説明

Fターム[5H730FD41]の内容

DC−DCコンバータ (106,849) | 信号検出 (10,889) | 入力電流の (947)

Fターム[5H730FD41]の下位に属するFターム

Fターム[5H730FD41]に分類される特許

61 - 80 / 891


【課題】光結合素子を用いずに電力節電のためのモード切換を行うスイッチングモード電源回路を提供する。
【解決手段】接地電極が第1電圧源14上に配置された第1電子部品22を有する第1部分20と、接地電極が第2電圧源16上に配置された第2電子部品26を有する第2部分24と、第1部分20と第2部分24の間に挿入され、ポテンシャル障壁を形成する第3部分28と、第1部分20と第2部分24を接続するスイッチモード電源回路32とを備え、第2部分はスイッチモード電源回路32を介して第1電圧源14により電力供給がなされる少なくとも1つの電子部品30を備えているプリント回路基板12において、電子部品30における電力消費量の低下を検出する検出手段34と、電子部品30における電力消費量の所定の低下が検出されたときに、スイッチモード電源回路を切り換える切り換え手段とを更に備えることを特徴とするプリント回路基板12。 (もっと読む)


【課題】昇圧コンバータのリアクトルの電流を検出する電流センサに異常が生じているときに、より適正に対処する。
【解決手段】リアクトルの電流を検出する電流センサに異常が生じているときには(S120)、電流センサに異常が生じていないときの許容上限電圧VHlim1より低い許容上限電圧VHlim2で駆動電圧系の目標電圧VHtagを制限して駆動電圧系の電圧指令VH*を設定し(S160)、電圧センサからの電圧(駆動電圧系の電圧)VHと電圧指令VH*とを用いたフィードバック制御によって目標デューティ比Duty*を設定し(S170)、設定した目標デューティ比Duty*を用いて昇圧コンバータを制御する(S180)。 (もっと読む)


【課題】一次側回路で検出した入力電圧と入力電流との情報を、一次側回路と絶縁された二次側回路上の演算処理部に伝達する構成を小規模な回路構成で実現する。
【解決手段】一次側回路100において、電圧検出用抵抗2、3により入力電圧を検出する。一次側回路100において、電流検出用抵抗4により入力電流値を検出する。PWM回路18は、電圧検出値に応じたデューティ比を生成する。非反転増幅回路15は、電流検出信号の電圧レベルを適切に調整して出力する。フォトカプラ17内部の発光側LED171は、前記デューティ比でON/OFF制御されるとともに前記電圧レベルに応じた電流量で制御される。フォトカプラ17内部の受光側フォトトランジスタPTr1からの出力信号は、受光によって生じた電圧パルス信号を平滑化して電力情報を有するアナログ信号を生成する平滑化回路20により平滑化される。 (もっと読む)


【課題】本発明は、入力バイパスコンデンサの音鳴りを低減することが可能なDC/DCコンバータを提供することを目的とする。
【解決手段】本発明に係るDC/DCコンバータは、入力電圧の印加端と接地端との間に接続される入力バイパスコンデンサを用いて前記入力電圧を平滑化し、これを所望の出力電圧に変換して負荷に供給するDC/DCコンバータであって、前記入力バイパスコンデンサは、複数個のコンデンサが並列接続されたものである構成とされている。 (もっと読む)


【課題】1次側に印加される電圧と電流の位相差が0になるように制御されるので、必ずしも最大効率点で動作させることができず、かつスプリアスへの収束を回避することが難しかった。本発明はこれらの課題を解決することを目的にする。
【解決手段】圧電トランスの1次側に印加される電圧と電流の位相差を小さくする制御信号を発生する位相差検出部の出力と位相オフセット発生部の出力を加算部で加算し、この加算部の出力を電圧制御発振器に入力するようにした。また、加算部の出力が設定範囲から外れると、電圧制御発振器の入力信号を強制的に固定するようにした。最大効率点で動作させることができ、かつスプリアスへの収束を回避できる。 (もっと読む)


