説明

GaN系LED素子

【課題】低温成長などの方法でGaN系半導体膜に形成された粗化面を有するGaN系LED素子において、電極として形成される金属膜の光吸収に基づく損失を低減するための素子構造を提供する。
【解決手段】上面が粗化されたp型導電層と、該p型導電層の下面側に配置された発光層と、該p型導電層とで該発光層を挟むように配置されたn型導電層とを含む、積層構造のGaN系半導体膜から、少なくとも該p型導電層および該発光層の一部を除去することによって、該p型導電性層、該発光層および該n型導電層を含む積層部と、該n型導電層の平坦な露出面とが隣接する構造が形成されており、該露出面上に第1電極金属膜を含むn側電極が形成され、該p型導電性層の上面にTCO膜からなる透光性電極が形成されている、GaN系LED素子。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、GaN系半導体膜に粗化面(textured surface)を有するGaN系LED(発光ダイオード)素子に関する。
【背景技術】
【0002】
GaN系半導体は、一般式AlInGa1−a−bN(0≦a≦1、0≦b≦1、0≦a+b≦1)で表される化合物半導体であり、3族窒化物半導体、窒化物系半導体などとも呼ばれる。n型導電層とp型導電層とこれらの層の間に挟まれた発光層とからなるダブルヘテロpn接合型の発光構造を、GaN系半導体を用いて形成してなるGaN系LED素子は、近紫外〜緑の波長域の光を発生させることができる。GaN系LED素子と蛍光体とを組み合わせて構成した白色発光装置が、液晶ディスプレイのバックライトユニット用光源や室内照明用光源として実用化されている。
【0003】
一般的なGaN系LED素子は、サファイア基板上にMOVPE法によりGaN系半導体膜をエピタキシャル成長させる工程を経て製造される。この工程では、サファイア基板上にバッファ層を介してn型導電層が形成され、そのn型導電層の上に発光層とp型導電層が順次形成される。このp型導電層を800℃程度の温度で成長させると、多数のピットが形成された粗化面(textured surface)が形成される(非特許文献1)。
【0004】
非特許文献2には、透明導電性酸化物(TCO:Transparent Conductive Oxide)であるITO(インジウム錫酸化物)からなる透光性電極をp型導電層上に有するGaN系LED素子において、低温成長によりp型導電層に粗化面を形成したときの方が、p型導電層の上面が鏡面の場合よりもフリップチップ実装時の出力が高くなったことが報告されている。このことは、粗化面の光散乱作用が光取出し効率の改善効果をもたらしていることを示唆している。かかる粗化面を有するGaN系半導体膜の透明性が低いのは、光を強く散乱していることの現れであると解される。
【0005】
非特許文献3のFig.1に示された電子顕微鏡像によれば、低温で成長されたGaN系半導体の粗化面上に形成されたITO膜は、膜厚が不均一であり、その表面平滑性は極めて悪い。
【0006】
特許文献1には、低温成長によりGaN系半導体膜に形成された粗化面を、エッチバック法によって部分的に平坦化する方法が開示されている。エッチバック法とは、簡単に説明すれば、粗い半導体表面を、該表面の起伏を完全に埋め込むマスク層で被覆したうえで、該マスク層と該半導体のエッチング速度が同等となる条件を用いて該マスク層の表面側から該マスク層が完全に除去されるまでエッチングを行うことによって、平坦な半導体表面を露出させるという平坦化方法である。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2006−196692号公報
【特許文献2】国際公開WO2010/150809号公報
【非特許文献】
【0008】
【非特許文献1】L.W. Wu et al., Solid-State Electronics, 47, 2027 (2003)
【非特許文献2】Chia-En Lee et al., IEEE Photonics Technology Letters, 20, 659 (2008)
