説明

輸送機械用骨格構造部材及びその製造方法

輸送機械の骨格部材(11)内及び/又は骨格部材とその周囲のパネル部材とで囲まれる空間に、複数の粉粒体(18)を結合して固めた固形化粉粒体(16)を配置した骨格構造部材(12)が提供される。固形化粉粒体は、各粉粒体同士が表面融解にて結合するとともに膨張により内圧を発生させる。

【発明の詳細な説明】
【技術分野】
本発明は、鉄道車両、産業車両、船舶、航空機、自動車、自動二輪車等の輸送機械用骨格構造部材及びその製造方法に関する。
【背景技術】
骨格構造部材として、骨格部材に粉粒体を充填した技術が、例えば、特開2002−193649公報、米国特許第4610836号明細書、米国特許第4695343号明細書において知られている。
図16は、特開2002−193649公報に開示された骨格構造部材を構成する固形化粉粒体を示している。
この固形化粉粒体200は、粉粒体201と、これらの粉粒体201を固形にするために粉粒体201のそれぞれの間に満たした樹脂、接着剤等のバインダ202とで構成され、粉粒体201を構造的に密に型に投入した後、バインダ202を流し込んで形成する。この固形化粉粒体200は、車体等の骨格部材内に挿入することで骨格構造部材を形成するものであり、車体の強度、剛性の向上を図る。
図17は、米国特許第4610836号明細書、及び米国特許第4695343号明細書に開示された骨格構造部材を構成する固形化粉粒体を示している。
この固形化粉粒体210は、接着剤211をコーティングした粉粒体としてのガラス製の小球体212からなる。これらの小球体212をガラス繊維製のクロスで包み、骨格部材内に満たすことで骨格構造部材が形成される。
しかし、図16に示した固形化粉粒体200では、粉粒体201のみの場合に比べてバインダ202の分だけ重量が増す。図17に示した固形化粉粒体210も同様に、小球体212のみの場合よりも接着剤211の分だけの重量が増す。このため、これらの固形化粉粒体200,210を用いた骨格構造部材の重量増が大きくなる。
また、粉粒体201又は小球体212を密に充填すれば、固形化粉粒体200,210の剛性が高められるが、閉空間に粉粒体201又は小球体212を満たすには、外部から加圧する等の手段を講じなければならなず、容易ではない。
次に、上記の固形化粉粒体200,210を用いた骨格構造部材を曲げ試験で強制的に曲げ変形させて、骨格構造部材の吸収エネルギー量を求める。
図18は、骨格構造部材の曲げ試験の方法を示している。曲げ試験は、骨格構造部材220を2つの支点221,221で支え、これらの支点221,221間の中央位置に対応する骨格構造部材220の上面に曲げ試験機の押圧片222を介して下向きの荷重Fを加えて行う。記号δは押圧片222のストローク量、即ち下方への変位量である。参照番号223は、骨格構造部材220内に挿入した固形化粉粒体である。
図19は、骨格構造部材の曲げ試験の結果として得られる荷重と変位量との関係を略式に示している。縦軸は荷重F、横軸は変位量δを表す。
このグラフでは、変位量δが小さいうちは、荷重Fは直線的に急激に立ち上がり、そして、荷重Fの増加は次第に小さくなって最大の荷重f1が発生し、この後は、変形量δが大きくなるにつれて、荷重Fは次第に減少し、やがてほぼ一定になる。
立ち上がりの直線部の上端の荷重をL、直線の角度をαとすると、角度αが大きいほど、また、荷重Lが大きい(即ち、直線部が長い)ほど骨格構造部材の剛性は大きい。更に、荷重f1が大きいほど、骨格構造部材の強度は大きい。
このグラフ上の線と横軸とで挟まれた部分の面積は、仕事量、即ち骨格構造部材の変形による吸収エネルギー量であり、例えば、車両の骨格構造における衝突時の吸収エネルギー量を求める場合に使用する。
図20A〜図20Dは、骨格構造部材の曲げ試験の結果として得られる荷重と変位量との関係、及び吸収エネルギー量を示したグラフである。
図20Aに示したグラフ中の試料1は、図19に示した骨格構造部材と同一の部材で、例えば中空の四角形断面とし、内部に固形化粉粒体を挿入していない骨格構造部材である。
試料2は、試料1の最大の荷重f1となる変位量より大きい変位量では、試料1よりも荷重Fが大きくなる。