【課題】コンバータおよびインバータを含むモータ駆動回路を備えた車両において、駆動回路の共振に起因する直流電源の過熱を適切に抑制する。
【解決手段】コンバータおよびインバータを含むモータ駆動回路を制御する制御装置は、コンバータの上アームオン制御中(非昇圧中)である場合(S10にてYES)で、かつモータ回転速度Nが共振回転速度領域に含まれる場合(S11にてYES)、車載の電流センサによる電流Ibの計測値の2乗値を予めオフラインで検出した電流Ibの真値の2乗値に換算し(S12)、電流Ibの真値の2乗値が許容値以上である場合(S13にてYES)、矩形制御の実行を禁止する(S14)。 (もっと読む)


【課題】 動作周波数が早い場合でも、過電流に対する保護機能を十分に発揮させることができるDC−DCコンバータを提供する。
【解決手段】 電圧VINが入力される入力ノードの電流が入力される第1ノードと第2ノードの間で電圧VC1に基づいてオンオフ動作する第1スイッチ素子と、接地電圧と第2ノードの電圧に基づいて接地電圧から第2ノードの方向に電流を通流させる第2スイッチ素子と、一端が第2ノードに他端が第3ノードに接続されたコイルL1と、一端が出力ノードに接続され他端に接地電圧が入力されるコンデンサC1と、通常動作時に、電流検出回路COMP1により第1ノードに過電流判定値以上の電流が流れているかを判定し、電流抑制動作時に、第2ノードの電圧値と電圧Vref2を比較する比較回路COMP2により通常動作に移行した場合に過電流判定値以上の電流が流れるかを判定する制御回路12を備える。 (もっと読む)


【課題】精度の高い電流制御、電圧制御を提供する。
【解決手段】主端子と基準端子と制御端子を有する第一のスイッチと、第二のスイッチまたは整流器、入力側コンデンサと出力側コンデンサを各1以上持ち、インダクタを持つ電力変換回路であって、相互接続点と基準電位または出力または入力間の電流によって生じる電圧を利用して、出力の制御や保護を行う回路であって、印刷基板を用いたものであって、前記電圧の生じている素子のうち相互接続点でない側と接合された印刷基板上の導体と、その導体と回路図上は同電位となるべき基準電位または入力または出力のいずれかと結合された入力コンデンサあるいは出力コンデンサの端子と接合された導体が、最短距離で結合されないように、空隙によって分断された構造を持つもの。 (もっと読む)


【課題】交流電圧を直流電圧に変換し、当該直流電圧のレベルを調整可能な構成において、損失の低減および小型化を図ることが可能な電力変換装置を提供する。
【解決手段】電力変換装置101において、昇降圧回路52は、整流回路51によって整流された電圧を直流電圧に変換して出力し、整流回路51によって整流された電圧をスイッチングするための降圧用スイッチ素子TR11と、整流回路51によって整流された電圧をスイッチングするための昇圧用スイッチ素子TR12とを含む。制御部14は、昇降圧回路52から出力される直流電圧、および整流回路51から昇降圧回路52へ流れる入力電流の誤差を示す制御電圧を生成し、制御電圧と降圧用三角波との比較結果に基づいて降圧用スイッチ素子TR11をスイッチングし、制御電圧と昇圧用三角波との比較結果に基づいて昇圧用スイッチ素子TR12をスイッチングする。 (もっと読む)


【課題】出力側に検出部を接地設置する必要が無く、コンバータ部のみで定電流制御可能な回路を提供する。
【解決手段】定電流駆動回路は、スイッチング信号を生成する制御ICと、入力電源VINに接続され、スイッチング信号の有無でオンおよびオフ動作を行い、入力電源VINをスイッチングするスイッチング素子SIと、スイッチングされた電源電流を整流し、平滑化し出力電流を出力する整流ダイオード、平滑インダクタ及び平滑コンデンサとを有し、制御ICは、所望の出力電流が設定され参照信号を生成する参照信号生成部REFと、スイッチング素子SIに流れる電流と参照信号生成部REFからの信号に基づいて所望の出力電流とを比較する比較部CMPと、外部クロックCLKからのクロック信号と、比較部からの出力信号が同時に入力されるフリップフロップ部FFと、スイッチング信号でスイッチング素子SIをゲート制御する遅延部DLYと、から成る。 (もっと読む)