【非特許文献3】Yi-Jung Liu et al., Electrochemical and Solid-State Letters, 13, H406 (2010)
【発明の概要】
【発明が解決しようとする課題】
【0009】
非特許文献2に開示されたGaN系LED素子では、p型導電層の粗化面上にITO膜が形成され、そのITO膜の表面に金属製のボンディングパッドが形成されている。このボンディングパッドの裏面は、下地であるp型導電層およびITO膜の表面形状を反映することから、平滑性が極めて悪く、その反射率は著しく低い。反射率の低い金属表面は入射する光の多くの部分を吸収して熱に変換するので、LED素子の発光効率を大きく低下させる。
【0010】
また、非特許文献2のFig.1では、n側電極(ボンディングパッド)が形成される面(n型導電層の露出面)が平坦に描かれているが、この面はp型導電層の粗化面をドライエッチングすることにより形成されていることからすれば、実際には、p型導電層の表面と類似した粗化面である。従って、この面上に形成されたn側電極の裏面は平滑性が悪く、その反射率は低いと考えられる。
【0011】
非特許文献2の例に限らず、光取出し効率の改善の目的でGaN系半導体膜に粗化面を設ける試みの多くにおいて、粗化面上に電極金属膜が形成されている。しかし、かかる金属膜の光吸収が問題点として取り上げられることは、これまでなかったように思われる。本発明は、かかる事情に鑑みなされたものであり、低温成長などの方法でGaN系半導体膜に形成された粗化面を有するGaN系LED素子において、電極として形成される金属膜の光吸収に基づく損失を低減するための素子構造を提供することを主たる目的とするものである。
【課題を解決するための手段】
【0012】
本発明によれば、次に挙げるGaN系LED素子が提供される。
(1)上面が粗化されたp型導電層と、該p型導電層の下面側に配置された発光層と、該p型導電層とで該発光層を挟むように配置されたn型導電層とを含む、積層構造のGaN系半導体膜から、少なくとも該p型導電層および該発光層の一部を除去することによって、該p型導電性層、該発光層および該n型導電層を含む積層部と、該n型導電層の平坦な露出面とが隣接する構造が形成されており、該露出面上に第1電極金属膜を含むn側電極が形成され、該p型導電性層の上面にTCO膜からなる透光性電極が形成されている、GaN系LED素子。
(2)前記p型導電層は低温成長により形成されたピットを上面に有する、前記(1)に記載のGaN系LED素子。
(3)前記第1電極金属膜の少なくとも一部が前記n型導電層の平坦な露出面に接している、前記(1)または(2)に記載のGaN系LED素子。
(4)前記第1電極金属膜が前記n型導電層の平坦な露出面と接する部分にAl層を有する、前記(3)に記載のGaN系LED素子。
(5)前記n側電極が前記n型導電層の平坦な露出面と接する部分にTCO膜を有し、該TCO膜上に前記第1金属膜を有する、前記(1)または(2)に記載のGaN系LED素子。
(6)前記第1電極金属膜がボンディングパッド部と該ボンディングパッド部から延びる延長部とを有している、前記(1)〜(5)のいずれかに記載のGaN系LED素子。
(7)前記透光性電極上の一部に第2電極金属膜が形成され、該第2電極金属膜の直下に該透光性電極と前記p型導電層とを絶縁する誘電体膜を有する、前記(1)〜(6)のいずれかに記載のGaN系LED素子。
(8)前記第2電極金属膜が、ボンディングパッド部と該ボンディングパッド部から延び
る延長部とを有している、前記(7)に記載のGaN系LED素子。
(9)前記誘電体膜は前記p型導電層よりも表面平滑性が良好である、前記(7)または(8)に記載のGaN系LED素子。
(10)前記誘電体膜が、前記第2電極金属膜の直下から延びる延長部を、前記p型導電層と前記透光性電極との間に有している、前記(9)に記載のGaN系LED素子。
