説明

静電チャック及びそれを用いたワークの冷却方法

【課題】ウエハの温度分布の均一化を図ることができる静電チャックを提供する。
【解決手段】ワークをワーク載置面に固定する静電チャックであって、ワーク載置面を有する円板状の本体が、本体の周縁に設けられた外壁と、外壁の内側に外壁と同心円状に配置され、それぞれ一部に切り欠きを備える複数の内壁と、本体の外壁と最外郭の内壁との間に定義される外周部と最内郭の内壁に囲まれる中心部にそれぞれガス供給孔と、を有し、ワークを外壁及び内壁のワーク載置部に配置した際に、外壁及び内壁に形成されるワークとの接触面が略同一平面にあり、ワークと本体との間に形成される中心部の空間と外周部の空間とが、内壁に設けられた切り欠きを介して形成されるガスの流路によって互いに連通する静電チャックを要旨とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は静電チャック及びそれを用いたワークの冷却方法に関する。
【背景技術】
【0002】
静電チャックは、半導体デバイス製造の種々のプロセスにおいて、ワークを固定する載置台として主に用いられている。ここで「ワーク」としては主にウエハやレチクルが該当する。静電チャックは、ウエハの固定の他にも、プロセスに伴い発生する熱をウエハから効率的に除去し、ウエハの温度を一定に維持するという目的で使用されることがある。例えば、ウエハを静電チャックに吸着した際に、ウエハから熱を奪う目的で、ウエハの裏面にヘリウム(He)等のバックサイドガスが流されている。
【0003】
一方、静電チャックにウエハを載置してプラズマエッチングプロセス等で処理する場合、プラズマの不均一性や、ガス濃度、幾何学的位置により、ウエハの中心と外周で温度分布が発生し、エッチングレートがウエハ面上で異なったものとなる傾向がある。かかる問題を解決する手段として、静電チャックのウエハ載置面の周縁に外壁、中心に凸状の内壁を設け、ウエハとの接触により形成される空間を同心円状に複数に分け、それぞれの空間に異なる圧力のガスを供給し、ガスの熱伝導率の圧力による相違を利用して、ウエハからの熱伝達を制御し、それにより、ウエハの温度分布の均一化を図るという静電チャックが提案されている。この静電チャックによれば、適当な圧力差をつけることでウエハ全体の温度分布の均一化が図られる。
【0004】
ところが、それぞれの空間の間で、隔壁を隔ててガスの圧力が急激に変化することに起因して、隔壁の位置に対応するように、ウエハにステップ状の温度分布が生じる。そのため、ウエハ全体の温度分布は均一化できても、特に隔壁部分でウエハの温度分布の局部的な均一化を図ることが困難であった。局部的な温度分布は、ウエハ上に形成される隣り合う部分のエッチングレートを変え、特に最先端デバイス製造において、歩留まり低下の大きな原因となる恐れがある。
【0005】
しかしながら、前述の課題を解決する手段は見当たらなかった。
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明はウエハの温度分布の均一に保つことができる静電チャックを提供することを目的とする。本発明はウエハの温度分布を均一に保つことができるワークの冷却方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の第1の特徴は、ワークをワーク載置面に固定する静電チャックであって、ワーク載置面を有する円板状の本体が、本体の周縁に設けられた外壁と、外壁の内側に外壁と同心円状に配置され、それぞれ一部に切り欠きを備える複数の内壁と、本体の外壁と最外郭の内壁との間に定義される外周部と最内郭の内壁に囲まれる中心部にそれぞれガス供給孔と、を有し、ワークを外壁及び内壁のワーク載置部に配置した際に、外壁及び内壁に形成されるワークとの接触面が略同一平面にあり、ワークと本体との間に形成される中心部の空間と外周部の空間とが、内壁に設けられた切り欠きを介して形成されるガスの流路によって互いに連通する静電チャックを要旨とする。
【0008】
