説明

Fターム[4G146BA04]の内容

炭素・炭素化合物 (72,636) | 製造−炭素原料、炭素前駆体 (7,083) | 炭素 (996) | フラーレン類、ナノカーボン、ナノチューブ (385)

Fターム[4G146BA04]に分類される特許

21 - 40 / 385


【課題】純度が高いナノカーボン材料を効率よく製造することができるナノカーボン材料製造装置及び方法を提供する。
【解決手段】流動触媒11を充填した流動層反応部12aと、炭素源である炭素原料(CH4)13を前記流動層反応部12a内に供給する原料供給装置14と、流動触媒11を前記流動層反応部12a内に供給する流動触媒供給装置15と、前記流動層反応部12a内の流動材である流動触媒11が飛散及び流下する空間を有するフリーボード部12bと、前記流動層反応部12aに導入し、内部の流動触媒11を流動させる流動ガス16を供給する流動ガス供給装置17と、流動層反応部12aを加熱する加熱部12cと、該フリーボード部12bから排出される排ガス18aを処理する排ガス処理装置18と、前記流動層反応部12aから触媒付ナノカーボン材料19Aを回収ライン20により抜出して回収する回収装置21とを具備する。 (もっと読む)


【課題】触媒を作成する工程が煩雑な従来技術の欠点を解消し、結晶性のよいカーボンナノチューブを効率的に、かつ大量に製造するためのカーボンナノチューブの製造方法を提供する。
【解決手段】比較的入手が容易なカルボン酸パラジウムを担体に担持することなしに触媒として使用し、500〜1200℃の反応温度でメタンなどの気体状態の炭素含有化合物と接触させることにより、多層カーボンナノチューブを効率的に、かつ大量に製造できる。 (もっと読む)


【課題】ナノカーボン材料などの難溶性材料を可溶化する可溶化剤があるが、高分子や界面活性剤が用いられ光機能性をもつものは少ない。単純な高分子や界面活性剤である場合には可溶化の目的は達せられるが、可溶化剤は残留し、最終的にナノカーボン材料と混合した材料となってしまい、ナノカーボン材料本来の物性をそこなうことがある。この機能を有効に利用するには可溶化するだけでなく一重項酸素のキャリアーの機能などを有し、ナノカーボン材料の可溶化能力を制御できることが望まれる。
【解決手段】ナノカーボン材料とのπ−π相互作用などによっての親和性が高いアントラセン骨格にスルホ基などの溶解性をもつ置換基を有する誘導体を合成し、ナノカーボン材料を溶媒可溶化した。さらにアントラセン骨格に由来する一重項酸素の付加、脱離の反応性によってをこの課題を解決した。 (もっと読む)


【課題】フラーレンベース材料を分離精製するフラーレンベース材料の製造方法を提供する。
【解決手段】イオン性又は分極性のフラーレンベース材料7を、泳動液2中に分散させた後、前記泳動中で複数の電極3,4間に電圧を印加する電気泳動法を用いて、イオン性又は分極性のフラーレンベース材料7を精製する。溶媒に溶けにくいフラーレンベース材料7の効率的な精製を行うことができ、純度の高いフラーレンベース材料7の大量精製が可能になった。 (もっと読む)


【課題】
新規なタンパク質−カーボンナノチューブ複合体を提供し、直径および/または巻き軸方向(カイラリティー)の異なるカーボンナノチューブが混在している原料から、カイラリティーの違いに従ってカーボンナノチューブを分級および選別する。
【解決手段】
会合体を形成する性質をもつタンパク質を用いて、タンパク質−カーボンナノチューブ複合体を生成し、それを高速遠心・ゲルろ過クロマト・イオン交換クロマトまたは電気泳動などによって成分を分離して、カーボンナノチューブを分級する。 (もっと読む)


【課題】 有毒な薬剤や、プラズマ処理などの真空大型装置を使用することなく、また、加熱処理や、煩雑な操作を施すことなく、安全、かつ簡便にカーボン材料表面上に含酸素官能基を導入する方法を提供し、また、得られた酸素官能基化カーボン材料から、水酸基のみで化学修飾したカーボン材料を得る方法を提供する。
【解決手段】 過酸化水素水存在下において、カーボン材料に、好ましくは波長が170〜300nmの紫外光を照射することにより、カーボン材料の表面に含酸素官能基を化学結合させる。また、得られた含酸素官能基化カーボン材料に、水素化剤を作用させることにより、表面が水酸基のみで化学修飾されたカーボン材料が得られる。 (もっと読む)