【課題】ゼロ電圧スイッチングスキームを実施するために、スイッチ電圧VSWの勾配の極性変化の検出に応答してスイッチオフ時間が制御される。
【解決手段】フライバックコンバータは、一次巻線18aと出力コンデンサ26に結合された二次巻線18bとを有する変圧器18、一次巻線に結合された端子を有するスイッチ410、およびスイッチのオン時間を制御するための第1の回路部分とスイッチのオフ時間を制御するための第2の回路部分とを有するスイッチ制御回路406を備えており、第2の回路部分は、スイッチ端子の電圧の極性変化を検出するための勾配検出回路を備えている。勾配検出回路は、スイッチ端子に結合された第1の端子および第2の端子を有するコンデンサ412と、コンデンサの前記第2の端子に結合された抵抗器418と、コンデンサの前記第2の端子に結合され、スイッチ端子の電圧の勾配が負の勾配から変化すると、第1の論理レベルから第2の論理レベルに変化する比較器出力信号を提供する比較器420と、を備える (もっと読む)


【課題】広い周波数領域においてスイッチングノイズのレベルを抑えることができる電力変換装置を提供する。
【解決手段】スイッチング周波数拡散パターンは、時間に対して2つの周波数f1、f2を規定したメイン拡散パターンと、互いに隣接する周波数の間隔がメイン拡散パターンより小さい、時間に対して3つの周波数f3、f4、f5を規定したサブ拡散パターンとを合成して構成されている。メイン拡散パターンによって、従来の同じようにスイッチング周波数を拡散できる。そのため、低周波領域においてスイッチングノイズのレベルを抑えることができる。さらに、サブ拡散パターンによって、スイッチング周波数の高調波に当たる周波数におけるスイッチングノイズのピークを十分に拡散できる。そのため、高調波領域においてスイッチングノイズのレベルを抑えることができる。従って、広い周波数領域においてスイッチングノイズのレベルを抑えることができる。 (もっと読む)


【課題】過電圧保護動作後で交流電源オフ後に即座にスイッチング素子の動作禁止状態を解除するスイッチング電源装置。
【解決手段】入力整流平滑回路10、トランス20、スイッチング素子80、2次巻線電圧を整流平滑して直流出力電圧を取り出す出力整流平滑回路130を備え、スイッチング素子をオン/オフ制御する制御回路190は直流出力電圧に応じた電圧を検出する過電圧保護回路180bに接続され、スイッチング素子のオン・デューティが過渡に広がり破壊するのを防止し且つ交流入力電圧に応じた電圧を検出する低入力保護回路160bとを備え、過電圧保護回路は直流出力電圧に応じた電圧が第1しきい値以上になった時にスイッチング素子のオン/オフ動作を禁止する過電圧動作禁止信号を出力し、低入力保護回路は交流入力電圧が低下し交流入力電圧に応じた電圧が第2しきい値未満になった時に過電圧保護回路に対して過電圧動作禁止信号を解除する信号を出力する。 (もっと読む)


【課題】電動機の駆動に必要な電圧の確保とバッテリの迅速な昇温との両立を図ることができるバッテリ昇温システムを提供する。
【解決手段】制御装置14は、車両の走行中に車両の走行状態に応じて電動機30を駆動するために必要な駆動電圧Vmを演算し、蓄電装置13に充電されたコンデンサ電圧Vcを取得する。そして、制御装置14は、電動機30を駆動するために必要な最大電圧である基準電圧Vthと電動機30を駆動するために必要な駆動電圧Vmとの範囲内にコンデンサ電圧Vcが収まるようにバッテリ11と蓄電装置13との間で電力の授受を切り替える。これにより、電動機30の駆動に必要な駆動電圧Vmの確保とバッテリ11の迅速な昇温との両立を図ることができる。 (もっと読む)


【課題】変圧器の二次側に共振回路を備えた直流電源装置において、整流回路を構成するダイオードのリカバリ時のサージ電圧を抑制し、変圧器の二次電流より負荷電流を正確に推定し、軽負荷時に対応して供給電力を調整する。
【解決手段】直流電圧源とコンバータと変圧器と整流回路と共振スイッチ106と共振コンデンサ107から構成された共振回路とフィルタリアクトルとフィルタコンデンサとスナバダイオード110とスナバコンデンサ109と負荷から構成された直流電源装置において、第1,第2の電圧センサ101,111及び電流センサ104と、これらのセンサの出力信号を入力し、コンバータ102および共振スイッチ106を構成する半導体素子のゲートパルスを制御する信号と、これらのセンサの信号を変換するA/D変換器200〜203の動作タイミングを調整する信号を出力する制御装置114を備える。 (もっと読む)