(11)前記n型導電性層の平坦な露出面とは異なる部位に、前記GaN系半導体膜から少なくとも前記p型導電層および前記発光層の一部を除去することにより形成された、前記n型導電層の粗い露出面を有する、前記(1)〜(10)のいずれかに記載のGaN系LED素子。
(12)平面視したとき、前記n型導電層の粗い露出面が環状をなし、前記積層部および前記n型導電層の平坦な露出面を取り囲んでいる、前記(11)に記載のGaN系LED素子。
【発明の効果】
【0013】
本発明の実施形態に係る上記(1)〜(12)の各GaN系LED素子は、p型導電層の粗化された上面の作用により光取出し効率に優れる一方、n側電極形成面として形成されたn型導電層の露出面は平坦であることから、n側電極に含まれる金属膜の光吸収による発光効率の低下が抑制されている。
【図面の簡単な説明】
【0014】
【図1】実施形態に係るGaN系LED素子の構造を示しており、図1(a)は平面図、図1(b)は図1(a)のX−X線の位置における断面図である。
【図2】。図1に示すGaN系LED素子に含まれるn側電極のみを表示する上面図である。
【図3】n側電極形成面を形成する方法を説明するための工程断面図である。
【図4】n側電極形成面を形成する方法を説明するための工程断面図である。
【図5】誘電体膜のみを表示する上面図であり、図5(a)は図1に示すGaN系LED素子に含まれる誘電体膜の上面図、図5(b)は変形例に係る誘電体膜の上面図である。
【図6】好適な実施形態における、発光層の上面に対する電極金属膜の正射影と誘電体膜の正射影との関係を説明するための図である。
【図7】実施形態に係るGaN系LED素子の断面図である。
【発明を実施するための形態】
【0015】
実施形態に係るGaN系LED素子100の構造を図1に示す。図1(a)は平面図であり、図1(b)は図1(a)のX−X線の位置における断面図である。GaN系LED素子100は、透光性基板110上に積層されたGaN系半導体膜を有している。このGaN系半導体膜は、透光性基板110側からn型導電層121、発光層122およびp型導電層123が順次積層された積層部120を含んでいる。図1(b)中の拡大図に示すように、積層部120の最上部に設けられたp型導電層123の上面には、断面がV字型を呈するピットが高密度に形成されている。すなわち、p型導電層123の上面は粗化されている。
【0016】
積層部120に隣接して、平坦に形成されたn型導電層121の露出面であるn側電極形成面121Aが設けられている。このn側電極形成面121A上にはn側電極130が形成されている。n側電極130は金属膜のみからなるものであってもよいし、n型導電層121とオーミック接触するTCO膜とその上に積層された金属膜とからなる積層体であってもよい。GaN系LED素子では注入電流の増加とともに発光効率が減少する現象(ドループ現象)が不可避的に生じることを考慮すると、n側電極形成面121Aの面積をn側電極130の形成に必要な最小限度に抑えて、発光構造が含まれる部位である積層部
120の面積をできるだけ大きくすることが好ましい。
【0017】
積層部120上には、TCO膜からなる透光性電極141と、その一部上に形成された電極金属膜142とを含むp側電極140が形成されている。電極金属膜142の直下には、p型導電層123と透光性電極141とを絶縁する誘電体膜150が形成されている。素子の周縁領域には、粗く形成されたn型導電層121の露出面である溝底121Bが、積層部120およびn側電極形成面121Aを取り囲むように設けられている。この溝底121Bは、ウェハサイズの基板を用いてGaN系半導体素子100を製造する過程で、素子分離のためにGaN系半導体膜に形成された溝の底面である。
【0018】
