクセル開度Accに応じたスロットル開度θTHとなるように電子スロットル弁30を開閉するスロットル信号をスロットルアクチュエータ76へ出力してエンジントルクTを制御する。
【0057】
ところで、上述したように目標シーブ位置Xtは目標変速比γに基づいて求められ、その目標変速比γを設定するに当たっては出力軸回転速度センサ58により検出される実際の出力軸回転速度NOUTが用いられることから、出力軸回転速度センサ58の特性上、実際の出力軸回転速度NOUTが極低回転速度領域にある場合には、出力軸回転速度NOUTの検出精度それ自体が悪化する可能性がある。つまり、出力軸回転速度センサ58には良く知られた電磁ピックアップ式回転速度センサが用いられており、実際の出力軸回転速度NOUTが極めて零に近い極低回転速度領域にある場合には所定時間内のパルス信号の数にばらつきが生じたり、パルス信号の出力タイミングが遅くなったりして検出精度自体が悪化する可能性がある。
【0058】
そうすると、例えば目標変速比γとして最大変速比γmaxが算出される出力軸回転速度NOUTの極低回転速度領域において、検出される出力軸回転速度NOUTの変動によって算出される目標変速比γが振動的になってしまい、実変速比γが最大変速比γmaxとなるように変速が実行される際の変速制御性が悪化する可能性がある。
【0059】
そこで、本実施例では、前記目標変速比設定手段154は、出力軸回転速度NOUTの極低回転速度領域では、目標入力軸回転速度NINと実際の出力軸回転速度NOUTとに基づいて目標変速比γを算出することに替えて、目標変速比γとして実変速比γを最大変速比γmaxとするための所定変速比γ’を設定する。
【0060】
上述した出力軸回転速度NOUTの極低回転速度領域は、例えば前記図5に示すような変速マップ上で目標変速比γとして最大変速比γmaxが算出される出力軸回転速度NOUTの領域、すなわち変速マップ上において最小変速比γminと最大変速比γmaxとの間で変速比γが変化させられ得る無段変速機18の変速範囲Hのうちで出力軸回転速度NOUTが最小となる変速開始回転速度N1より小さい出力軸回転速度NOUTの領域である。
【0061】
このように、上記変速開始回転速度N1は、出力軸回転速度センサ58による出力軸回転速度NOUTの検出精度が悪化する出力軸回転速度NOUTの極低回転速度領域を判定するための、また変速マップ上で目標変速比γとして最大変速比γmaxが算出される出力軸回転速度NOUTの領域を判定するための、予め実験的に求められて記憶された定数値(一定値)であって、例えばコースト走行時または微速走行時における10km/h程度以下の車速Vに相当する出力軸回転速度NOUTに設定されている。
【0062】
また、前記所定変速比γ’としては、例えば最大変速比γmaxが設定されたり、最大変速比γmaxに所定値αを加えた値が設定される。この所定値αは、電子制御装置50や無段変速機18や油圧制御回路100等のハードのばらつきを考慮して実変速比γがフィードバック制御により確実に最大変速比γmaxとされるための予め実験的に求められて記憶された値であって、例えば0.1程度に設定される。
【0063】
図9は、前記図5における出力軸回転速度NOUTの低回転速度領域且つ目標入力軸回転速度NINの低回転速度領域に相当する領域を拡大した図であって、上記出力軸回転速度NOUTの極低回転速度領域を説明する為の図である。図9において、斜線部分は無段変速機18の上記変速範囲Hであり、回転速度NINLはエンジン12の性能と無段変速機18の制御上の制約とから予め定められる最低エンジン回転速度に相当する目標入力軸回転速度NINの最低回転速度であり、変速開始回転速度N1より小さい出力軸回転速度NOUTの領域Aが目標変速比γとして所定変速比γ’(=最大変速比γmax+α)が設定される出力軸回転速度NOUTの極低回転速度領域である。仮に、回転速度NINLが1000rpm程度、最大変速比γmaxが2.5程度であるなら、変速開始回転速度N1は400rpm程度とされる。
【0064】
車速関連値判定手段としての出力回転速度判定手段172は、出力軸回転速度NOUTが所定車速関連値としての変速開始回転速度N1より小さいか否かを判定する。
【0065】
前記目標変速比設定手段154は、前記出力回転速度判定手段172により出力軸回転速度NOUTが変速開始回転速度N1以上であると判定されたときは、目標入力軸回転速度NINと実際の出力軸回転速度NOUTとに基づいて目標変速比γを算出する一方で、出力回転速度判定手段172により出力軸回転速度NOUTが変速開始回転速度N1より小さいと判定されたときは、目標変速比γとして前記所定変速比γ’を設定する。
【0066】
図10は、電子制御装置50の制御作動の要部すなわち無段変速機18の変速に際して出力軸回転速度NOUTの検出精度が悪化する極低回転速度領域であっても目標変速比γを適切に設定して変速制御性を向上する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
【0067】
図10において、先ず、前記出力回転速度判定手段172に対応するステップ(以下、ステップを省略する)S1において、実際の出力軸回転速度NOUTが予め定められて記憶された定数値である変速開始回転速度N1より小さいか否かが判定される。
【0068】
実際の出力軸回転速度NOUTが変速開始回転速度N1より小さいと判定されて前記S1の判断が肯定されると前記目標変速比設定手段154に対応するS2において、目標変速比γとして前記所定変速比γ’(=最大変速比γmax+α)が設定される。
【0069】
実際の出力軸回転速度NOUTが変速開始回転速度N1以上であると判定されて前記S1の判断が否定されると前記目標変速比設定手段154に対応するS3において、目標入力軸回転速度NINと実際の出力軸回転速度NOUTとに基づいて目標変速比γ(=NIN/NOUT)が設定(算出)される。
【0070】