本発明の第2の特徴は、ワークをワーク載置面に固定する静電チャックであって、ワーク載置面を有する円板状の本体が、本体の周縁に設けられた外壁、外壁の内側に外壁と同心円状に配置されそれぞれ一部に切り欠きを備える複数の内壁、本体の外壁と最外郭の内壁との間に定義される外周部と最内郭の内壁に囲まれる中心部にそれぞれガス供給孔を有する静電チャックを用意する工程と、ワークをワーク載置部に配置して、ワークと本体との間に、複数の内壁にそれぞれ設けられた切り欠きを介して互いに結ばれたガスの流路を形成する工程と、外周部と内周部のガス供給孔から中心部及び外周部のいずれか一方の圧力が高くなるようにガスを供給し、複数の内壁の間に定義される緩衝部でガス圧力を緩衝しながらガスを充填する工程と、を有するワークの冷却方法を要旨とする。
【発明の効果】
【0009】
本発明によればウエハの温度分布を局部的にも均一に保つことができる静電チャックが提供される。本発明によればウエハの温度分布を局部的にも均一に保つことができるワークの冷却方法が提供される。
【発明を実施するための最良の形態】
【0010】
以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。ワークとしてウエハを用いて説明する。
【0011】
(静電チャック)
図1(a)に示す、ワークをワーク載置面に固定する実施形態にかかる静電チャック10は、ワーク載置面を有する円板状の本体1が、本体1の周縁に設けられた外壁3と、外壁3の内側に外壁3と同心円状に配置されそれぞれ一部に切り欠き5a、6a、7a、8aを備える複数の内壁5、6、7、8と、本体1の外壁3と最外郭の内壁5との間に定義される外周部9aと最内郭の内壁に囲まれる中心部9cにそれぞれガス供給孔1a、1b、1c、1d、1e、1f、1g、1h、1i、1j、1k、1l、1mとを有する。
【0012】
図1(b)に示すように、静電チャック10は、仮想線で示されるようにウエハ2を外壁3及び内壁5、6、7、8の上面からなる略同一平面のワーク載置部に配置した際に、外壁3と最外郭の内壁5とで定義される外周部9a、最外郭の内壁5と最内郭の内壁8とで定義される緩衝部9b、最内郭の内壁8に囲まれる中心部9cが形成されるように構成されている。ウエハ2と本体1の間に形成される中心部9cの空間と外周部9aの空間とは、緩衝部9bの内壁5、6、7に設けられた切り欠き5a、6a、7a、8aを介して形成されるガスの流路を通じて互いに結ばれる。即ち緩衝部の内壁間には切り欠き5a、6a、7a、8aを介して連続するコンダクタンスの小さい溝4が形成されている。
【0013】
図1(b)に示すように、本体1の下方からワーク載置側表面につながるガス供給孔1a、1iがそれぞれ外周部と中心部に設けられている。ガス供給孔1b、1c、1d、1e、1f、1g、1h、1j、1k、1l、1mについても、ガス供給孔1a、1iと同様に本体1に設けられている。ガス供給孔の個数や位置は、外周部と中心部にそれぞれ1つ設けられていれば特に制限されるものではなく、適宜、設計変更可能である。尚、図示は省略するが静電チャック10の本体1内部には内部電極が埋設されている。
【0014】
このように、切り欠き5a、6a、7a、8aを備える複数の内壁5、6、7、8を設け、ガスの流路となるコンダクタンスの小さい溝4を形成したことにより、内壁(隔壁)5、6、7、8間の急激な圧力低下を効果的に緩和できる。尚、実施形態における「内壁」及び「外壁」は、「隔壁」に包含される概念であるが、配置位置や切り欠きの有無等が規定されたものを、特に「内壁」及び「外壁」という。
【0015】