図2はn側電極130のみを抜き出して表示した上面図である。n側電極130は、ボンディングパッド部131と、該ボンディングパッド部から延びる延長部132とを有している。ボンディングパッド部131は、ボンディングワイヤあるいは導電性接合材を接合するための部位である。導電性接合材が使用されるのはフリップチップ実装の場合であり、ハンダ、銀ペースト、金属バンプなどが導電性接合材の具体例として挙げられる。延長部132は電流を発光層122に平行な方向に効率よく広げるために設けられており、発光層122で生じる光をできるだけ吸収または遮蔽しないように、細長い形状とされている。図1(a)に示すように、GaN系LED素子100では、p側電極140に含まれる電極金属膜142もボンディングパッド部と延長部とを有している。n側電極130や電極金属膜142に設けるボンディングパッド部の平面形状は矩形に限定されるものではなく、円形、楕円形などであってもよい。
【0019】
電極金属膜にボンディングパッド部と延長部を設ける構成は、サイズの大きなGaN系LED素子において特に有用である。GaN系LED素子の形状およびサイズ、ならびにボンディングパッド部の配置に応じて、ひとつのボンディングパッド部から延びる延長部の数は1本にすることもできるし、3本以上とすることもできる。また、延長部が途中で枝分かれする構成や、異なるボンディングパッド部から延びる延長部同士が繋がっている構成なども、適宜採用することができる。なおn側電極とp側電極のいずれにおいても、電極金属膜は少なくともボンディングパッドとして使用可能な部分を有することが必須である一方、延長部を有することは必須ではない。
【0020】
電極金属膜142はp型導電層123の粗化面上に透光性電極141を介して形成されるために、その裏面の反射率は著しく低い。従って、その直下での発光を許した場合、その光は高い確率で電極金属膜142に吸収されるので、大きな損失が生じる。そこで、電極金属膜142の直下における発光を抑制して損失を低減するために、誘電体膜150が形成されている。シート抵抗の大きなp型導電層123の内部では層に平行な方向に電流が十分に拡散しないので、誘電体膜150によって透光性電極141からp型導電層123への電流注入を阻止すれば、誘電体膜150の直下、すなわち電極金属膜142の直下における発光層122への電流注入が実質的に阻止される。
【0021】
GaN系LED素子100は次に説明する手順により製造することができる。
【0022】
まず、GaN系半導体のエピタキシャル成長に使用可能なウェハサイズ(例えば、直径2インチ)の透光性基板110を準備する。例えば、サファイア、スピネル、炭化ケイ素、酸化亜鉛、酸化マグネシウム、GaN、AlGaN、AlN、NGO(NdGaO)、LGO(LiGaO)、LAO(LaAlO)などからなる単結晶基板が使用可能である。サファイア基板は好ましい透光性基板のひとつであるが、中でも、GaN系半導体を成長させるべき表面に、光散乱を発生させるための凸部または凹部がエッチング加工により形成されたPSS(Patterned Sapphire Substrate)は、特に好適である。そのPSSの中でも特に好適なのは、凸部が円錐状または半球状に形成されたものである。
【0023】
次に、準備した透光性基板110上に、エピタキシャル成長法によってn型導電層121、発光層122、p型導電層123を順次成長させる。エピタキシャル成長法としては、MOVPE法、HVPE法、MBE法、スパッタリング法、反応性スパッタ法、その他の公知の方法を適宜用いることができる。サファイア基板のようにGaN系半導体との格子定数差の大きな透光性基板を用いる場合には、透光性基板110上にバッファ層を形成してからn型導電層121を成長させる。
【0024】
GaN系半導体にn型導電性またはp型導電性を付与するために添加することのできる不純物の種類については、公知技術を参照することができる。n型導電層121は、好ましくは、Si(ケイ素)を3×1018〜5×1019cm−3の濃度で添加したAlGa1−xN(0≦x≦0.05)で、2〜6μmの厚さに形成する。発光層122は、好ましくは、InGa1−xN(0<x)井戸層とInGa1−yN(0≦y<x)障壁層とを交互に積層した多重量子井戸層とする。井戸層および障壁層のそれぞれに添加することのできる不純物の種類および濃度については、公知技術を参照することができる。p型導電層123は、好ましくは、Mg(マグネシウム)を5×1019〜1×1021cm−3の濃度で添加したAlGa1−xN(0≦x≦0.05)で、0.3〜2μmの厚さに形成する。p型導電層の膜厚が小さ過ぎる場合、その上面を粗化しても十分な光散乱作用を発生させることができないので注意を要する。
