説明

Fターム[4K017EA03]の内容

金属質粉又はその懸濁液の製造 (21,321) | 機械的製造 (594) | 粉砕 (377)

Fターム[4K017EA03]の下位に属するFターム

Fターム[4K017EA03]に分類される特許

121 - 140 / 288


安定な表面を有する無機半導体ナノ粒子の製造方法が提供される。方法はシリコンまたはゲルマニウムのごとき無機バルク半導体物質を供し、次いで、選択された還元剤の存在下バルク半導体物質を粉砕することを含むことを特徴とする。還元剤は、半導体物質の1以上の成分元素の酸化物を化学的に還元するか、または優先的に酸化することによってかかる酸化物の形成を防止するように作用し、それにより、ナノ粒子間の電気的接触を可能にする安定な表面を有する半導体ナノ粒子を供する。粉砕はミルで行なわれ、粉砕手段および/またはミルの1以上の成分が、選択された還元剤を含む。
(もっと読む)


【課題】金属酸化物が形成する粒子をより微細化することにより、成膜性の向上を実現できるスパッタリングターゲット材およびその製造方法を提供すること。
【解決手段】本発明のスパッタリングターゲット材の製造方法は、コバルト、クロム、および白金からなるマトリックス相と、少なくとも酸化クロムを含む2種以上の金属酸化物からなる酸化物相とを含有し、かつ該酸化物相が粒子を形成してなるスパッタリングターゲット材の製造方法であって、原料粉末全量100mol%中、該酸化クロムを1.0mol%以上の量で配合することを特徴とする。 (もっと読む)


【課題】磁気特性が優れるだけでなく樹脂バインダーと混練したとき組成物の流動性が大きいボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法を提供。
【解決手段】燐酸を含む有機溶剤(第1の溶液)中で希土類−鉄−窒素系磁石粗粉末を粉砕する工程と、得られたスラリーを固液分離する工程と、分離された磁石微粉末を150℃以上の温度で加熱乾燥する工程を含むボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法であって、さらに、得られた磁石微粉末は、前記加熱乾燥工程の後で、0.1mol/L〜0.5mol/Lの燐酸を含む有機溶剤(第2の溶液)と混合・撹拌し、150℃以上の温度で加熱乾燥することにより、表面に均一で強固な燐酸塩皮膜を形成することを特徴とするボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法によって提供。 (もっと読む)


【課題】還元拡散法によって、磁気特性を下げることなく、水素ガスを使用せずまたは使用量を低減して還元物を崩壊させて希土類−遷移金属−窒素系磁石粉末を安価に安全にかつ安定的に生産できる製造方法および、それを用いたボンド磁石用組成物、並びに各種機器を小型化、高特性化しうるボンド磁石を提供する。
【解決手段】還元拡散法により、遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を非酸化性雰囲気中で加熱焼成して希土類−遷移金属系母合金からなる還元拡散反応生成物とし、次いで、得られた還元物を崩壊させる工程おいて、水または水と水素ガスを用いて崩壊することを特徴とする下記式(1)で表される希土類−遷移金属−窒素系磁石粉末の製造方法を提供する。
Fe(100−x−y−z) ・・・(1)
(式(1)中、Rは希土類元素、MはCu、Mn、Co、Cr、Ti、NiおよびZrからなる群から選択される遷移金属元素を示し、また、x、y、zは原子%で、4≦x≦18、0.3≦y≦23、15≦z≦25を満たす。) (もっと読む)


【課題】ターゲット割れの発生を抑制することができるスパッタリングターゲットを提供することを課題とする。
【解決手段】金属間化合物域の鋳塊を粉砕して得たInを主成分とする主粉末と、前記主粉末とは異なる成分組成の副粉末を混合、焼結して所定の成分組成となるようにして製造されるスパッタリングターゲットであり、その含有成分中の不可避的不純物であるSi、Al、Feの合計含有量が、300質量ppm以下であることを特徴とする。また、金属間化合物はInと、CoとNiから選ばれる1種以上を含む。 (もっと読む)


【課題】電気化学反応を用いずそして処理後の混合物中に特別な分離精製を必要するような不純物を含まない金属ナノロッドを含むナノ粒子を得る新規な金属ナノロッドの製造方法を提供する。
【解決手段】この発明は、金属化合物の微粉末を溶媒の存在下に機械的に粉砕して形状が整った金属ナノロッドを含むナノ粒子を得る金属ナノロッドの製造方法、前記の製造方法によって得られる金属ナノロッド、前記の金属ナノロッドをポリマーに分散させてなる導電性コンポジットポリマー、前記の導電性コンポジットポリマーを含む電子製品。 (もっと読む)