静電チャック10には4つの内壁5、6、7、8が最内側から最外側に向けて各内壁の切り欠き5a、6a、7a、8aが隣の内壁の切り欠きと重ならないように配置されている。この場合、内壁の数が複数であれば特に制限されることはないが、内壁の数は3以上が好ましい。内壁の数が多いほど、中心部と外周部との間のガスの圧力差をゆるやかに変化させることができるため、径方向の急激な温度変化を効果的に緩和することができるからである。内壁の上限は8程度が好ましい。内壁が8を超えると、コンダクタンスが小さくなりすぎて、ガスが高圧側から低圧側へ流れにくくなり、実施形態にかかる作用効果が得られづらくなるからである。また内壁との接触面積が大きくなることによって、パーティクル発生量の増大が懸念されるからである。各内壁の切り欠きが隣り合う内壁の切り欠きと重ならないように配置することが好ましい。内壁間の急激な圧力低下を効果的に緩和できなくなるからである。
【0016】
内壁幅や溝幅Wは、内壁5、6、7、8上面のウエハ2との接触面積に対する溝4の占める面積が同等以上とすることが好ましい。この場合、ガスによる熱伝達を固体による直接熱伝達よりも大きくできるので、ガスの圧力変化を利用した温度制御効果が得やすくなるからである。300mmウエハ用の静電チャックにおいては、溝幅が1mm以下、深さが300μm以下、長さが600mm以上あれば、効果的にコンダクタンスを小さくすることができ、本発明の作用効果を発揮することができる。内壁のウエハ接触面は幅1mm以下で溝幅よりも小さくする必要がある。
【0017】
具体的には、内壁幅は0.8mm〜1.2mmが好ましく、0.9mm〜1.1mmがより好ましい。溝幅Wは0.6mm〜1.0mmが好ましく、0.7mm〜0.8mmがより好ましい。本体の載置面からワーク載置部までの距離で定義される「内壁の高さh」は、16μm以下が好ましく、7μm以下がより好ましい。なお、内壁の高さhを7μm程度以下とすると、ガス分子の平均自由工程に近くなるため、ガス圧力の変化によるガスの熱伝導が大きく変化するので、圧力差によるウエハ面上の温度分布を効果的に制御できる。
【0018】
静電チャック10の材質は特に制限されないが、パーティクルの発生を低減させるという観点からは、窒化アルミニウム系セラミックス、窒化アルミニウムを含む複合材料、アルミナ系セラミックス、アルミナを含む複合材料、アルミナと窒化アルミニウムとの複合セラミックスが好ましい。また内部電極の材質も特に限定されないため、導電性セラミックスや金属であってよいが、高融点金属が好ましく、モリブデン、タングステン、モリブデンとタングステンとの合金が特に好ましい。
【0019】
(ウエハ(ワーク)の冷却方法)
次に、図2(a)、(b)、(c)、(d)、(e)を用いて、ウエハ2の冷却方法を説明することで、実施形態にかかる静電チャック10の作用効果を説明する。
【0020】
まず図2(a)に示すように、図1(a)(b)に示す静電チャック10を用意する。一般的には、静電チャックは真空チャンバー中に設置する。次に図2(b)に示すように、ワークとしてのウエハ2を外壁3及び内壁5、6、7、8のワーク載置部に配置する。その際、静電チャック10に埋設された静電電極に電圧を印加し、ウエハ2を固定することが好ましい。ウエハ2を載置することで、図2(c)に示すように、ウエハ2と本体1との間に、複数の内壁5、6、7、8にそれぞれ設けられた切り欠き5a、6a、7a、8aを介して互いに結ばれたガスの流路が形成される。即ち、外壁3と最外郭の内壁5とで定義される外周部9a、最外郭の内壁5と最内郭の内壁8とで定義される緩衝部9b、最内郭の内壁8に囲まれる中心部9cが形成され、内壁5、6、7、8の切り欠き5a、6a、7a、8aを介して連続するコンダクタンスの小さい溝4が形成される。
【0021】
図2(d)に示すように、外周部9aと中心部9cのガス供給孔1a、1iから中心部9cよりも外周部9aの圧力が高くなるようにバックサイドガスを供給する。さらにガス供給孔1b、1c、1d、1e、1f、1g、1h、1j、1k、1l、1mのいずれかから適宜バックサイドガスを供給しても構わない。バックサイドガスとしては、特に制限なく種々のガスを用いることができる。例えばヘリウム、アルゴン、ヘリウムとアルゴンとの混合ガスを使用できる。バックサイドガスのガス供給孔1a〜1mへの供給圧力は、ウエハ2から静電チャック10への熱伝導を良好にするためには665Pa以上とすることが好ましく、2kPa以上とすることが一層好ましい。ただし、この圧力が増大し過ぎるとウエハ2への吸着力が低下し、ウエハ2が外れやすくなるので、4kPa以下とすることが好ましい。