上述のように、本実施例によれば、出力回転速度判定手段172により出力軸回転速度NOUTが変速開始回転速度N1より小さいと判定された場合には、目標変速比設定手段154により目標入力軸回転速度NINと実際の出力軸回転速度NOUTとに基づいて目標変速比γが算出されることに替えて、その目標変速比設定手段154により目標変速比γとして実際の変速比γを最大変速比γmaxとするための所定変速比γ’が設定されるので、実際の出力軸回転速度NOUTが変速開始回転速度N1より小さくなって出力軸回転速度NOUTの検出精度が悪化する極低回転速度領域であっても、実変速比γが確実に最大変速比γmaxとなるよう変速制御を実行することができて、変速制御性を向上することができる
【0071】
また、本実施例によれば、上記所定変速比γ’は最大変速比γmaxに所定値αを加えた値に設定されるので、電子制御装置50や無段変速機18や油圧制御回路100等のハードにばらつきがあったとしても、実変速比γを一層確実に最大変速比γmaxとすることができる。
【0072】
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0073】
例えば、前述の実施例では、目標シーブ位置Xtと実シーブ位置Xとの制御偏差ΔXに基づくフィードバック制御により無段変速機18の変速が実行されたが、シーブ位置X(目標シーブ位置Xt)と1対1に対応する実変速比γと目標変速比γとの制御偏差に基づくフィードバック制御により無段変速機18の変速が実行されても良い。
【0074】
また、前述の実施例では、フィードバック制御により無段変速機18の変速が行われる変速制御装置を説明したが、フィードバック制御にフィードフォワード制御を加えることにより無段変速機18の変速が行われる変速制御装置であったり、フィードバック制御に替えてフィードフォワード制御により無段変速機18の変速が行われる変速制御装置であっても本発明は適用され得る。
【0075】
また、前述の実施例では、推定Pin算出手段160による推定Pin圧の算出に際して、ベルト挟圧Pdとして、油圧センサ122により検出されるベルト挟圧Pdを用いたが、ベルト挟圧力設定手段166により設定されたベルト挟圧Pdを用いてもよい。尚、ベルト挟圧Pdとして、油圧センサ122により検出されるベルト挟圧Pdを用いない場合には、この油圧センサ122は必ずしも備えられなくとも良い。
【0076】
また、前述の実施例における入力軸回転速度NINやそれに関連する目標入力軸回転速度NINなどは、それら入力軸回転速度NINなどに替えて、エンジン回転速度Nやそれに関連する目標エンジン回転速度Nなど、或いはタービン回転速度Nやそれに関連する目標タービン回転速度Nなどであっても良い。
【0077】
また、前述の実施例において、流体伝動装置としてロックアップクラッチ26が備えられているトルクコンバータ14が用いられていたが、ロックアップクラッチ26は必ずしも設けられなくてもよく、またトルクコンバータ14に替えて、トルク増幅作用のない流体継手(フルードカップリング)などの他の流体式動力伝達装置が用いられてもよい。
【0078】
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【図面の簡単な説明】
【0079】
【図1】本発明が適用された車両用駆動装置を説明する骨子図である。
【図2】図1の車両用駆動装置などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。
【図3】油圧制御回路のうち無段変速機のベルト挟圧力制御および変速比制御に関する要部を示す油圧回路図である。
【図4】図2の電子制御装置の制御機能の要部を説明する機能ブロック線図である。
【図5】無段変速機の変速制御において目標入力回転速度を求める際に用いられる変速マップの一例を示す図である。
【図6】無段変速機の変速制御において目標変速比に基づいて目標シーブ位置を設定する際に用いられるシーブ位置マップの一例を示す図である。
【図7】出力流量に基づいて変速制御弁を駆動するためのDuty値を設定する際に用いられる逆変換流量マップの一例を示す図である。
【図8】無段変速機の挟圧力制御において変速比等に応じてベルト挟圧力を求めるベルト挟圧力マップの一例を示す図である。
【図9】図5における出力軸回転速度の低回転速度領域且つ目標入力軸回転速度の低回転速度領域に相当する領域を拡大した図であって、出力軸回転速度の極低回転速度領域を説明する為の図である。
【図10】図2の電子制御装置の制御作動の要部すなわち無段変速機の変速に際して出力軸回転速度の検出精度が悪化する極低回転速度領域であっても目標変速比を適切に設定して変速制御性を向上する為の制御作動を説明するフローチャートである。
【符号の説明】
【0080】
18:無段変速機
50:電子制御装置(変速制御装置)
154:目標変速比設定手段
172:出力回転速度判定手段(車速関連値判定手段)

【特許請求の範囲】
【請求項1】
無段変速機が配設された車両において、目標入力回転速度と検出された出力回転速度とに基づいて目標変速比を算出し、実際の変速比が該目標変速比となるように変速を行う車両用無段変速機の変速制御装置であって、
車速関連値が所定車速関連値より小さいか否かを判定する車速関連値判定手段と、
前記車速関連値判定手段により前記車速関連値が所定車速関連値より小さいと判定された場合には、前記目標変速比を算出することに替えて、該目標変速比として前記実際の変速比を最大変速比とするための所定変速比を設定する目標変速比設定手段と
を、含むことを特徴とする車両用無段変速機の変速制御装置。
【請求項2】
前記所定変速比は、前記最大変速比に所定値を加えた値である請求項1の車両用無段変速機の変速制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2008−75736(P2008−75736A)
【公開日】平成20年4月3日(2008.4.3)
【国際特許分類】
【出願番号】特願2006−255053(P2006−255053)
【出願日】平成18年9月20日(2006.9.20)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】