試料3は、試料1の荷重f1となる変位量より大きい変位量では、試料2よりも荷重Fが大きくなる。
これらの試料1〜試料3の吸収エネルギー量は図20Bに示される。
図20Bにおいては、縦軸が吸収エネルギー量Eを表す。試料1〜試料3の各吸収エネルギー量をe1〜e3とすると、e1<e2<e3となる。
図20Cにおいて、試料4は、試料1よりも立ち上がりの角度α(図19参照)を大きくし、且つ試料1の荷重f1よりも大きな荷重f2を最大値とするものであり、荷重f2のときの変位量よりも大きな変位量δでは、次第に試料1に重なる。
試料5は、試料4よりも立ち上がりの角度α(図19参照)を大きくし、且つ試料4の荷重f2よりも大きな荷重f3を最大値とするものであり、荷重f3のときの変位量よりも大きな変位量δでは、次第に試料1に重なる。
これらの試料1、試料4及び試料5の吸収エネルギー量は、図20Dに示される。
図20Dにおいては、縦軸が吸収エネルギー量Eを表す。試料4、試料5の各吸収エネルギー量をe4、e5とすると、e1<e4<e5となる。
図20A〜図20Dより、荷重Fの最大値が大きくなっただけでは吸収エネルギー量の増加は小さいが、荷重Fの最大値を大きくするとともに、最大荷重発生後の荷重を高く維持すれば、吸収エネルギー量の増加を大きくすることができる。
図21は、従来の骨格構造部材の曲げ試験における変形状態を示している。
例えば、固形化粉粒体200(図16も参照)を挿入した骨格構造部材205を曲げ試験で変形させた場合、固形化粉粒体200を挿入した部分はほとんど変形せず、固形化粉粒体200の端部側が大きく変形した。参照番号206は大きく変形して屈曲した骨格部材207の屈曲部である。
これは、粉粒体の高い充填率とバインダによる強い結合のために、固形化粉粒体200を挿入した部分の強度が非常に高まり、固形化粉粒体200以外の部分に歪みが集中したと考えられる。
図22は、比較例1〜3として示した各骨格構造部材の曲げ試験のグラフであり、縦軸は荷重F、横軸は変位量δを表す。各データの最大の変位量δは、変位量δを次第に増していって、急激に荷重Fが低下する直前の値を示している。
破線で示した比較例1は、中空の四角形断面を有する骨格構造部材で固形化粉粒体を挿入していないものであり、最大の変位量d5は大きいが、最大の荷重f5は小さい。
一点鎖線で示した比較例2は、図16及び図21に示した骨格構造部材、即ち中実の粉粒体をバインダで結合した固形化粉粒体を備えたものであり、粉粒体の結合が強固であるために最大の荷重f6は大きくなるが、曲げ試験の早期に固形化粉粒体以外の部分が局部的に大きく変形することにより最大の変位量d6は小さくなる。
二点鎖線で示した比較例3は、図17に示した骨格構造部材、即ち中実の粉粒体に接着剤をコーティングして結合した固形化粉粒体を備えたものであり、粉粒体の結合が強固なために最大の荷重f7は比較例2よりも大きくなるが、比較例2と同様に局部的な変形が大きいため、最大の変位量d7は小さい。
図23は、図22に示した各骨格構造部材(比較例1〜比較例3)の吸収エネルギー量を示す。縦軸は吸収エネルギー量Eを示す。
比較例1の吸収エネルギー量を1.0としたときに、比較例2は比較例1よりも小さく、比較例3は比較例1とほぼ同等の値となった。
このように、比較例2及び比較例3では、粉粒体が強固に結合するために骨格構造部材の粉粒体充填部分の強度が過度に高まり、曲げ試験の早期に局部崩壊が発生して荷重が急激に低下した結果、吸収エネルギー量は比較例1に対して向上しなかった。
そこで、粉粒体の固形化に伴う重量増を抑え、また、骨格部材内に粉粒体を容易に充填でき、しかも、骨格構造部材の吸収エネルギー量を増大させる輸送機械用骨格構造部材及びこの骨格構造部材の製造方法が望まれる。
【発明の開示】
本発明においては、輸送機械の骨格部材内及び/又は骨格部材とその周囲のパネル部材とで囲まれる空間に、複数の粉粒体を結合して固めた固形化粉粒体を配置した骨格構造部材であって、固形化粉粒体は、各粉粒体同士が表面融解により結合するとともに膨張により内圧を発生させる輸送機械用骨格構造部材が提供される。
