説明

Fターム[4G075BD15]の内容

物理的、化学的プロセス及び装置 (50,066) | 処理操作−対象の状態 (2,801) | 特定の接触状態を呈する (1,849) | 液体−液体接触 (404)

Fターム[4G075BD15]に分類される特許

141 - 160 / 404


【課題】安定した分子膜を容易に作製することができるマイクロリアクタ及び分析システムを用いた抽出システム、抽出方法、タンパク質合成システム及びタンパク質合成方法を提供する。
【解決手段】逆ミセルによるマイクロ抽出システム(逆ミセル型マイクロリアクタ)による生体関連物質などの物質の正抽出及びリフォールディングを行うための正抽出部91と、原料水溶液を回収するための原料回収部92と、正抽出で抽出された生体関連物質などの物質の逆抽出を行うための逆抽出部93と、逆ミセル溶液を循環するための循環部95と、逆抽出で得られたそれぞれの抽出生成物を回収するための生成物回収部94とを備える。 (もっと読む)


【課題】ナノスケールやマイクロメートルオーダーの微小物体を非接触で運動制御する一手法として,光圧を用いることが知られている。しかし、従来では高NAの光学系を用いており、装置の小型化が進まず、例えば光マイクロチップのような微小構造体中に用いることが困難であった。
【解決手段】端面を半球状に研磨した光ファイバから放射させた、集光度が低い3本のビーム(レーザ光線)で正三角形状の循環経路を構成する。ビームの集光が緩やかである場合、照射対象に対してビームの放射方向とビーム断面内の中心方向に光圧が作用する。この性質を利用することでレーザビーム網に沿って、マイクロメートルオーダーの微小物体を循環運動させることができる。 (もっと読む)


有機化合物を析出させるための方法及び装置であって:(a)有機化合物と該有機化合物のための溶媒とを含む第一の流れを提供し;(b)該有機化合物のための貧溶媒を含む第二の流れを提供し;(c)第二の安定化剤を含む第三の流れを提供し;(d)該第一の流れ及び該第二の流れを混合して、粒子状の形態の該有機化合物の析出物を形成し;そして、(e)工程(d)に続いて、該第三の流れを、粒子状の形態の該析出した有機化合物を含む混合された該第一流れ及び該第二の流れと混合することを含み、その際、該第一の流れ及び/又は該第二の流れは、第一の安定化剤を含む。 (もっと読む)


【課題】液化炭酸ガスを深部帯水層に効率よく浸透させ、また拡散させることができる地中送り込み方法及びその地中送り込み装置を提供する。
【解決手段】本発明による液化炭酸ガスの地中送り込み方法は、深部帯水層の地下水を揚水井から地上に汲み上げて注入水をつくる段階と、注入水に脈動水圧を加える段階と、脈動水圧が加えられた注入水を注入井から深部帯水層に送り込む段階と、液化炭酸ガスを貯蔵タンクから液化状態を保って注入井の液化状態を保てる深度まで送り込む段階と、注入井内において、液化炭酸ガスを注入水の中に微細液滴化して混合し二液混合流体を生成する段階と、を含む。 (もっと読む)


【課題】
粒径の均一なセルロース粒子とその製造方法を提供する。
【解決の手段】
クロマトグラフ用充填剤に用いるセルロース粒子であって、セルロース粒子が、細菌が産生するバクテリアセルロースからなるセルロース粒子及び、基板に、分散相流路と、連続相流路と、排出流路とが形成された微小流路構造体を用いて液滴粒子を製造する方法において、セルロースが溶解しているセルロース溶液を分散相とし、セルロース溶液をせん断する溶液を連続相とし、前記分散相流路と前記連続相流路とが交差する交差部において、前記分散相流路に送液する分散相と前記連続相流路に送液する連続相とを合流させて分散相を連続相でせん断することにより、連続相内にセルロース溶液を含む液滴粒子を生成させ、連続相からセルロース粒子を得るセルロース粒子の製造方法を用いる。 (もっと読む)