【0022】
そして、図2(e)に示すように、緩衝部9bでガス圧力を緩衝しながら外周部9a、緩衝部9b、中心部9cにガスを充填する。実施形態にかかる静電チャック10は、内壁5、6、7、8を設けてガスの流路となる溝4の全長を長くし、ガス圧力の高い側から低い側へガスが緩衝部の長く細い溝を流れるようにしたことで、緩衝部9cで溝4内のガス圧力が緩やかに変化する。従い、隔壁を横切る径方向で、隔壁部分の急激な圧力変化をもたらすことなく、ウエハ2上の温度分布ステップが有効に緩和されることで、ウエハ2の均熱性が極めて有効に改善される。よって、実施形態にかかる静電チャック10によれば、ウエハ2の温度分布を均一に保つことができる。また、溝4が小さいコンダクタンスを有するため、溝を通って高圧側から低圧側へ流れるガス流量は小さく、短いプロセス時間内では圧力差が比較的一定に保たれる。しかしながら、有限の時間内には圧力差が小さくなっていくため、ガス供給装置には圧力制御機能を付加することがより好ましい。
【0023】
(静電チャックの製造方法)
静電チャック10の製造方法として静電チャック10の本体1が窒化アルミニウムである場合の製造方法を説明する。まず窒化アルミニウム粉末を所定形状に成形して成形体を形成する。その後、この成形体上に、モリブデンからなる内部電極を配置する。さらにこの上に窒化アルミニウム粉末を充填し再度成形して内部電極を埋設した円盤状の成形体を得る。次いで、この成形体を窒素雰囲気中で焼結することにより、内部電極を埋設した静電チャックを作製する。
【0024】
静電チャック10の本体1のワーク載置面の表面側に、マスクを置き、ブラスト加工によって、図1(a)に示すような所望のパターンの内壁5、6、7、8及び外壁3を形成する。この際内壁5、6、7、8に切り欠き5a、6a、7a、8aを設けるが、外壁3には切り欠きは設けない。ウエハ2と静電チャック本体1の表面とで形成される空間と、静電チャック10が配置されるチャンバー内雰囲気を分けるものであるからである。外壁3および内壁5、6、7、8のウエハ2との接触面となるワーク載置部はガスシール性が必要となるので、表面粗さRa0.2μm未満にポリッシュすることが好ましい。
【0025】
外周部9aないしは中心部9cにワークとの接触面を備える凸部を複数点在させても構わない。凸部の上面のウエハーと接触する部分は隔壁の上面と略同一平面上となるようにする。凸部を設けることで、ウエハ2が支持され、ウエハ2が静電チャック10に吸着されたときにウエハ面の反りを抑えることができるからである。凸部はブラスト加工により隔壁の形成時と同時に形成することができる。また、凸部の材質は特に限定されず、化学的気相成長法などによってダイヤモンドライクカーボン等によっても形成できる。
【0026】
内壁5、6、7、8のウエハ2との接触面積の合計値及び凸部の高さは以下のように制御する。静電チャック10の本体1の設置面をラップ加工し(研磨加工)、平面を出したあとで、ブラスト加工(凸部、ガス溝形成)することによって内壁5、6、7、8ないしは凸部を形成する。ブラスト加工時に、図1 に示すような内壁5、6、7、8の配置に対応する凸部原画を静電チャック10の本体1のラップ面に貼付け、凸部以外の部分をブラスト加工によって研削除去する。凸部の高さは、ブラスト加工時間によって制御する。即ち、凸部の高さは、ブラスト加工時間に依存する。凸部の高さは表面粗さ計を用いて確認することができる。
【0027】
(実施形態の変形例)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。具体的には、図1(a)(b)の静電チャックの内壁5、6、7、8を、それぞれ図3(a)(b)に示す内壁25、26に置き換えた静電チャック20、図4(a)(b)に示す内壁35、36、37、38に置き換えた静電チャック30、図5(a)(b)に示す内壁43、44、45、46、47、48、50に置き換えた静電チャック40が提供される。尚、符号の末尾の数字が一致するものは同様の位置に配置されることを意味する。