このように、粉粒体同士が表面融解により結合するため、粉粒体同士を結合する接着剤や樹脂等のバインダを必要とせず、固形化に伴う重量増を抑えることができる。また、粉粒体の膨張により内圧を発生させるため、加圧を伴う充填を必要とせず、骨格部材内、空間内に粉粒体を容易に満たすことができる。更に、固形化粉粒体に外部から荷重が作用した場合に、固形化していた粉粒体は表面融解部が剥がれて粉粒体単体となって流動性を備えるようになり、外部からの荷重により発生する歪みを拡散して歪みの集中を防ぐことができる。従って、骨格構造部材をほぼ均等に且つ大きな変形量まで変形させることができる。このとき、上記内圧によって骨格部材壁の内側への変形を抑制できるために、大きな変位量まで大きな荷重を支えることができ、従来に比較して、骨格構造部材の吸収エネルギー量を増大させることができる。
更に、本発明においては、輸送機械の骨格部材内及び/又は骨格部材とその周囲のパネル部材とで囲まれる空間に、複数の粉粒体を結合して固めた固形化粉粒体を配置する骨格構造部材の製造方法であって、液体又は固体からなる芯物質を被膜で包み込んだ粉粒体を未膨張の状態で、骨格部材内及び/又は空間内へ投入する工程と、粉粒体を加熱することで膨張させる工程と、を含む輸送機械用骨格構造部材の製造方法が提供される。
粉粒体を加熱し、膨張させることにより、芯物質を気化させれば、固形化粉粒体を構成する各粉粒体は中空になり、固形化に伴う重量増を抑えることができる。また、粉粒体が膨張することにより骨格部材、空間に内圧が発生するため、加圧を伴う充填を必要とせず、骨格部材内、空間内に粉粒体を容易に満たすことができる。更に、固形化粉粒体に外部から荷重が作用した場合に、中実の粉粒体を用いるよりも、固形化粉粒体の強度が過度に大きくならず、しかも、外部から作用する荷重によって固形化粉粒体を構成する粉粒体が次第に変形しながら流動するようになり、外部からの荷重により発生する歪みを拡散して歪みの集中を防ぐことができる。従って、固形化粉粒体の強度が急激に変化せず、大きな変位量まで大きな荷重を支えることができ、従来に比較して、骨格構造部材の吸収エネルギー量を増大させることができる。
【図面の簡単な説明】
図1は、本発明に係る輸送機械用骨格構造部材の斜視図である。
図2は、図1の2−2線に沿った骨格構造部材の断面図である。
図3は、図1の3−3線に沿った骨格構造部材の断面図である。
図4は、本発明に係る固形化粉粒体の結合状態を示した断面図である。
図5は、本発明に係る粉粒体の変化を示した作用図である。
図6は、本発明に係る骨格構造部材の製造方法を示した作用図である。
図7Aは、実施例に係る骨格構造部材の曲げ試験を実施した後の状態を示した図である。
図7Bは、比較例に係る骨格構造部材の曲げ試験を実施した後の状態を示した図である。
図7C(a)は、実施例に係る骨格構造部材の曲げ試験時に発生する歪みを示した図である。
図7C(b)は、比較例に係る骨格構造部材の曲げ試験時に発生する歪みを示した図である。
図8A〜図8Cは、本発明に係る骨格構造部材の曲げ試験時における変形状態を示した図である。
図9は、本発明に係る骨格構造部材の曲げ試験終了後の変形状態を示した断面図である。
図10は、本発明に係る骨格構造部材の曲げ試験を示したグラフである。
図11A及び図11Bは、本発明に係る骨格構造部材を車両に適用した実施例を示した斜視図である。
図12A〜図12Eは、本発明に係る骨格構造部材をフロントサイドフレームに採用した実施例の断面図である。
図13A〜図13Dは、本発明に係る骨格構造部材をリヤフレームに採用した実施例の断面図である。
図14A〜図14Cは、本発明に係る骨格構造部材をセンタピラーに採用した実施例の断面図である。
図15A〜図15Cは、本発明に係る骨格構造部材をルーフサイドレールに採用した実施例の断面図である。
図16は、従来の骨格構造部材を構成する第1の固形化粉粒体の断面図である。
図17は、従来の骨格構造部材を構成する第2の固形化粉粒体の断面図である。
図18は、骨格構造部材の曲げ試験の方法を示した図である。
図19は、骨格構造部材の曲げ試験における荷重と変位量との関係を示したグラフである。
