説明

Fターム[5F140AC01]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 動作、用途、素子構造 (4,642) | Pchトランジスタ (555)

Fターム[5F140AC01]に分類される特許

41 - 60 / 555


【課題】ゲートメタル電極とHigh−k膜とを用いた半導体装置において、低抵抗なゲートメタル電極により仕事関数を調整できるようにする。
【解決手段】半導体装置は、Nウェル102の上に形成された第1のゲート絶縁膜109と、該第1のゲート絶縁膜109の上に形成された第1のゲート電極とを備えている。第1のゲート絶縁膜109は、第1の高誘電体膜109bを含み、第1のゲート電極は、第1の高誘電体膜109bの上に形成され、TiN層110aとAlN層110bとが交互に積層された第1の実効仕事関数調整層110を含む。TiN層110aはAlN層110bよりも抵抗が小さく、且つ、AlN層110bはTiN層110aよりも実効仕事関数の調整量が大きい。 (もっと読む)


【課題】n型FET及びp型FET(電界効果トランジスター)のうち、一方のFETの電流駆動能力の低下を抑制し、他方のFETの電流駆動能力の向上を図る。
【解決手段】n型FET及びp型FETを覆うように、第1の膜を形成する工程と、その後、p型(n型)FET上の前記第1の膜に対して、イオン注入法によって選択的に不純物を打ち込む工程とを有し、n型(p型)FETのチャネル形成領域には、n型(p型)FET上の前記第1の膜によって、主として、n型(p型)FETのゲート電極のゲート長方向に引張(圧縮)応力が発生しており、不純物を打ち込む工程によって、前記p型(n型)FETのチャネル形成領域に発生する引張(圧縮)応力は、n型(p型)FETのチャネル形成領域に発生する引張(圧縮)応力よりも小さくなっている。 (もっと読む)


【課題】MOSトランジスタの形成工程を利用して、トレンチアイソレーションを形成できるようにした半導体装置の製造方法を提供する。
【解決手段】シリコン基板1にDTI層20とMOSトランジスタとを有する半導体装置の製造方法であって、シリコン基板1に深いトレンチを形成し、トレンチが形成されたシリコン基板1に熱酸化を施して、PMOSトランジスタ50のゲート酸化膜13を形成すると同時に、トレンチの内側面にSiO2膜14を形成する。次に、トレンチを埋め込むようにシリコン基板1上にポリシリコン膜15を堆積し、このポリシリコン膜15をパターニングする。これにより、PMOSトランジスタ50のゲート電極17を形成すると同時に、トレンチ内にSiO2膜14とポリシリコン膜18とを含むDTI層20を形成する。 (もっと読む)


【課題】トランジスタのチャネル部に印加される応力を増加させて、電流増加効果を高めることを可能とする。
【解決手段】半導体基板上にダミーゲートを形成した後、該ダミーゲートの側壁に側壁絶縁膜を形成し、該ダミーゲートの両側の前記半導体基板にソース・ドレイン領域を形成する工程と、前記ダミーゲートおよび前記ソース・ドレイン領域の上に応力印加膜を形成する工程と、前記ダミーゲートの上の領域に形成された前記応力印加膜と前記ダミーゲートを除去して溝を形成する工程と、前記溝内の前記半導体基板上にゲート絶縁膜を介してゲート電極を形成する工程と、を備えた半導体装置の製造方法。 (もっと読む)


【課題】NBTIを改善することのできるトランジスタ構造を有する半導体装置を提供する。
【解決手段】半導体装置は、半導体基板101と、半導体基板101の上部に形成されたn型ウェル領域102と、n型ウェル領域102上に形成され、ゲート絶縁膜104と、下部ゲート電極105、及び下部ゲート電極105上に形成された上部ゲート電極106を含むゲート電極120とを有するpチャネル型MISトランジスタとを備える。下部ゲート電極105は、結晶粒界を有する多結晶の金属窒化物で構成されており、当該結晶粒界には金属窒化物を構成する元素とは異なる元素が偏析されている。 (もっと読む)


【課題】pチャネル型電界効果トランジスタのNBTIをウエハ面内において漏れなく評価することにより、信頼性評価の充実を図り、信頼性の高いpチャネル型電界効果トランジスタを提供する。
【解決手段】劣化過程、回復過程、および再劣化過程をストレス試験の1サイクルとし、1つのpチャネル型電界効果トランジスタに対して上記1サイクルを複数回繰り返し行い、複数の劣化過程におけるしきい値電圧の劣化量または動作電流の劣化量を抽出して回復レス劣化評価を行い、複数の回復過程におけるしきい値電圧の劣化量および動作電流の劣化量を抽出して回復レス劣化評価を行う。 (もっと読む)