2種類以上の不混和液を接触させる方法であって、0.2から15ミリメートルの範囲の特徴的な断面直径[11]を有する反応体通路[26]であって、その長手方向に沿って、順番に、反応体の進入のための2つ以上の入口[A,BまたはA,B1]、その中を通る流体においてある程度の混合を誘発する形状または構造を有することにより特徴付けられる最初のミキサ通路部分[38]、少なくとも0.1ミリリットルの容積および略滑らかで連続した形状または構造を有することにより特徴付けられる最初の滞留時間通路部分[40]および各々の直後に対応するそれぞれの追加の滞留時間通路部分[46]が続いている1つ以上の追加のミキサ通路部分[44]を有する反応体通路[26]を備えた一体型熱加減微細構造流体装置[10]を提供し、2種類以上の不混和液を反応体通路に流動させる各工程を有してなり、2種類以上の不混和液が、これらの2種類以上の不混和液の全ての流れが最初のミキサ通路部分[38]を流動するように2つ以上の入口[A,BまたはA,B1]に流される方法が開示されている。この方法を行える一体型装置[10]も開示されている。
(もっと読む)


流体を処理するための装置は、多数のフィン層を含んでおり、多数のプレートが各フィン層を通って流体流路が画定されるように同フィン層を分離している。第1流体入口は、流体流路の第1端部分と連通し、第1流体出口は、流体流路の第2端部分と連通し、第2流体入口は、流体流路の第2端部分と連通し、第2流体出口は、流体流路の第1端部分と連通している。第2入口を通って流入した流体は、フィン層による剪断作用を受け、第1入口を通って流入した流体への物質移動が起こる。装置は、抽出の様な液液プロセス、又は吸着、吸収、又は脱着と反応の様な気液プロセスの両方に使用することができる。 (もっと読む)


【課題】導入休止時に内部に残留する試料の量を低減するとともに、必要なタイミングで必要な量だけ試料を導入することが可能な試料導入マイクロデバイスを提供する。
【解決手段】加圧室1aの入口側には微小流路12aを形成し、加圧室1aの出口側には微小流路13aを介して毛細管効果を持つノズル形状流路14aを形成し、合流点19aにてノズル形状流路14aと合流する微小流路18aを形成するとともに、分岐点38aにてノズル形状流路14aから分岐する微小流路25aを形成し、微小流路18a、25aの間には、微小流路18a、25aとノズル形状流路14aとの間で流路を共有する共有流路区間29aを設け、供給口40aから供給された過剰分の試料を排出口27aから排出し、供給口7a、40aからそれぞれ供給された液体の混合試料を必要なタイミングで必要な量だけノズル穴30aから吐出させる。 (もっと読む)


【課題】液滴を導入し得る微小流路に、気体を供給しつつ液滴同士の反応を行う反応装置を提供する。
【解決手段】液滴を微小流路中で接触させて反応を行う反応装置であって、微小流路と、前記微小流路に第1の液体を液滴として導入する第1の液滴導入手段と、前記微小流路に第2の液体を液滴として導入する第2の液滴導入手段と、前記第1及び第2の液滴導入手段により前記微小流路に導入された第1及び第2の液滴が接触して生成した混合液滴を前記微小流路に気体を導入して移動させる気体導入手段を有する反応装置。 (もっと読む)


【課題】本発明は、比較的低温でポリ塩化ビフェニルを分解し得るポリ塩化ビフェニル分解装置及び該方法並びにポリ塩化ビフェニル分解システムを提供する。
【解決手段】本発明に係る、ポリ塩化ビフェニルを分解するポリ塩化ビフェニル分解装置は、酸化還元電位が−850mV以下であってpHが12以上であるアルカリイオン水をポリ塩化ビフェニル又はポリ塩化ビフェニルを含む油中に乳化することによって乳濁液を生成する乳化機22と、熱媒体を貯溜すると共に乳濁液の液滴が熱媒体の表面へ滴下されるように乳濁液の液滴が導入される分解槽と分解槽を加熱する加熱部とを持つPCB分解槽20Aとを備える。 (もっと読む)