【0028】
例えば、図1(a)(b)の静電チャック10では内壁の数を4としたが、図3(a)(b)に示すように内壁の数を2としても構わない。但し、内壁を設けることによるガス圧力の緩衝効果を効果的に得るためには内壁の数を3以上とすることが好ましい。また図4(a)(b)に示すように、各内壁35、36、37、38に、それぞれ切り欠き35a、35b、36a、36b、37a、37b、38a、38bを設け、各内壁の切り欠きの数を複数としてもよい。この場合、上述の緩衝効果を得るためには、内壁の数を増やすことが好ましく、特に内壁の数を4以上とすることがより好ましい。ガスの流路を静電チャック30の径方向に長くすることで、より効果的に急激な温度変化を抑制することが可能となるからである。また、中心部を低圧空間側とした場合の低圧空間側におけるガスの導入部である切り欠き38aおよび38bの位置を線対称に設けることが可能となるため、中心部のガス圧力分布が対称良くなり、ウエハ2の温度分布をより均一にできる。同様に外周部を低圧空間側とした場合は、35aおよび35bが線対称となる。もっとも、同心円状に配置された複数の内壁で構成される緩衝部39bの幅は、種々のプロセスのウエハ2の温度分布に合わせて適当に制御すればよい。図5(a)(b)に示すように、ガス供給孔1a、1iからガスを供給して外周部49a、緩衝部49b、中心部49cにガスを流す際に、ガスの流路を蛇行させて、緩衝効果をより得やすくするために、内壁の数を6とし、切り欠きの中央に円板の径方向に延在する反転板61、62、63を設けても構わない。
【0029】
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【実施例】
【0030】
(静電チャックの製造例1、2、3、4)
上記静電チャックの製造例に準じて製造されたアルミナセラミックスからなる静電チャック本体を用意する。そしてマスクサンドブラスト法により、静電チャックの本体の表面を研磨して、図3(a)、(b)に示すパターンの内壁25、26を形成した。各内壁間の溝幅は1.0mmとし、内壁幅は0.8mmとし、内壁高さは15μmとした。以上により図3(a)、(b)に示す製造例1にかかる静電チャック20を製造した。
【0031】
図4(a)、(b)に示す製造例2、図5(a)、(b)に示す製造例3、図6(a)、(b)に示す製造例4にかかる静電チャックを、内壁パターンを変更したことを除き、上記製造例1と同様にして製造した。
【0032】
(実施例1)
製造例1の静電チャック20と、静電チャック20の配置部上方に同心円状に配置されたプラズマによる熱発生を模擬するための複数の加熱ランプと、を備える真空チャンバーを用意した。次に真空チャンバーの静電チャック20の表面にウエハ2を載置して、350Vの電圧を静電電極に印加してウエハ2を吸着した。そして、加熱ランプを点灯し、中心部29cと外周部29aで10℃の温度差がつくように、加熱ランプの出力を調整した。温度分布測定はウエハ表面に複数の熱電対が取り付けたTC(Thermo Couple)ウエハを用いて行なった。次に、ウエハ2裏面に静電チャック20のガス供給孔1a〜1mからヘリウム(He)ガスを導入し、中心部29cと外周部29aで差圧をつけた。差圧は中心部29cを1kPaとしたときに外周部29aを2kPaとした。30秒経過後、安定したところで、ウエハ2上の各点の温度測定を行なった。図3(c)に内壁25、26の位置を横軸、内壁25、26周辺の温度を縦軸に取った温度分布グラフを示す。また表1に、ウエハ全体の均熱性(絶対温度分布)[℃]、内壁25、26部分の温度差(温度ギャップΔT)[℃]、内壁25、26部分の距離あたりの温度変化[℃/mm]を示す。
【表1】

【0033】
(実施例2、3)(比較例1)