【課題】トランジスタの耐圧を向上し得る半導体装置及びその製造方法を提供することにある。
【解決手段】半導体基板10内に形成された第1導電型の第1の不純物領域32、46と、半導体基板内に形成され、第1の不純物領域に隣接する第2導電型の第2の不純物領域34、48と、第2の不純物領域内に形成された第1導電型のソース領域30a、44aと、第1の不純物領域内に形成された第1導電型のドレイン領域30b、44bと、ソース領域とドレイン領域との間における第1の不純物領域内に、第2の不純物領域から離間して埋め込まれた、二酸化シリコンより比誘電率が高い絶縁層14と、ソース領域とドレイン領域との間における第1の不純物領域上、第2の不純物領域上及び絶縁層上に、ゲート絶縁膜22を介して形成されたゲート電極24a、24bとを有している。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】本発明の半導体装置は、面方位が(110)のシリコン基板1と、pMIS領域1Bに形成されたpチャネル型電界効果トランジスタを有する。このpチャネル型電界効果トランジスタは、ゲート絶縁膜3を介して配置されたゲート電極GE2と、ゲート電極GE2の両側のシリコン基板1中に設けられた溝g2の内部に配置され、Siより格子定数が大きいSiGeよりなるソース・ドレイン領域と、を有する。上記溝g2は、ゲート電極GE2側に位置する側壁部において、第1の斜面と、第1の斜面と交差する第2の斜面と、を有する。このように、溝g2の形状をΣ形状とすることで、pチャネル型電界効果トランジスタのチャネル領域に加わる圧縮歪みを大きくすることができる。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】本発明の半導体装置は、面方位が(110)のシリコン基板1と、pMIS領域1Bに形成されたpチャネル型電界効果トランジスタを有する。このpチャネル型電界効果トランジスタは、ゲート絶縁膜3を介して配置されたゲート電極GE2と、ゲート電極の両側のシリコン基板1中に設けられた溝g2の内部に配置され、Siより格子定数が大きいSiGeよりなるソース・ドレイン領域と、を有する。上記溝g2は、ゲート電極側に位置する側壁部において、面方位が(100)の第1の斜面と、第1の斜面と交差する面方位が(100)の第2の斜面と、を有する。上記構成によれば、基板の表面(110)面と(100)面とのなす角は45°となり、比較的鋭角に第1斜面が形成されるため、効果的にpチャネル型のMISFETのチャネル領域に圧縮歪みを印加することができる。 (もっと読む)


【課題】高性能・高信頼性の半導体装置を製造するための半導体装置の製造方法を提供する。
【解決手段】半導体基板上に保護膜を形成し、保護膜を介して不純物をイオン注入する。注入した不純物を活性化して不純物層を形成した後、保護膜を除去する。その後、不純物層の表面部の半導体基板を除去し、表面部を除去した半導体基板上に半導体層をエピタキシャル成長する。 (もっと読む)


【課題】航空機の配電システムでの使用に際しても、十分に信頼できる炭化シリコンを使用したMOSFETを提供する。
【解決手段】炭化シリコンMOSFETのゲート絶縁膜16を、シリコンからなる第1の層と炭化シリコンからなる第2の層15に貼着することによって、第1の層と第2の層との間に境界面を形成した後、シリコンからなる第1の層の一部又は全部を酸化することにより境界面に炭素クラスターの存在しないゲート絶縁膜16を形成する。 (もっと読む)


【課題】 本発明は、低消費電力で動作する論理回路に応用できる電界効果トランジスタを提供することを目的とするものである。
【解決手段】 ソース電極とソース電極が接する半導体の伝導帯又は価電子帯との間に障壁を有しており、ソース電極から障壁を通して流れ込む電子又はホールをゲート電圧により調整できる構成を有することを特徴とするnチャンネル又はpチャンネルの電界効果トランジスタ。 (もっと読む)


【課題】金属電極と該金属電極の上に形成されたシリコン電極とを有するゲート電極を備えた電界効果型トランジスタを実現する際に、金属電極とシリコン電極との界面に生じる界面抵抗を低減できるようにする。
【解決手段】半導体装置は、半導体基板100における第1の活性領域103aに形成されたP型の電界効果型トランジスタを備えている。第1の電界効果型トランジスタは、第1の活性領域103aの上に形成された第1のゲート絶縁膜106aと、第1のゲート絶縁膜106aの上に形成された第1のゲート電極115aとを有している。第1のゲート電極115aは、第1のゲート絶縁膜106aの上に形成された第1の金属電極107aと、該第1の金属電極107aの上に形成された第1の界面層110aと、該第1の界面層110aの上に形成された第1のシリコン電極111aとを有している。 (もっと読む)