本発明は、原子組成(La1−a−a’MmTRa’[(Fe1−b−b’Cob’1−x(Si1−c13(C1−d−e(R)(I)を有するFe−Si−La合金に関し、Mmは、ランタン、セリウム、ネオジムおよびプラセオジムの混合物であり、22〜26%のLa、48〜53%のCe、17〜20%のNdおよび5〜7%のPrの重量比であり、上記混合物は1重量%以下の不純物を含んでもよく、TRはランタン以外の希土類族の1つまたは複数の元素であり、Mは層3d、4dおよび5dの1つまたは複数のdタイプ遷移元素であり、XはGe、Al、B、GaおよびInから選択されるメタロイド元素であり、RはAl、Ca、Mg、KおよびNaから選択される1つまたは複数の元素であり、IはOおよびSから選択される1つまたは2つの元素であり、0≦a<0.5および0≦a’<0.2、0≦b≦0.2および0≦b’<0.4、0≦c≦0.5および0≦d≦1、0≦e≦1およびf≦0.1、0.09≦x≦0.13および0.002≦y≦4、0.0001≦z≦0.01であり、添字b、d、e、xおよびyは、合金が、さらに、6.143b(13(1−x))+4.437y[1−0.0614(d+e)]≧1(式1)、dy≧0.005(式2)の条件を満足するものである。本発明は、また、この合金の粉末またはこれらの合金の混合物、およびそれらの製造方法に関する。 (もっと読む)


【課題】Mg、Sn、Siの金属からなる単相で優れた熱電特性を備えた一般化学式で示される
MgSi1−YSn
の熱電半導体を焼結して製造するにあたり、p型の熱電特性を有した熱電半導体を簡単に製造する。
【解決手段】MgSi1−YSnの金属間化合物の化学組成において、これを焼結したときの焼結体組成X、Yが、
1.98≦X≦2.01
0.72≦Y≦0.95
の範囲のものがp型伝導の熱電特性を有することを見出し、該熱電特性を有する半導体を製造することができた。 (もっと読む)


【課題】主に製品の母材と同じ組成を有するろう付け材を用いたろう付けにより物品を接合可能とする。
【解決手段】ろう付けによって物品を接合するための鉄を母材とするろう付け材は、鉄を別として、質量%で、0〜40%、好ましくは9〜30%のCr、0〜16%、好ましくは0〜8%、より好ましくは0〜5%のMn、0〜25%のNi、0〜1%のN、及び最大7%のMo6%未満のSi及び/または0〜2%、好ましくは0〜1.5%のB、及び/または0〜15%のPを含む合金であって、B、P、Siの組み合わせまたは個別の添加により、ろう付け材が完全に溶融される温度である液相線温度が低下される合金に相当する。ろう付け製品は、B及び/またはP及び/またはSiを液相線温度を低下させる成分として合金化した、鉄を母材とするろう付け材によって、鉄を母材とする物品をろう付けすることによって製造される。 (もっと読む)


【課題】水などの溶媒中での分散性が改善され、良好にフィルター処理を行うことができ、さらに積層セラミックスコンデンサ製造過程での脱バインダ工程において良好な熱分解挙動が得られるニッケル粉末を提供する。
【解決手段】表面に、10nm〜20nmの膜厚のニッケルの酸化物被膜を有することを特徴とするニッケル粉末。 (もっと読む)


本発明は、金属粒子と、該金属粒子と酸化反応に入らない材料で製造された、少なくとも1層の膜を有する反応性金属粒子用輸送体形態に関し、前記膜中に、軽金属粒子が埋め込まれて保護されており、必要であれば、連鎖開始剤、充填剤、染料などの従来知られた他の添加剤を含むことを特徴とする。本発明はまた、被覆剤の存在中で卑金属の粒径を細かくして金属粒子又はフレークを形成し、その間にそのように形成された金属粒子を保護層で被覆する工程、必要に応じ被覆された金属粒子/フレークを用いて輸送体を成形する工程を有する、輸送体形態を製造する方法に関する。最後に、本発明は、基材表面に腐食保護膜を製造するための輸送体形態の使用、焼結可能混合物、MIM混合物に関する。
(もっと読む)


【課題】従来のボンド磁石に比べて高い磁気特性、特に高い角形性を示し、かつ、従来の焼結磁石よりも形状の自由度の高いR−Fe−B系永久磁石用多孔質材料を提供する。
【解決手段】 本発明のR−Fe−B系永久磁石用多孔質材料の製造方法は、平均粒径20μm未満のR−Fe−B系希土類合金粉末を用意する工程と、前記R−Fe−B系希土類合金粉末を成形して圧粉体を作製する工程と、水素ガス中において前記圧粉体に対し550℃以上650℃未満の温度で熱処理を施し、それによって水素化および不均化反応を起こす工程と、真空または不活性雰囲気中において前記圧粉体に対し550℃以上1000℃未満の温度で熱処理を施し、それによって脱水素および再結合反応を起こす工程とを含む。 (もっと読む)