表1の条件の欄に示すように、静電チャックを製造例1から製造例2、3、4に置き換えたことを除き、実施例1と同様にして実施例2、3、比較例1を行なった。実施例2、3及び比較例1のそれぞれの隔壁部分における局所的な温度測定の結果を図3(c)、図4(c)、図5(c)、図6(c)、及び表1に示す。
【0034】
表1に示すように、差圧がないときのウエハ上の絶対温度分布(ウエハ全体での最高温度と最低温度の差)は10℃であったのに対して、比較例1では、中心部と外周部のガス圧力に差をつけ1kPa/2kPaにすることにより、4℃改善し、6℃となった。しかし、比較例においては、隔壁部分で中心部と外周部のガス圧が大きく変化するために図6(c)に示すように、内壁近傍で温度ギャップ(ΔT)が発生し、比較例1ではΔTが3.6℃、径方向温度変化率は3.0℃/mmと、最先端デバイス向けのプロセスとしては許容できる範囲になかった。特に径方向温度変化率が大きいと隣り合う近傍の回路でエッチングレートに差が発生し、高性能デバイスにおいては作動しなくなる恐れがある。一方、実施例1、2、3では、隔壁近傍での温度ギャップ(ΔT)、径方向温度変化率は比較例に対して著しく小さかった。
【0035】
(実施例4、5、6)(比較例2)
絶対温度分布自体は、単純に中心部と外周部のガス圧力の差異に左右されるため、ガス圧力差を大きくすれば改善できる。そこで、ウエハ2裏面ガス圧力を中心部1kPa、外周部3kPaとして実験を行なった。即ち表1の条件の欄に示す条件にしたことを除き、実施例1と同様にして、実施例4、5、6、比較例2を行なった。得られた温度測定の結果を表1に示す。
【0036】
表1に示すように、比較例2では、隔壁部分の温度ギャップ(ΔT)が4.8℃と比較例1に対してさらに増加し、これが絶対温度分布となってしまって、ウエハ全体の絶対温度分布自体は5.2℃しか改善しなかった。一方、実施例4、5、6では、ウエハの最外周の温度を下げるとともに、内壁部分の温度ギャップがガス圧力差の小さいときに比べてほとんど変わらないため、絶対温度分布が大幅に改善でき、ウエハ全体として、3℃以下の極めて良好な均熱性を得ることができた。
【0037】
(実施例7、8、9)(比較例3)
さらに中心部と外周部のガス圧力に差をつけ、中心部1kPa、外周部4kPaとした。
【0038】
即ち表1の条件の欄に示す通りにしたことを除き、実施例1と同様にして、実施例7、8、9、比較例3を行なった。得られた温度測定の結果を表1に示す。
【0039】
表1に示すように、比較例3では内壁部分の温度ギャップが、中心部と外周部の温度差よりも大きくなってしまい、ウエハの絶対温度分布は比較例2にくらべ逆に悪化した。しかし、実施例7、8、9では内壁部分の温度ギャップがガス圧力差の小さいときに比べてほとんど変わらないため、絶対温度分布がさらに小さく良好な結果となった。
【0040】
以上のように比較例では、ガス圧力差がつくに従い、ΔTが大きくなり、1kPa/4kPaの時には、内壁部分における温度ギャップがウエハ全体で最も大きくなってしまった。一方、本発明例では、ΔTがさほど大きくならないため、中心部と外周部の圧力差によるウエハ温度分布の改善効果がそのまま享受できる。
【0041】
さらに実施例1〜3、4〜6、7〜9の結果より、各圧力条件において、各内壁の数を増すことにより、隔壁近傍での温度ギャップ(ΔT)、径方向温度変化率を、小さくすることができる。この様子は図3(c)、図4(c)、図5(c)、図6(c)を比較することでより良く理解できよう。
【0042】
以上から、実施例にかかる静電チャックは、比較例にかかる静電チャックに比べて、極めて広範囲の温度分布を補正する機能を有している。すなわち、本発明によれば、同じ静電チャックを用いて、ガス圧力を変化させることにより、さまざまなプロセスにおいても、ウエハ上の温度分布を均一にすることが可能になる。
【0043】
なお、上記の説明では外周部の温度が高くなるプロセスを模擬したが、中心部の温度が高くなるプロセスにおいても、本発明は同様の効果を発揮する。
【図面の簡単な説明】
【0044】
【図1】図1(a)は実施形態にかかる静電チャックの上面図を示し、図1(b)は実施形態にかかる静電チャックの断面図を示す。