図20A〜図20Dは、骨格構造部材の曲げ試験における荷重と変位量との関係、及び吸収エネルギー量を示したグラフである。
図21は、従来の骨格構造部材の曲げ試験における変形状態を示した図である。
図22は、比較例1〜3の各骨格構造部材の曲げ試験における荷重と変位量との関係を示したグラフである。
図23は、比較例1〜3の各骨格構造部材の曲げ試験における吸収エネルギー量を示したグラフである。
【発明を実施するための最良の形態】
図1は、中空とした骨格部材11内に固形化粉粒体を充填した輸送機械用骨格構造部材12(以下、単に「骨格構造部材12」と記す。)を示している。参照番号13,13は骨格部材11の両端を塞ぐ端部閉塞部材である。
図2に示した骨格構造部材12は、骨格部材11内に隔壁部材15,15を取付け、これらの隔壁部材15,15の間の空間に固形化粉粒体16を充填したものである。ここでは、固形化粉粒体16を骨格構造部材12の長手方向の中央に配置した。参照番号18は中空の粉粒体であり、実際には外径が10〜200μmであるが、説明の都合上、大きく描いた(以下同じ)。
図3は、中空の四角形断面とした骨格部材11内に、粉粒体18をそれぞれ結合させて固形にした固形化粉粒体16を充填したことを示している。
図4は、加熱による表面融解によって結合した粉粒体18,18を示している。参照番号21,21は粉粒体18,18の中空部、参照番号22,22は粉粒体18,18の表面が融解し固化した固化部である。
図5において、粉粒体25を加熱すると、膨張して前述の粉粒体18が出来る。
粉粒体25は、芯物質(液体又は固体)25aを微粒化し、この芯物質25aを被膜25bで被覆した(即ち、殻で包み込んだ)、いわゆる「マイクロカプセル」であり、加熱することで、芯物質25aが気化し被膜(即ち、殻)25bが軟化して膨張することで粉粒体18となる。
被膜(殻)25bの組成物としては、熱可塑性樹脂、即ち、(1)アクリル酸、メタクリル酸、イタコン酸、シトラコン酸、マレイン酸、フマル酸、ビニル安息香酸及びこれらの酸のエステル類、(2)アクリルニトリルやメタクリルニトリル等のニトリル類、(3)塩化ビニル、酢酸ビニル等のビニル化合物、(4)塩化ビニリデン等のビニリデン化合物、(5)スチレン等のビニル芳香族類、(6)その他としてエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、1,6ヘキサンジオールジアクリレート、1,9ノナンジオールジ(メタ)アクリレート、平均分子量200〜600のポリエチレングリコールのジアクリレート、平均分子量200〜600のポリエチレングリコールのジメタクリレート、トリメチルプロパンジ(メタ)アクリレート、トリメチルプロパントリ(メタ)アクリレート、ペンタエリストールテトラアクリレート、ジペンタエリストールアクリレート、ジペンタエリストールヘキサアクリレート等、そして、上記の単量体の重合物やそれらの組み合わせによる共重合物が好適である。
また、芯物質25aとしては、エタン、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、イソヘキサン、オクタン、イソオクタン等の低沸点炭化水素、クロロフルオロカーボンが好適である。
図6は、本発明に係る骨格構造部材の製造方法を示している。
まず、骨格部材11内に粉粒体25を所定量投入する。次に、骨格部材11及び粉粒体25を加熱する。これにより、粉粒体25が膨張して骨格部材11内に充満するとともに粉粒体25同士が表面融解を起こし、冷却した後に、粉粒体18同士が結合して固形化粉粒体16を形成し、骨格構造部材12が出来る。
例えば、車両では、車両骨格部材内に粉粒体25を投入しておき、車両の塗装を乾燥させるために製造ラインに設けた塗装乾燥路で130〜200℃に加熱すれば、塗装乾燥の完了とほぼ同時に骨格構造部材が出来る。従って、別に加熱装置を必要とせず、しかも粉粒体25のための加熱時間も別に必要がないから、コストアップ及び製造工数の増加を抑えることができる。