【課題】コスト効率良く、ルテニウム(Ru)及びRuベース合金を再生する。
【解決手段】ルテニウム(Ru)の固体又はRuベースの合金を供給するステップと、前記固体を分割して微粒子材料を形成するステップと、前記微粒子材料から鉄(Fe)を含む汚染物質を取り除くステップと、前記微粒子材料の粒径を小さくして粉末材料を形成するステップと、前記粉末材料から鉄(Fe)を含む汚染物質を取り除くステップと、前記粉末材料の酸素含有量を所定レベル以下に低下させて精製された粉末材料を形成するステップと、前記精製された粉末材料から所定の大きさよりも大きい粒子を取り除くステップと、を含んで構成されたルテニウム(Ru)及びルテニウム(Ru)ベース合金の再生方法である。 (もっと読む)


【課題】大幅な成分調整を行うことなくクラッドシートからクラッド層を形成するための粉末を製造可能とする。
【解決手段】シート状の基材の少なくとも一方の面に形成されるロウ材組成からなるクラッド層を有するクラッドシートから上記クラッド層のみを回収する回収装置32と、上記回収装置32にて回収された上記クラッド層を粉末化することによって上記ロウ材組成からなる粉末とする粉末化処理装置33とを備える。 (もっと読む)


タンタルを含有しているスクラップ材料からタンタル粉末を得る方法が提供される。この方法は、所望のサイズ及び純度のタンタル粉末を得るために、例えばコンデンサ用の焼結された陽極のような原材料を選択するステップと、この原材料を水素化するステップと、所望の粒子サイズ及び表面積へと圧延するステップと、脱水素化するステップと、脱酸素化するステップと、凝集化するステップと、ふるい分けするステップと、酸処理するステップと、を備えている。 (もっと読む)


【課題】保磁力が高い希土類磁石を製造可能な合金の製造装置を提供する。
【解決手段】ストリップキャスト法により合金溶湯を鋳造する鋳造装置2と、鋳造後の鋳造合金を破砕する破砕装置21と、破砕後の鋳造合金薄片Nを保温する保温装置3と、保温後の鋳造合金薄片Nを貯蔵する貯蔵容器5とを少なくとも備え、保温装置3は、破砕装置21から供給された鋳造合金薄片Nを収納する保温コンテナ32と、保温コンテナ32内の鋳造合金薄片Nを保温する保温ヒータと、保温コンテナ32を傾斜させて保温コンテナ32内の鋳造合金薄片Nを貯蔵容器5に送出させる傾斜装置33とから構成されている合金の製造装置1を採用する。 (もっと読む)


【課題】磁気特性に優れたR2Fe14B系の希土類磁石用原料合金、その合金粉末を提供すること。
【解決手段】本発明の希土類焼結磁石用原料合金は、ネオジムからなるか、もしくはネオジムと、イットリウムを含みネオジムを含まない希土類金属元素からなる群より選ばれる少なくとも1種とからなるR27.6〜33.0質量%と、ボロン0.94〜1.30質量%と、鉄を含む残部Mとからなる組成を有する合金であって、該合金のR−rich相の平均間隔が3〜12μm、R−rich相間隔の標準偏差をR−rich相の平均間隔で割った値が0.25以下であり、かつR2Fe14B系主相の体積比率が88体積%以上であることを特徴とする。 (もっと読む)


【課題】半導体の動作機能を保証するために障害となる不純物を低減させた高純度ジルコニウム若しくはハフニウム粉を、安全かつ安価に得ることのできる高純度ジルコニウム若しくはハフニウム粉の製造方法を提供する。
【解決手段】ジルコニウム若しくはハフニウム原料を電子ビーム溶解して高純度化した後インゴットに鋳造する工程、得られた高純度ジルコニウム若しくはハフニウムインゴット又は切粉等を水素雰囲気中で500°C以上に加熱して水素化する工程、該インゴットを冷却し水素化ジルコニウム若しくはハフニウム粉をインゴットから剥落させて水素化高純度ジルコニウム若しくはハフニウム粉を得る工程、及び水素化高純度ジルコニウム若しくはハフニウム粉の水素を除去する工程からなることを特徴とする高純度ジルコニウム若しくはハフニウム粉の製造方法。 (もっと読む)


【課題】残留磁束密度Brや角形比Hk/HcJの低下を抑えつつ、保磁力HcJを向上させる。
【解決手段】本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面にM元素(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を供給しつつ、焼結磁石体を加熱し、表面からM元素を希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】 本発明は、CoとSnおよびFeを主構成元素とするリチウムイオン電池負極材用粉末を提供するものである。
【解決手段】 Co−Sn−Fe系合金であって、FeとCoの和とSnのmass%比が下記式(1)を満たし、FeとCoのmass%比が式(2)を満たす合金組成であることを特徴とするリチウムイオン電池負極材用粉末。(Co+Fe):Sn=5:5〜1:9 … (1)、Co:Fe=1:3〜3:1… (2)、また、上記に加えて、さらにTi,In,C,Si,Agの1種または2種以上を0.1〜10%添加することを特徴とするリチウムイオン電池負極材用粉末。 (もっと読む)


121 - 140 / 288