【課題】昇圧コンバータのリアクトルに流れるリアクトル電流をより適正に取得する。
【解決手段】昇圧コンバータによって駆動電圧系電力ラインの電圧VHを電池電圧系電力ラインの電圧VLに対して昇圧していない非昇圧時には、非昇圧時の差分値α1を用いて学習値G1を設定すると共に設定した学習値G1を用いてリアクトルの検出電流ILdetを補正する(S110〜S160)。一方、昇圧コンバータによって駆動電圧系電力ラインの電圧VHを電池電圧系電力ラインの電圧VLに対して昇圧している昇圧時には、昇圧時の差分値α2を用いて学習値G2を設定すると共に設定した学習値G2を用いてリアクトルの検出電流ILdetを補正する(S110,S170〜S210)。 (もっと読む)


【課題】スイッチング損失の低減が考慮された高効率の電源装置を提供する。
【解決手段】交流電源6と直流負荷7との間に接続された電源装置1は、交流電源6から供給された交流電力を直流電力に変換して直流負荷7へ供給する。電源装置1は、スイッチングされた正負の電圧をトランスTの一次巻線N1に出力する第1のスイッチング回路3と、トランスTの二次巻線N2に誘導されスイッチングされた直流電力を、第2の交流端子Nd5,Nd6間に接続された直流負荷7に供給する第2のスイッチング回路4と、一次巻線N1に直列接続された共振インダクタLrと、第1および第2のスイッチング回路3,4が行うスイッチング動作を制御する制御部5とを備える。制御部5は、第2のスイッチング回路4が行うスイッチング動作を制御することにより、第2の交流端子Nd5,Nd6間を実質的に短絡する。 (もっと読む)


【課題】メインバッテリーの過放電を防止しつつ、電圧変換器の起動時間を従来よりも短縮する。
【解決手段】電源制御システム10は、メインバッテリー12と、二次電池からなるサブバッテリー14と、一次側にメインバッテリー12が接続されるとともに二次側にサブバッテリー14が接続され、電圧変換率dに応じて一次側と二次側の電圧変換を行う電圧変換器16とを備える。さらに、電圧変換器16の起動時に、電圧変換器16の二次側電圧V2の初期電圧値がサブバッテリー14の端子電圧値VSBをとなるように電圧変換率dを設定するとともに、二次側電圧V2が初期電圧値に到達した後に初期電圧値から目標電圧値VTまで二次側電圧V2を増加させるように電圧変換率dを制御する制御部18を備える。 (もっと読む)


【課題】DC−DCコンバータの電力変換効率を向上させることが可能な電力変換制御装置を提供する。
【解決手段】制御装置18は、DC−DCコンバータ12の出力電流が、DC−DCコンバータ12の電力変換効率が最大となる最大効率出力電流よりも大きい場合には、DC−DCコンバータ12の出力電圧を低下させ、DC−DCコンバータ12と低圧バッテリ14とから補機負荷16に電力を供給させる。制御装置18は、DC−DCコンバータ12の出力電流が最大効率出力電流よりも小さい場合には、DC−DCコンバータ12の出力電圧を増大させて、補機負荷16と低圧バッテリ14とに電力を供給させる。 (もっと読む)


【課題】内部素子等の個体差等の影響を容易に吸収し、所望の静的負荷変動特性を精度よく実現することができるスイッチング電源装置を提供する。
【解決手段】間接出力電圧信号V3を出力する出力電圧検出回路38と、基準電圧信号V2を出力する基準電圧信号発生回路42と、基準電圧信号V2と間接出力電圧信号V3の差分を出力する誤差増幅器44を備える。誤差増幅器44の出力を基にパルス幅変調し、駆動パルスVg22を出力する主スイッチング素子駆動回路24を備える。スイッチング電流を検出し間接出力電流信号V1を出力する出力電流検出回路48を備える。間接出力電流信号V1をオン時比率D46で断続する補正量制御回路46を備える。基準電圧信号発生回路42は、補正量制御回路46を介して間接出力電流信号V1を受け、間接出力電流信号V1の波高値及びオン時比率D46に応じて基準電圧信号V2を補正する。 (もっと読む)


61 - 80 / 891