骨格構造部材12は、粉粒体18同士が結合するとともに、粉粒体18と骨格部材11の内面とが結合した部材であり、膨張するときに、粉粒体25同士に圧力が作用するとともに、粉粒体25から骨格部材11にも圧力が作用するため、表面融解後の粉粒体18同士の結合及び粉粒体18と骨格部材11の内壁との結合が強固となり、骨格構造部材12の剛性及び強度を高めることができる。
また、粉粒体25を熱可塑性樹脂製とすることで低い温度で融解させることができるため、高温を発生させるような特別な加熱装置を必要としない。
更に、上記した粉粒体18によって骨格構造部材12内に発生する圧力(内圧)は、骨格部材11内に投入する粉粒体25の投入量によって変更することができ、上記の内圧を変更することで、骨格構造部材12の機械的特性を決定することができる。
図7Aは、骨格構造部材12の固形化粉粒体16(図中の破線部)を充填した部分がほぼ円弧状に変形したことを示している。参照番号28は隔壁部材15,15(図2参照)を骨格部材11に取付けるボルトである。
図7Bは、骨格構造部材205の固形化粉粒体200(図中に破線で示した。)を充填した部分はほとんど変形せず、固形化粉粒体200の外側の骨格部材207が大きく変形したことを示している。参照番号208は固形化粉粒体200を両側から挟み込む隔壁部材(不図示)を骨格部材207に取付けるボルトである。
図7C(a)は、模式的に描いた骨格構造部材12を2つの支点31,31で支え、これらの支点31,31の間隔の中央位置に対応する骨格構造部材12の上面に下向きの荷重Fを加えたときに、骨格構造部材12の支点31,31間に発生する歪みをグラフとして表している。縦軸は歪み、横軸は骨格構造部材12の長手方向の位置を表している。
支点31,31の位置では歪みはゼロであり、この位置から次第に固形化粉粒体16(図中のハッチングを施した部分)に近づくにつれて歪みは徐々に増加し、固形化粉粒体16の位置では歪みは一定になる。このときの歪みをε1とする。
図7C(b)は、模式的に描いた骨格構造部材205を2つの支点221,221で支え、これらの支点221,221の間隔の中央位置に対応する骨格構造部材205の上面に下向きの荷重Fを加えたときに、骨格構造部材205の支点221,221間に発生する歪みをグラフとして表している。縦軸は歪み、横軸は骨格構造部材205の長手方向の位置を表している。
支点221,221の位置では歪みはゼロであり、この位置から次第に固形化粉粒体200に近づくにつれて歪みは急激に増加し、固形化粉粒体200の両端部近傍の外方位置で歪みは最大になる。このときの歪みをε2とする。
そして、歪みが最大となる位置から固形化粉粒体200の端部までは歪みが減少し、固形化粉粒体200の位置では歪みが一定になる。このときの歪みをε3とする。
以上の図7A、図7B、図7C(a)及び図7C(b)において、比較例の骨格構造部材205では、固形化粉粒体200の剛性が過度に大きいために固形化粉粒体200はほとんど変形せず、歪みε3は小さくなるが、骨格部材207が局部的に大きく変形し、歪みε2は非常に大きくなる。従って、曲げ試験の早期に荷重Fは大きく低下する。即ち、吸収エネルギー量は少ない。
これに対して、実施例の骨格構造部材12では、固形化粉粒体16の剛性が比較例の固形化粉粒体200に比べて小さく、曲げ試験によって固形化粉粒体16が徐々に変形しするとともにほぼ均一に変形するため、比較例の最大の歪みε2に対して最大の歪みε1を抑えることができる。即ち、歪みε1は歪みε2よりもdだけ小さい。従って、実施例の骨格構造部材12では、曲げ試験において大きな変位量まで高い荷重を維持することができ、比較例に対して吸収エネルギー量をより増大させることができる。
図8Aにおいて、骨格構造部材12に荷重Fを加える。なお、32は荷重Fを加えた骨格部材11上の加重点である。
図8Bにおいて、骨格構造部材12が撓み、加重点32近傍の粉粒体を18aとしたときに、これらの粉粒体18a…では、粉粒体18aの固化部22(図4参照)が剥がれて粉粒体18a同士の結合が外れたり、粉粒体18a自体が変形(加重点32に近いほど変形は大きい。)して、骨格部材11の内部圧力が激増するのを抑える。