【課題】 送液の効率を向上させた送液方法および送液手段を提供する。
【解決手段】 マイクロ流体デバイス内の流路に存在する液体を制御する装置システムにおいて、送液のために超音波振動子を設け、その超音波振動子は振幅変調による発振を行う。また、超音波振動子上にはマイクロ流体デバイスを保持するための保持部を設け、マイクロ流体デバイスを着脱可能とする。 (もっと読む)


【課題】微小粒子の生成を可能とすると共に、工業的な量産にも対応でき、また、生成した微小粒子の形状を崩さずに微小粒子を生成した直後に微小粒子を硬化させ、微小粒子を媒体から分離することができる微小流路構造体及び微小流路構造体による溶媒抽出方法を提供する。
【解決の手段】分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路からなることを特徴とする微小流路構造体であって、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、2つの導入流路が任意の角度で排出流路へと繋がる構造である微小流路構造体及び微小流路構造体による溶媒抽出方法を用いる。 (もっと読む)


本発明は、廃油処理方法に係り、さらに詳細には、各種の廃油(特に、放射性廃油はもとより、一般的な機械で使用する潤滑油、冷凍油及び絶縁油など)を環境にやさしい固形物として処理することによって、浸出油を発生させない廃油処理方法を提供する。
すなわち、本発明は、各種の廃油85ないし90重量%と1:2の割合で混合した高濃度の硫酸と高濃度の硝酸混合液10ないし15重量%を混合する工程と、前記混合工程によって生成された変性廃油、沈殿物及び濾液(3H+3及びSO2、NO)を生成する工程と、前記沈殿物と濾液を均一に混合した混合液85ないし90重量%に10ないし15重量%の飽和水酸化ナトリウム水溶液(NaOH+H−2)を添加して2次重合反応を行って固形粒子を生成する工程と、前記固形粒子を均一に撹拌した撹拌物をコロイド化させる工程と、反応炉の冷却前に前記コロイド化した撹拌物85ないし90重量%に10ないし15重量%のジイソシアネート化合物を添加すれば、連鎖的な3次重合反応を行って気体と共に粉末状の化合物と得る工程と、前記3次重合反応で発生した気体を錯塩反応によって浄化させて大気中に放出させる工程と、前記化合物を樹脂に充填材料として添加して圧縮成形し、埋め立てることを特徴とする。
このような本発明の廃油処理方法は、各種の廃油はもとより、原子力発電所で使用された放射性廃油などの処理時に、1次的に高濃度の硫酸と硝酸を混合した後、水酸化ナトリウムを添加して2次重合反応を行ってコロイド化した撹拌物を、反応炉でジイソシアネートを添加して連鎖的な重合反応によって粉末状の新しい化合物を得て、発生した気体は浄化処理して大気に放出させることによって環境にやさしい廃油処理が可能であり、粉末状の新しい化合物を得ることにより、廃油を物理的・化学的に最も安定化ことができる。
また、本発明の廃油処理方法によって得られた粉末状の化合物は、各種の樹脂と共にブロックとして圧縮成形することにより、埋め立てが容易であり、浸出油が発生しないため、2次的な公害を誘発しないなど、廃油による産業公害を予防し、特に、原子力発電所から放出される廃油を環境にやさしい固形物として安全に処理することができる。
(もっと読む)


【課題】マイクロ空間を利用した新たな生成原理に基づいて、制御性のよい高品質なナノ粒子を製造することができるナノ粒子製造方法およびナノ粒子製造装置を提供する。
【解決手段】代表長さ5μm〜5mmのマイクロリアクタ11に流路12から前駆体溶液を供給し、マイクロリアクタ11に供給された前駆体溶液に、照射ビーム発生装置13により、レーザー光、電磁波、粒子線または超音波のうちのいずれか単独のエネルギービームまたは複数を複合したエネルギービームを照射してナノ粒子を生成する。 (もっと読む)