【課題】内包フラーレンの製造などに用いられる接触電離方式のプラズマ源は、タングステン製の平坦な円板状加熱金属体にイオン生成対象の金属蒸気を噴射して金属イオンを発生していたが、イオン化確率が小さく、十分なイオン電流がとれないという問題があった。
【解決手段】イオン生成対象の金属蒸気に加熱金属体上で光を照射し金属原子における電子を励起することにした。加熱金属体の材料として、仕事関数の大きいRe、Os、又はIrを用いることにした。さらに、加熱金属体の表面を凹凸状に加工することにより、イオン化確率を高め、大きなイオン電流の取り出しが可能になった。 (もっと読む)


【課題】カーボンナノ構造体の形状や電気的特性を制御する。
【解決手段】本発明に従ったカーボンナノ構造体の加工方法は、カーボンナノ構造体(たとえばカーボンナノチューブ1)を準備する工程(CNT準備工程)と、当該カーボンナノチューブ1に対して、一軸方向に応力を加えた状態で、エネルギー線(たとえば電子線)を照射する工程(照射工程)とを備える。このようにすれば、カーボンナノチューブ1の長さや電気的特性を容易に変更することができる。 (もっと読む)


【課題】カーボンナノホーン集合体の比表面積が小さい。
【解決手段】カーボンナノホーン集合体は、複数のカーボンナノホーンを有し、カーボンナノホーン集合体の比表面積が1460m/g以上、2630m/g以下である。 (もっと読む)


【課題】高い機械的強度を有するナノ繊維を提供する。
【解決手段】かご状のシルセスキオキサン(以下、POSSという。)と反応させることによりPOSSが化学的に修飾された多層カーボンナノチューブ(以下、MWCNTという。)であるPOSS修飾MWCNTが、ポリマー材料からなるナノ繊維の内部に分散されてなることを特徴とする複合ナノ繊維。POSS例は式(1)。
(もっと読む)


【課題】
周囲環境によって破壊されることなく、かつ蛍光分子が蛍光発光し得る状態で、安定に保持できるキャリアを見いだし、該キャリアに蛍光分子を保持させた汎用性のある分子プローブを提供する。
【解決手段】
蛍光分子を保持するキャリアとしてカーボンナノチューブを用い、該カーボンナノチューブ内に蛍光分子を内包させ、蛍光プローブを得る。該蛍光プローブは、周囲環境の溶液のイオン強度、pH、温度等によってキャリアが破壊されることなく、極めて安定である。 (もっと読む)


【課題】
本発明は、凝集しやすい、特にカーボンナノチューブに代表される筒状の形状を持った炭素材料を、有機溶媒に均一に分散させ、分散後の保存安定性が良好な分散体を提供することにある。
【解決手段】
片末端領域に2つのヒドロキシル基を有するビニル重合体(A)およびジイソシアネート(B)とを反応させてなる末端にイソシアネート基を有するプレポリマーに、少なくとも2つの一級及び/又は二級アミノ基を有するポリアミン(C)を反応させてなる樹脂とを有機溶媒に分散させてなる分散体。 (もっと読む)


【課題】炭素ナノ材料の分散剤としての応用が期待できる新規なイオン性高分岐ポリマー、並びに、炭素ナノ材料分散剤、及び炭素ナノ材料組成物を提供すること。
【解決手段】分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にカルボキシル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBとを、該モノマーA及び該モノマーBの合計モル数に対して、5モル%以上200モル%以下の重合開始剤Cの存在下で重合させる段階と、前記重合段階の前、前記重合段階の間、又は前記重合段階に続いて、前記カルボキシル基に窒素原子含有塩基性化合物を反応させる段階とにより得られる、イオン性高分岐ポリマー、該ポリマーよりなる炭素ナノ材料分散剤、及び該分散剤を含む炭素ナノ材料組成物。 (もっと読む)


【課題】プラズマ電位変動を抑制するべく直流電流に対する導電性、及びプラズマの励起に必要な高周波電力を透過させることができる容量性を有し、試料が金属汚染される虞がなく、かつプラズマ耐食性を有する高周波透過材料を提供する。
【解決手段】カーボンナノチューブ等の繊維状炭素を酸化イットリウム中に分散した複合材料からなる高周波透過材料であり、この繊維状炭素を、この繊維状炭素及び酸化イットリウムの合計量に対して1体積%以上かつ10体積%以下含有しており、直流電圧印加時の体積固有抵抗値は30Ω・cm以下、かつ10MHz以上の高周波帯域におけるインピーダンス角はマイナス(−)である。 (もっと読む)