図8Cにおいて、骨格構造部材12の撓みが更に大きくなると、粉粒体18aの固化部の剥がれや粉粒体18a自体の変形が進行し、固形化粉粒体16(図8A参照)は複数の粉粒体の単体に変化して矢印のように流動し、歪みを拡散させる。従って、大きな変形量まで安定して大きな荷重を維持することができる。
図9において、曲げ試験開始前に、固形化粉粒体に、骨格構造部材12の長手方向に直角な方向に直線として描いた線34〜線38の変化を見ると、曲げ試験終了後では、例えば、線37の両端の点、即ち骨格部材11と交わる点を端点41,42とし、これらの端点41,42を通る直線43を引いたときに、直線37は、直線43よりも骨格構造部材12の端部側に湾曲していることが分かる。即ち、骨格部材11の上部が凹状に変形することで、前述した表面融解部が剥がれた粉粒体や変形した粉粒体は、白抜き矢印で示すように、一方の隔壁部材15側に流動したことが分かる。
図10に示した実施例(膨張中空粉+表面融解)の骨格構造部材12のデータ(実線で示したものである。)は、立ち上がり角度、その立ち上がりの直線部の長さ、最大の荷重f9が、前述の比較例2及び比較例3とほぼ同等であり、剛性及び強度の点で大きな差は見られない。更に、大きな変位量δまで大きな荷重Fを維持している。これらのことから、本発明の骨格構造部材12では、比較例1〜比較例3に比べて吸収エネルギー量をより増大させることができる。
図11Aにおいて、本発明の骨格構造部材は、車体前部のエンジン両側方下方に配置するフロントサイドフレーム51,51、車室の両側方下部に配置するサイドシル52,52、左右のサイドシル52,52間に渡したフロントフロアクロスメンバ53、サイドシル52,52から立ち上げたセンタピラー54,54、サイドシル52,52から後方へ延ばしたリヤフレーム56,56に採用する。
また、図11Bにおいて、本発明の骨格構造部材は、フロントピラー61,61、フロントドア(不図示)内及びリヤドア(不図示)内にそれぞれ配置したドアビーム62,63、ルーフの両側部に設けたルーフサイドレール64,64、左右のルーフサイドレール64,64に渡したルーフレール66,67に採用する。
図12A〜図12Eは本発明に係る骨格構造部材をフロントサイドフレームに採用した実施例を示している。骨格構造部材としてのフロントサイドフレーム51の符号51を、ここでは便宜上、51A〜51Eと変更した。フロントサイドフレーム51A〜51Dでは、粉粒体18を、直接に骨格部材内に充填し、フロントサイドフレーム51Eでは、粉粒体18を予め別の骨格部材内に充填した状態で骨格部材内に挿入する。
図12Aに示すフロントサイドフレーム51Aは、アウタパネル71と、このアウタパネル71よりもエンジン室側に設けたインナパネル72とから骨格部材73を形成し、この骨格部材73内に粉粒体18を充填した部材である。なお、フロントサイドフレーム51Aに粉粒体18を充填する場合に、フロントサイドフレーム51Aの長手方向全体に充填してもよいし、あるいは、フロントサイドフレーム51Aの長手方向に部分的に充填する、即ち、フロントサイドフレーム51A内に長手方向に所定間隔を開けて2枚の隔壁を設け、これら2枚の隔壁間に粉粒体18を充填してもよい。以下に述べる部位についても同様である。
図12Bに示すフロントサイドフレーム51Bは、斜面75を設けたアウタパネル76と、このアウタパネル76のエンジン室側に設けるとともに斜面77を形成したインナパネル78とから骨格部材81を形成し、この骨格部材81に粉粒体18を充填した部材である。
図12Cに示すフロントサイドフレーム51Cは、アウタパネル71と、インナパネル72と、これらのアウタパネル71及びインナパネル72の内側に取付けた隔壁83とから骨格部材84を形成し、アウタパネル71及びインナパネル72内の隔壁83で区画した第1室85及び第2室86のうちの第1室85内に粉粒体18を充填した部材である。
図12Dに示すフロントサイドフレーム51Dは、図12Cに示したフロントサイドフレーム51Cの第2室86に粉粒体18を充填した部材である。
図12Eに示すフロントサイドフレーム51Eは、骨格部材88内に粉粒体18を充填し、この骨格部材88を骨格部材73の内側に配置した部材である。