【図2】図2(a)、(b)、(c)、(d)、(e)のそれぞれは実施形態にかかる静電チャックを用いたワークの冷却方法の工程断面図を示す。
【図3】図3(a)、(b)、(c)はそれぞれ実施形態の変形例1(実施例1)にかかる静電チャックの上面図、断面図、隔壁部分の局所的なウエハの径方向温度分布を示す。
【図4】図4(a)、(b)、(c)はそれぞれ実施形態の変形例2(実施例2)にかかる静電チャックの上面図、断面図、隔壁部分の局所的なウエハの径方向温度分布を示す。
【図5】図5(a)、(b)、(c)はそれぞれ実施形態の変形例3(実施例3)にかかる静電チャックの上面図、断面図、隔壁部分の局所的なウエハの径方向温度分布を示す。
【図6】図6(a)、(b)、(c)はそれぞれ比較例にかかる静電チャックの上面図、断面図、隔壁部分の局所的なウエハの径方向温度分布を示す。
【符号の説明】
【0045】
1:本体
2:ウエハ(ワーク)
3:外壁
5、6、7、25、26、35、36、37、38、43、45、46、47、48、50、105:内壁
4、24、34、44:溝
9a、29a、39a、49a、109a:外周部
9b、29b、39b、49b、109b:緩衝部
9c、29c、39c、49c、109c:中心部
1a〜1m:ガス供給孔
10、20、30、40、100:静電チャック

【特許請求の範囲】
【請求項1】
ワークをワーク載置面に固定する静電チャックであって、
前記ワーク載置面を有する円板状の本体が、
前記本体の周縁に設けられた外壁と、
前記外壁の内側に前記外壁と同心円状に配置され、それぞれ一部に切り欠きを備える複数の内壁と、
前記本体の前記外壁と最外郭の前記内壁との間に定義される外周部と最内郭の前記内壁に囲まれる中心部にそれぞれガス供給孔と、を有し、
前記ワークを前記外壁及び前記内壁のワーク載置部に配置した際に、前記外壁及び前記内壁に形成される前記ワークとの接触面が略同一平面にあり、前記ワークと前記本体との間に形成される中心部の空間と外周部の空間とが、前記内壁に設けられた切り欠きを介して形成されるガスの流路によって互いに連通することを特徴とする静電チャック。
【請求項2】
前記複数の内壁の数は3以上で、それぞれ内壁の切り欠きは隣り合う内壁の切り欠きと重ならないように配置されていることを特徴とする請求項1記載の静電チャック。
【請求項3】
前記複数の内壁が、それぞれ複数の切り欠きを備えることを特徴とする請求項1又は2記載の静電チャック。
【請求項4】
前記ガスの流路方向が反転するように、前記切り欠きの中央に前記円板の径方向に延在する反転壁を有することを特徴とする請求項1〜3のいずれかに記載の静電チャック。
【請求項5】
ワークをワーク載置面に固定する静電チャックであって、前記ワーク載置面を有する円板状の本体が、前記本体の周縁に設けられた外壁、前記外壁の内側に前記外壁と同心円状に配置されそれぞれ一部に切り欠きを備える複数の内壁、前記本体の前記外壁と最外郭の前記内壁との間に定義される外周部と最内郭の前記内壁に囲まれる中心部にそれぞれガス供給孔を有する静電チャックを用意する工程と、
前記ワークを前記ワーク載置部に配置して、前記ワークと前記本体との間に、前記複数の内壁にそれぞれ設けられた切り欠きを介して互いに結ばれたガスの流路を形成する工程と、
前記外周部と前記内周部のガス供給孔から前記中心部及び前記外周部のいずれか一方の圧力が高くなるようにガスを供給し、前記複数の内壁の間に定義される緩衝部でガス圧力を緩衝しながら前記ガスを充填する工程と、
を有することを特徴とするワークの冷却方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−16573(P2009−16573A)
【公開日】平成21年1月22日(2009.1.22)
【国際特許分類】
【出願番号】特願2007−176651(P2007−176651)
【出願日】平成19年7月4日(2007.7.4)
【出願人】(000004064)日本碍子株式会社 (2,325)
【Fターム(参考)】