【課題】複数成分で構成される微液滴やマイクロカプセルを所望の構成や構造で多量に生成できるようにすることにある。
【解決手段】主流用流路1と、複数本の副流用流路2A,2Bと、少なくとも一端部に位置する所定配置の複数の開口部7a、7bが前記複数本の副流用流路に連通するとともに他端部7cが前記主流用流路に連通する副流合体用流路7と、を具えてなるマイクロリアクターである。 (もっと読む)


【課題】微小流路構造体を用いて微粒子を生成するにあたり、安価に大量に作製した微小流路構造体を、立体的に微小流路の集積度を向上させて、すべての微小流路に均一に流体を送液し、生成物を大量に生産することが可能な液滴生成用製造装置を提供する。
【解決の手段】流体を導入する流体導入口と流体により微粒子を生成する微小流路と生成した微粒子を含有する流体を排出する流体排出口とを有する微小流路構造体であって、前記微小流路構造体は、流体を前記微小流路に供給する流体供給用構造体と微小流路を有する微小流路基板とこれらの間に介される板とから構成されており、前記微小流路基板の基材が、JIS K 6253準拠のデュロメータ硬さ試験方法でタイプDにおける硬度70以上であり、かつJIS K 7152−4準拠の成形収縮率は3%以下の樹脂である液滴生成用微小流路集合体装置を用いる。 (もっと読む)


【課題】連続的に安定な微細エマルションを調製することのできる装置及び方法を提供する。
【解決手段】転相温度乳化装置1は、連続相となる第1の液体を導入するための第1入口ポート2、分散相となる第2の液体を導入するための第2入口ポート3、これら第1及び第2入口ポートに連通し、導入された二液を合流させて第1の液体中に第2の液体が分散したエマルションを調製するマイクロ流路6、及びマイクロ流路6に連通しエマルションを回収するための出口ポート4とを具える合流マイクロリアクタユニット5と、エマルションを転相温度以上に加熱する少なくとも1つの加熱マイクロリアクタユニット9と、加熱されたエマルションを転相温度以下に冷却する少なくとも1つの冷却マイクロリアクタユニット10とを積層してなる。 (もっと読む)


【課題】炭酸ガスを飽和濃度レベル付近の高い濃度で溶媒(海水又は水)に溶解させた状態で帯水層に圧入し、長期的かつ安定的に帯水層に貯留・隔離する。
【解決手段】炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、圧縮された炭酸ガス及び溶媒が注入され、溶媒に炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽4と、生成された炭酸ガス溶解水を地中の帯水層に圧入する地表面から帯水層まで貫通した注入井5とから構成され、前記溶解槽4は、密閉された容器10の下部に、炭酸ガス圧縮装置2から送られた炭酸ガスが注入される炭酸ガス注入口11と、溶媒圧送ポンプ3から送られた溶媒が注入される溶媒注入口12とが形成されるとともに、容器10内に粒状の充填材16が充填されて構成される。 (もっと読む)


【解決課題】より低い製造コストを有し、圧力損失が低減した微小チャネル物質交換器を提供する。
【解決手段】畝506及びスロット508を具備する第1の外側シート504と、畝及びスロットを具備する第2の外側シートとを具備し、当該第2の外側シートの畝は当該第1の外側シート504の畝506に対してずれた位置にある、積層型微小チャネル装置 (もっと読む)


【課題】小サイズで粒度分布ピークがシャープであり、分散安定性、保存安定性に優れる有機微粒子分散液の製造方法を提供する。また、上記の優れた微粒子分散液を効率良くかつ純度良く得ることができ、また大量生産(スケールアップ)にも適した有機微粒子分散液の製造方法を提供する。
【解決手段】有機化合物を溶媒に溶解させた溶液と、前記溶媒と異種で、かつ該溶媒中に少なくとも一部が拡散可能な析出溶媒とを等価直径が1mm以下である流路中に流通させて両者を接触させ、その流通過程において前記有機化合物を重合性化合物の存在下に微粒子として析出させ、その後に前記重合性化合物を重合させ、前記微粒子に前記重合性化合物の重合体を固定化した有機微粒子分散液の製造方法。 (もっと読む)


141 - 160 / 404