図13A〜図13Dは本発明に係る骨格構造部材をリヤフレームに採用した実施例を示している。骨格構造部材としてのリヤフレーム56の符号56を、ここでは便宜上、56A〜56Dと変更した。
図13Aに示すリヤフレーム56Aは、パネル部材としてのロアパネル91と、このロアパネル91の上部に設けたパネル部材としてのリヤフロアパネル92との間に粉粒体18を充填した部材である。
図13Bに示すリヤフレーム56Bは、ロアパネル91と、このロアパネル91の上部に取付けたサブロアパネル93との間に粉粒体18を充填した部材である。
図13Cに示すリヤフレーム56Cは、ロアパネル91の上部に取付けたサブロアパネル93と、このサブロアパネル93の上部に設けたリヤフロアパネル92との間に粉粒体18を充填した部材である。
図13Dに示すリヤフレーム56Dは、ロアパネル91とリヤフロアパネル92とで囲まれる閉空間内に骨格部材94を配置し、この骨格部材94内に粉粒体18を充填した部材である。
また、骨格部材94内には粉粒体18を充填せず、骨格部材94とその周囲のパネル部材としてのロアパネル91、リヤフロアパネル92とで囲まれる空間95に粉粒体18を充填してもよく、更には、骨格部材94内及び空間95内の両方に粉粒体18を充填してもよい。
図14A〜図14Cは、本発明に係る骨格構造部材をセンタピラーに採用した実施例を示している。骨格構造部材としてのセンタピラー54の符号54を、ここでは便宜上、54A〜54Cと変更した。
図14Aに示したセンタピラー54Aは、アウタパネル96と、このアウタパネル96の車室側に配置したインナパネル97とで骨格部材98を形成し、この骨格部材98に粉粒体18を充填した部材である。
図14Bに示したセンタピラー54Bは、アウタパネル96とインナパネル97との間に補強部材101を取付けることで骨格部材102を形成し、補強部材101とアウタパネル96との間に粉粒体18を充填した部材である。
図14Cに示したセンタピラー54Cは、アウタパネル96とインナパネル97との間に補強部材101を取付け、この補強材101とインナパネル97との間に粉粒体18を充填した部材である。
図15A〜図15Cは本発明に係る骨格構造部材をルーフサイドレールに採用した実施例を示している。骨格構造部材としてのルーフサイドレール64の符号を、ここでは便宜上、64A〜64Cと変更した。。
図15Aに示したルーフサイドレール64Aは、アウタパネル104と、このアウタパネル104の車室側に配置したインナパネル105とで骨格部材106を形成し、この骨格部材106に粉粒体18を充填した部材である。
図15Bに示したルーフサイドレール64Bは、アウタパネル104とインナパネル105との間に補強部材107を取付けることで骨格部材108を形成し、補強部材107とアウタパネル104との間に粉粒体18を充填した部材である。
図15Cに示したルーフサイドレール64Cは、アウタパネル104とインナパネル105との間に補強部材107を取付けることで骨格部材108を形成し、補強部材107とインナパネル105との間に粉粒体18を充填した部材である。
図2〜図4で説明したように、本発明は、輸送機械の骨格部材11内及び/又は骨格部材11とその周囲のパネル部材(例えば、図13Dに示したロアパネル91、リヤフロアパネル92)とで囲まれる空間(例えば、図13Dに示した空間95)に、複数の粉粒体18を結合して固めた固形化粉粒体16を配置した骨格構造部材12であって、固形化粉粒体16を、各粉粒体18同士が表面融解により結合するとともに膨張により内圧を発生させるものとしたことを特徴とする。
粉粒体18同士が表面融解により結合するため、粉粒体同士を結合する接着剤や樹脂等のバインダを必要とせず、固形化に伴う重量増を抑えることができる。
また、粉粒体18の膨張により内圧を発生させるため、加圧を伴う充填を必要とせず、骨格部材18内、空間(例えば、空間95)内に粉粒体18を容易に満たすことができる。
更に、固形化粉粒体16に外部から荷重が作用した場合に、固形化していた粉粒体18は表面融解部が剥がれて粉粒体単体又は固形化物の小片となって流動性を備えるようになり、外部からの荷重により発生する歪みを拡散して歪みの集中を防ぐことができる。