【0025】
透光性基板110とn型導電層121の間、n型導電層121と発光層122の間、発光層122とp型導電層123の間には、公知技術を参照して、様々な機能を有するGaN系半導体層を挿入することができる。例えば、欠陥低減層、歪緩和層、キャリアブロック層などである。挿入するGaN系半導体層は、超格子のように多層構造を有するものであってもよい。
【0026】
p型導電層123の上面を粗化する方法は特に限定されない。MOVPE法を用いる場合、p型導電層123の成長温度を700〜900℃とすることによって、上面にピットを発生させることができる。好ましくは深さ0.3μm以上、より好ましくは深さ0.4μm以上のピットが形成されるように、p型導電層123の膜厚および成長条件を設定する。ピットの発生には貫通転位が関与していることから、p型導電層123の上面に好ましいサイズのピットを高密度に発生させるためには、貫通転位が約10/cmの密度で生じるよう、サファイア基板のようなGaN系半導体との間にある程度の格子定数差を有する透光性基板を用いることが好ましい。GaN基板のような窒化物半導体基板を用いる場合には、基板とp型導電層の間に、貫通転位密度を増加させる機能を有する層を設けることが好ましい。かかる機能を有する層については、特許文献2を参照することができる。
【0027】
1000℃以上の成長温度で上面が平坦となるようにp型導電層123を形成した後、ナノマスクを用いたエッチングによって該上面を粗化することもできる。かかる技術については公知文献を適宜参照することができる。
【0028】
次に、GaN系半導体膜からドライエッチングによってp型導電層123および発光層122を部分的に除去することにより、n側電極形成面121Aを形成する。この工程では、前述のエッチバック法を用いて、n型導電層121を平坦に露出させる。具体的には、まず、図3(a)に示すようにp型導電層123の上面全体に保護膜Pを形成する。保護膜Pは、金属あるいはSiOのような酸化物で形成することができる。次に、通常のフォトリソグラフィ技法を用いて、図3(b)に示すように、形成すべきn側電極形成面の形状に応じた開口部を保護膜Pに形成する。開口部形成後、図3(c)に示すように、起伏を平坦に埋め込むマスク層Qでウェハ上面を覆う。マスク層Qはフォトレジストを用い
て形成することができる。
【0029】
次に、マスク層Qの上からウェハをドライエッチする。このとき、保護膜Pのエッチング速度がマスク層Qのエッチング速度よりも小さくなるように、かつ、マスク層QとGaN系半導体(p型導電層123、発光層122、n型導電層121)のエッチング速度が同等となるように、ドライエッチング条件を設定する。かかる条件を用いると、図4(d)に示すように、保護膜Pが形成された領域では、保護膜Pが露出したところでエッチングが止まる。一方、保護膜Pに開口部が形成された領域では、マスク層Qとp型導電層123とが同じ速度でエッチングされる結果、図4(e)に示すように、マスク層Qが完全に除去された時点で、p型導電層123の露出面が平坦となる。更にエッチングを続けることにより、図4(f)に示すように、全域にわたって平坦なn側電極形成面121Aが形成される。その後、図4(g)に示すように、適当なエッチャントを用いて保護膜Pを除去する。
【0030】