【課題】 チャネル領域に応力を印加するよう作用する階段状のソース/ドレイン・エピタキシャル領域を、製造プロセスを有意に複雑あるいは冗長とすることなく形成する。
【解決手段】 ゲート電極をマスクとしてドーパントを注入し、半導体基板内にドーパント注入領域を形成する(S2)。サイドウォールの形成(S3)後、ゲート電極及びサイドウォールをマスクとして半導体基板内に第1のリセスを形成する(S4)。このとき、第1のリセスの内壁の一部からドーパント注入領域が露出される。その後、上記ドーパント注入領域を選択エッチングにより除去し、第1のリセスに連通し且つ第1のリセスより浅い第2のリセスを形成する(S5)。それにより、階段状のリセスが形成される。そして、第1のリセス及び第2のリセス内に、チャネル領域へのストレッサとして作用する半導体材料を成長させてソース/ドレイン領域を形成する(S6)。 (もっと読む)


【課題】メタルゲートを用いたCMISまたはCMOS構造の集積回路デバイスにおいて、Nチャネル領域およびPチャネル領域におけるゲート絶縁膜、メタルゲート層等のつくり分けに関しては、種々の方法が提案されているが、プロセスが複雑になる等の問題があった。
【解決手段】本願発明は、CMOS集積回路デバイスの製造方法において、Nチャネル領域およびPチャネル領域において、ゲート電極膜形成前の高誘電率ゲート絶縁膜の電気的特性を調整するためのチタン系窒化物膜を下方のチタンを比較的多く含む膜と、上方の窒素を比較的多く含む膜を含む構成とするものである。 (もっと読む)


【課題】本発明では、低温での成膜処理により、良質なゲート絶縁膜が得られる半導体装置の製造方法を提供することを課題とする。
【解決手段】本発明では上記課題を解決するため、シリコン基板10上に、600℃以下で原子層堆積法により、ゲート絶縁膜の少なくとも一部となる二酸化シリコン膜31を形成する酸化膜形成工程と、二酸化シリコン膜31の表面に対し、酸化処理を行う表面処理工程と、を有する半導体装置の製造方法を提供する。 (もっと読む)


【課題】High-kゲート絶縁膜を用いたMOSFETにおいて、信頼性劣化、チャネル移動度低下及びEOTの増加を抑制する方法を提供する。
【解決手段】半導体装置の製造方法は、半導体基板101上に、シリコン酸化物を含む第1絶縁層104を形成する工程(a)と、第1絶縁層104上に第1金属層105を形成する工程(b)と、第1金属層105上にゲート電極108を形成する工程(c)とを備える。第1絶縁層104及び第1金属層105からゲート絶縁膜を形成する。 (もっと読む)


【課題】プロセス負荷を軽減するとともに、EOTを十分に低減するための絶縁膜の薄膜化と、バンドエッジ近傍の仕事関数を有するゲート構造とを実現した半導体装置を提供する。
【解決手段】基板101の異なる領域に形成されたp型トランジスタ100a及びn型トランジスタ100bを備える半導体装置100であって、p型トランジスタ100aは、基板101上方に形成された、第1高誘電率材料からなる第1高誘電率膜106aと、第1高誘電率膜106a上方に形成された、全体が金属によりシリサイド化された第1フルシリサイド電極107aとを備え、n型トランジスタ100bは、基板101上方に形成された、第2高誘電率材料が添加された第1高誘電率材料からなる第2高誘電率膜106bと、第2高誘電率膜106b上方に形成された、全体が金属によりシリサイド化された第2フルシリサイド電極107bとを備える。 (もっと読む)


【課題】MOSトランジスタのチャネル領域に、基板上に形成した応力膜からより効率的に応力を印加する半導体装置の構造及びその製造方法を提供する。
【解決手段】MOSトランジスタは、n型またはp型のソース・ドレイン領域21e〜hと、素子分離領域21Iからチャネル領域に向かって延在し、ソース・ドレイン領域21e〜hを覆って形成された、引張応力、圧縮応力のいずれかである応力膜27A、27Bを備える。応力膜27A,27Bは、ゲート電極23A,23Bの側壁面に沿って、ただし側壁面からは隙間32A〜Dを介して形成される。ソース・ドレイン領域21e〜hがn型である場合、応力膜の応力は引張応力であり、ソース・ドレイン領域21e〜hがp型である場合、応力膜の応力は圧縮応力である。 (もっと読む)


【課題】不純物がドープされたシリコンウェハをRTA法でスパイクアニールするとき、シリコンウェハのストレスを緩和しながら不純物の無用な拡散も防止する。
【解決手段】アニール到達温度まで昇温したシリコンウェハを最初は高速で最後は低速となる速度で降温する。降温速度が途中から低速なのでストレスが緩和され、降温速度が途中まで高速なので固溶度が低下した不純物にシリコンウェハとの結合の切断に充分な熱エネルギが作用せず、不純物はシリコンウェハとの結合が切断されないので無用に拡散しない。 (もっと読む)


41 - 60 / 555