【課題】カーボンナノチューブ又はカーボンナノファイバーのようなナノカーボンと金属又はセラミックナノ粉末とが均一に混合された複合ナノ粉末を生産し、その複合ナノ粉末を焼結処理して複合材料を容易に生産することが可能である、複合材料の生産方法を提供すること。
【解決手段】本発明による複合材料の生産方法は、ナノカーボンに金属層をコーティングする段階と、金属層がコーティングされたナノカーボンを熱処理して複合ナノ粉末を生産する段階と、複合ナノ粉末を焼結する段階とを含む。本発明によれば、ナノカーボンの表面に金属又はセラミックナノ粉末が均一に混合された複合ナノ粉末を容易に生産でき、複合ナノ粉末を焼結処理することによりナノカーボンと金属又はセラミック粉末とが均一に分散した複合材料を生産できる。 (もっと読む)


【課題】複雑な形態に基づく大きな表面積を維持しつつ、分散や高密度充填に有利な形態のフラーレンを提供する。
【解決手段】複数のウィスカー状構造が放射状に伸びた構造、あるいは、複数のウィスカー状構造が放射状に伸び、該ウィスカー状構造がさらに分枝してフラクタル的構造を形成したフラーレン結晶である。このようなフラーレン結晶は、フラーレンを第1の溶媒に溶解した溶液に、前記第1の溶媒よりもフラーレンを溶解する能力が低く、かつ、前記第1の溶媒よりも沸点が高い第2の溶媒を、フラーレンが析出しない範囲で添加し、得られた溶液から前記第1の溶媒および前記第2の溶媒を蒸発させて結晶を析出させることで得られる。 (もっと読む)


【課題】100nm以下の金属酸化物ナノ粒子がカーボンに高分散担持された複合体を提供する。
【解決手段】金属酸化物ナノ粒子の前駆体がカーボンに高分散担持された複合体粉末を、窒素雰囲気中で急速加熱処理することによって、金属酸化物の結晶化を進行させ、金属酸化物ナノ粒子をカーボンに高分散担持させる。金属酸化物ナノ粒子の前駆体とこれを担持したカーボンナノ粒子は、旋回する反応器内で反応物にずり応力と遠心力を与えるメカノケミカル反応によって作製する。前記窒素雰囲気内の急速加熱処理は、400℃〜1000℃に加熱することが望ましい。加熱した複合体を更に粉砕することで、その凝集を解消し、金属酸化物ナノ粒子の分散度をより均一化する。金属酸化物としては、酸化マンガン、リン酸鉄リチウム、チタン酸リチウムなどが使用できる。カーボンとしては、カーボンナノファイバーやケッチェンブラックが使用できる。 (もっと読む)


【課題】 繊維状炭素材料が気相成長炭素繊維単体の場合はもとより、気相成長炭素繊維とカーボンナノチューブとの混合物の場合も均質性、配向性ともに高く、しかも大面積の炭素繊維配向シートを経済性に製造する。
【解決手段】 単層又は多層のグラフェンにより構成された極細のチューブ状構成体からなる繊維状炭素材料4を、ナノバブルが充満した噴流水3にて攪拌する。繊維状炭素材料4が水面上に分散して浮上する。水面上に分散して浮上した繊維状炭素材料4を捕捉用の第1櫛状治具によりすくい取る。第1櫛状治具により捕捉した繊維状炭素材料4を、捕捉用治具とは別な整列蓄積用の第2櫛状治具へ移し替て整列密集させる。すくい取りと密集整列とを繰り返すことにより、繊維状炭素材料4が整列蓄積用の第2櫛状治具上に整列密集状態で順次蓄積して配向シートとなる。 (もっと読む)


【課題】有機半導体デバイスの製造に適した昇華速度および純度(不純物酸素量)を有するフラーレン精製物およびその製造方法を提供する。
【解決手段】720℃における昇華速度が50μg/min以上であり、かつ、酸素含有量が80重量ppm以下であるフラーレン精製物。該フラーレン精製物は、原料フラーレンを730℃以上の温度に加熱して昇華させ、該加熱温度よりも低い析出温度にて、フラーレン精製物を析出させることにより製造することができる。 (もっと読む)


【課題】電気的特性に優れた電極や電気化学素子を製造するのに適したチタン酸リチウム結晶構造体と、そのチタン酸リチウム結晶構造体とカーボンナノファイバーの複合体を提供する。
【解決手段】数原子層レベルの厚みを有し、二次元面が平面状をしたチタン酸リチウム結晶構造体をカーボンナノファイバー(CNF)に高分散担持させる。チタン酸リチウム結晶構造体の前駆体とこれを担持したCNFは、旋回する反応器内で反応物にずり応力と遠心力を与えるメカノケミカル反応によって作製する。チタン酸リチウム結晶構造体とカーボンナノファイバーの質量比が75:25〜85:15が好ましい。カーボンナノファイバーは、その外径が10〜30nmで、外比表面積は150〜350cm2/gが好ましい。この複合体をバインダーと混合した後、成形して電極を得て、この電極を電気化学素子に用いる。 (もっと読む)


21 - 40 / 385