n側電極形成面121Aの形成後、p型導電層123上に誘電体膜150を部分的に形成する。誘電体膜150の材料に特に限定はなく、フッ化マグネシウム、フッ化リチウム、酸化ケイ素、酸化マグネシウム、スピネル、酸化アルミニウム、酸化ジルコニウム、酸化タンタル、酸化ニオブ、酸化チタン、窒化ケイ素、酸窒化ケイ素などといった、各種金属のフッ化物、酸化物、窒化物、酸窒化物を用いることができる。また、PSG(Phospho−Silicate−Glass)、BPSG(Boro−Phospho−Silicate−Glass)、スピンオングラスなどのガラス系材料を用いることもできる。誘電体膜150の平面形状およびサイズは、図5(a)に示すように、その上方に形成する電極金属膜142と略同一とすることができる。ただし、形状とサイズを完全に同一とした場合、製造工程で誘電体膜150と電極金属膜142の平面位置が僅かにずれただけで、誘電体膜150の効果が著しく低下する。そこで、図6に示すように、発光層の上面に対する誘電体膜150の正射影が、電極金属膜142の正射影を包含するように、誘電体膜150の面積を電極金属膜142よりもやや大きくすることが望ましい。例えば、誘電体膜150の面積を電極金属膜142の120〜150%とする。
【0031】
誘電体膜150をガラス系材料で形成する場合、リフローによって誘電体膜150の表面平坦性をp型導電層123よりも良好なものとすることができる。そうした場合、誘電体膜150の表面に形成されるTCO膜は、p型導電層123の表面に形成されるTCO膜に比べて、面内の膜厚変動が小さくなるので、シート抵抗が低いものとなる。従って、図5(b)に示すように、誘電体膜に、電極金属膜142の直下から直下でない領域に延びる延長部150Aを形成すると、該延長部150A上には透光性電極141のシート抵抗が部分的に低くなった領域が形成される。このとき、透光性電極141内を拡散する電流は、とりわけ延長部150Aの長手方向に沿って拡散し易くなる。このことは、延長部150Aを適切に設けることによって、透光性電極141の内部を流れる電流を所望の方向に拡散し易くすることができることを意味している。
【0032】
誘電体膜150の形成後、p型導電層123上にTCO膜からなる透光性電極141を形成する。ITO、IZO(インジウム亜鉛酸化物)などの酸化インジウムベースのTCO、AZO(アルミニウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)などの酸化亜鉛ベースのTCO、FTO(フッ素ドープ酸化錫)などの酸化錫ベースのTCOを好ましく用いることができる。透光性電極141の形成方法に限定はなく、スパッタ法、反応性スパッタ法、真空蒸着法、イオンビームアシスト蒸着法、イオンプレーティング法、レーザアブレーション法、CVD法、スプレー法、スピンコート法、ディップ法など、公知の方法を適宜用いることができる。透光性電極141は、サブトラクティブな方法とアディティブな方法(リフトオフ法)のいずれによってパターニングしてもよい。
【0033】
n側電極130と電極金属膜142とは、いずれを先に形成してもよい。また、同時に形成することもできる。同時形成した場合には、n側電極130と電極金属膜142の厚さ(多層構造の場合には、各層の厚さ)が略同じとなる。
【0034】
n側電極130は、少なくともn型導電層121に接する部分を、n型GaN系半導体と良好なオーミック接触を形成する材料で形成する。かかる材料として、Al(アルミニウム)、Ti(チタン)、W(タングステン)、Ni(ニッケル)、Cr(クロム)もしくはV(バナジウム)の単体、または、これらから選ばれる1種以上の金属を含む合金が挙げられる。中でも、近紫外〜青の波長域における反射率が高いことから、AlおよびAl合金は特に好ましい材料である。Al合金としては、Ti、Nd(ネオジム)、Si(ケイ素)、Cu(銅)、Mg(マグネシウム)、Mn(マンガン)、Crなどの添加元素を含むものが例示される。
【0035】
n側電極130は、n型導電層121に接する部分にTCO膜、すなわち、酸化インジウム、ITO、IZO、酸化亜鉛、AZO、GZO、酸化錫、FTOなどからなる透光性膜を有していてもよい。このTCO膜は、p型導電層123上に設ける透光性電極142と同時に形成することができる。
【0036】