従って、骨格構造部材12をほぼ均等に且つ大きな変形量まで変形させることができる。このとき、上記内圧によって骨格部材壁の内側への変形を抑制できるために、大きな変位量まで大きな荷重を支えることができ、従来に比較して、骨格構造部材12の吸収エネルギー量を増大させることができる。
また、本発明は、図5及び図6で説明したように、輸送機械の骨格部材11内及び/又は骨格部材11とその周囲のパネル部材(例えば、図13Dに示したロアパネル91、リヤフロアパネル92)とで囲まれる空間(例えば、図13Dに示した空間95)に、複数の粉粒体18を結合して固めた固形化粉粒体16を配置する骨格構造部材12の製造方法であって、液体又は固体からなる芯物質25aを被膜25bで包み込んだ粉粒体25を未膨張の状態で、骨格部材11内及び/又は空間(例えば、空間95)内へ投入する工程と、粉粒体25を加熱することで膨張させる工程とから構成したことを特徴とする。
粉粒体25を加熱し、膨張させることにより、芯物質25aを気化させれば、固形化粉粒体16を構成する各粉粒体18は中空になり、固形化に伴う重量増を抑えて骨格構造部材12の軽量化を図ることができる。
また、粉粒体25が膨張することにより骨格部材11、空間に内圧が発生するため、加圧を伴う充填を必要とせず、骨格部材11内、空間内に粉粒体18を容易に満たすことができる。従って、骨格構造部材12の生産性を向上させることができる。
更に、固形化粉粒体16に外部から荷重が作用した場合に、中実の粉粒体を用いるよりも、固形化粉粒体16の強度が過度に大きくならず、しかも、外部から作用する荷重によって固形化粉粒体16を構成する粉粒体18が次第に変形しながら流動するようになり、外部からの荷重により発生する歪みを拡散して歪みの集中を防ぐことができる。従って、固形化粉粒体16の強度が急激に変化せず、大きな変位量まで大きな荷重を支えることができ、従来に比較して、骨格構造部材12の吸収エネルギー量を増大させることができる。
本発明の実施例においては、骨格部材内に粉粒体をそのまま投入したが、これに限らず、袋(ゴム製、ポリエチレン等の樹脂製、紙製のもの)や容器に予め詰めた状態で骨格部材内に投入してもよい。
【産業上の利用可能性】
以上説明したように、上記骨格構造部材及びその製造方法は、重量増を抑え、骨格部材内に粉粒体を容易に充填でき、骨格構造部材の吸収エネルギー量を増大させるため、各種輸送機械に用いるのに適している。
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】



【図9】

【図10】






【図16】

【図17】

【図18】

【図19】


【図21】

【図22】

【図23】


【特許請求の範囲】
【請求項1】
輸送機械の骨格部材内及び/又は骨格部材とその周囲のパネル部材とで囲まれる空間に、複数の粉粒体を結合して固めた固形化粉粒体を配置した骨格構造部材であって、
前記固形化粉粒体は、各粉粒体同士が表面融解により結合するとともに膨張により内圧を発生させることを特徴とする輸送機械用骨格構造部材。
【請求項2】
輸送機械の骨格部材内及び/又は骨格部材とその周囲のパネル部材とで囲まれる空間に、複数の粉粒体を結合して固めた固形化粉粒体を配置する骨格構造部材の製造方法であって、
液体又は固体からなる芯物質を被膜で包み込んだ前記粉粒体を未膨張の状態で、前記骨格部材内及び/又は前記空間内へ投入する工程と、
前記粉粒体を加熱することで膨張させる工程と、
を含む輸送機械用骨格構造部材の製造方法。

【国際公開番号】WO2005/002949
【国際公開日】平成17年1月13日(2005.1.13)
【発行日】平成18年8月10日(2006.8.10)
【国際特許分類】
【出願番号】特願2005−511343(P2005−511343)
【国際出願番号】PCT/JP2004/009213
【国際出願日】平成16年6月23日(2004.6.23)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】