n側電極130の表層部分は金属で形成する。ボンディングワイヤとして多用されるAuワイヤのボンダビリティを高くするには、該表層部分をAuで形成することが好ましい。該表層部分をAu、Ptのような酸化し難い金属で形成した場合には、ハンダによる濡れ性が良好となる。該表層部分は、ボンディングに使用されることが予定されているハンダに成分として含まれる金属を用いて形成してもよい。該表層部分に用ける金属層と、その下方に設ける金属層との間には、これらの層の間で所望しない合金化反応が生じることのないように、高融点金属からなるバリア層を設けることができる。
【0037】
電極金属膜142は、透光性電極141と接する部分を、Al、Ag、白金族(Pt、Pt、Pd、Rh、Ru、Ir)のような反射率の高い金属で形成してもよいし、あるいは、Cr、Ni(ニッケル)、Ti(チタン)、Zr(ジルコニウム)、W(タングステン)のような、TCOに対して強く接着する金属で形成してもよい。電極金属膜142の表層部分はAu、Ptなどで形成できる他、ボンディングに使用されることが予定されているハンダに成分として含まれる金属を用いて形成することができる。
【0038】
前述のように、電極金属膜142は少なくともボンディングパッドとして使用可能な部位を有する。GaN系LED素子100を実装する際、該部位にはボンディングワイヤあるいは導電性接合材が接合される。超音波印加によりボンディングワイヤが接合されるに受ける強い応力に耐え得るように、電極金属膜142はp型導電層123に対し強固に固定されていなくてはならない。あるいは、フリップチップ実装されたGaN系LED素子100が実装面に確実に固定されるために、電極金属膜142とp型導電層123との結合は強固でなくてはならない。
【0039】
そこで、一例では、図7に示すように、誘電体膜150上のTCO膜141に貫通孔を設け、この貫通孔を通して誘電体膜150と電極金属膜142とを直に接合させてもよい。それによって、p型導電層123と電極金属膜142との間に存在する材料間の界面の数が減少するので、両者間の結合強度が改善される。
【0040】
通常は、ウェハを分断してGaN系LED素子100をチップ(ダイともいう)にするダイシング工程の前に、ウェハ上の各素子を電気的に分離させる。具体的には、各LED素子が孤立した積層部120を有するように、エッチングによってGaN系半導体膜にn型層121に達する素子分離溝を形成する。ダイシング工程ではこの素子分離溝の位置でウ
ェハを分割するので、結果として、チップ化されたGaN系LED素子100は、周縁部にこの素子分離溝の底部であった溝底121Bを有することになる。GaN系半導体膜の内側からこの溝底121Bに入射する光を反射させないように、この溝底121Bは粗面とする(平坦化しない)ことが好ましい。そのために、素子分離溝を形成するエッチング工程は、n側電極形成面121Aを形成するエッチング工程とは別工程とすることが好ましい。
【0041】
一例では、光取出し効率の改善を図るために、素子の周縁部以外の領域でも、粗いn型層121の露出面を底面とする孔または溝をGaN系半導体膜に形成することができる。
【0042】
ダイシング工程の前に、n側電極形成面121Aや素子分離溝の形成により露出する発光層122の端面や、薄いTCO膜からなる透光性電極141の表面を保護するために、電極金属膜の表面を除くウェハの表面を覆うパッシベーション膜を形成することが好ましい。パッシベーション膜は、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、PSG、BPSG、スピンオングラスなどで形成することができる。
【0043】
ダイシング工程では、ウェハを分断する前に、透光性基板110の裏面にグラインディング加工またはラッピング加工を行い、その膜厚を低減させてもよい。LEDチップはダイシングブレードを備えたダイサーを用いてウェハから切り出してもよいし、あるいは、ダイヤモンペンでウェハ表面にスクライブ線を形成し、このスクライブ線を起点にしてウェハを割ってチップにしてもよい。スクライブ線の代わりに、レーザ加工によりウェハ表面に形成した溝、あるいは、ウェハ内部に形成した改質領域を起点として、ウェハを割ることも可能である。
【0044】
上記の手順で得たGaN系LED素子100を実装するときには、LEDチップを固定すべき部材に対し、当該LEDチップが透光性基板110側の面を向けるように固定してもよいし、その反対に、LEDチップを固定すべき部材に対し、当該LEDチップがn側電極130およびp側電極140が形成された側の面を向けるように固定してもよい(フリップチップ実装)。フリップチップ実装する場合には、固定用部材にLEDチップを固定した後で、レーザリフトオフ技法を用いてGaN系半導体膜と透光性基板110とを分離させることができる。
【符号の説明】
【0045】
100 GaN系LED素子
110 透光性基板
120 積層部
121 n型導電層
121A n側電極形成面
121B 溝底122 発光層
123 p型導電層
130 n側電極
131 ボンディング部
132 延長部
140 p側電極
141 透光性電極
142 電極金属膜
150 誘電体膜
150A 延長部
P 保護膜
Q マスク層

【特許請求の範囲】
【請求項1】
上面が粗化されたp型導電層と、該p型導電層の下面側に配置された発光層と、該p型導電層とで該発光層を挟むように配置されたn型導電層とを含む、積層構造のGaN系半導体膜から、少なくとも該p型導電層および該発光層の一部を除去することによって、該p型導電性層、該発光層および該n型導電層を含む積層部と、該n型導電層の平坦な露出面とが隣接する構造が形成されており、該露出面上に第1電極金属膜を含むn側電極が形成され、該p型導電性層の上面にTCO膜からなる透光性電極が形成されている、GaN系LED素子。
【請求項2】
前記p型導電層は低温成長により形成されたピットを上面に有する、請求項1に記載のGaN系LED素子。
【請求項3】
前記第1電極金属膜の少なくとも一部が前記n型導電層の平坦な露出面に接している、請求項1または2に記載のGaN系LED素子。
【請求項4】
前記第1電極金属膜が前記n型導電層の平坦な露出面と接する部分にAl層を有する、請求項3に記載のGaN系LED素子。
【請求項5】
前記n側電極が前記n型導電層の平坦な露出面と接する部分にTCO膜を有し、該TCO膜上に前記第1金属膜を有する、請求項1または2に記載のGaN系LED素子。
【請求項6】
前記第1電極金属膜がボンディングパッド部と該ボンディングパッド部から延びる延長部とを有している、請求項1〜5のいずれか一項に記載のGaN系LED素子。
【請求項7】
前記透光性電極上の一部に第2電極金属膜が形成され、該第2電極金属膜の直下に該透光性電極と前記p型導電層とを絶縁する誘電体膜を有する、請求項1〜6のいずれか一項に記載のGaN系LED素子。
【請求項8】
前記第2電極金属膜が、ボンディングパッド部と該ボンディングパッド部から延びる延長部とを有している、請求項7に記載のGaN系LED素子。
【請求項9】
前記誘電体膜は前記p型導電層よりも表面平滑性が良好である、請求項7または8に記載のGaN系LED素子。
【請求項10】
前記誘電体膜が、前記第2電極金属膜の直下から延びる延長部を、前記p型導電層と前記透光性電極との間に有している、請求項9に記載のGaN系LED素子。
【請求項11】
前記n型導電性層の平坦な露出面とは異なる部位に、前記GaN系半導体膜から少なくとも前記p型導電層および前記発光層の一部を除去することにより形成された、前記n型導電層の粗い露出面を有する、請求項1〜10のいずれか一項に記載のGaN系LED素子。
【請求項12】
平面視したとき、前記n型導電層の粗い露出面が環状をなし、前記積層部および前記n型導電層の平坦な露出面を取り囲んでいる、請求項11に記載のGaN系LED素子。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−174730(P2012−174730A)
【公開日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2011−32403(P2011−32403)
【出願日】平成23年2月17日(2011.2.17)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】