説明

エンジン装置

【課題】エンジン70の低負荷駆動時に、メイン噴射Aに先行する前噴射(パイロット噴射Bやプレ噴射C)を実行すると、着火不良及び燃焼不良を招来し易く、排気ガス中の一酸化炭素(CO)量が過剰になり、外部に白煙として排出されるという問題を解消する。
【解決手段】本願発明のエンジン装置は、作業車両141に搭載されるエンジン70と、1燃焼サイクル中に前記エンジン70に燃料を多段噴射するコモンレール式燃料噴射装置117とを備える。前記コモンレール式燃料噴射装置117は、前記エンジン70にかかる負荷が前記作業車両141での作業時より低い低負荷状態であれば、メイン噴射Aに先行する前噴射B,Cを実行しない。

【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、例えば農作業機や建設機械といった作業車両に搭載されるエンジン装置に関するものである。
【背景技術】
【0002】
近年のディーゼルエンジン(以下、単にエンジンという)においては、コモンレール式燃料噴射装置を利用して、各気筒に対するインジェクタに高圧燃料を供給し、各インジェクタからの燃料の噴射圧力、噴射時期、噴射期間(噴射量)を電子制御することによって、エンジンから排出される窒素酸化物(NOx)の低減や、エンジンの騒音振動の低減を図るという技術が知られている(特許文献1及び2等参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10−9033号公報
【特許文献2】特開2001−20796号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、コモンレール式燃料噴射装置付きのエンジンを、農作業機や建設機械といった作業車両の原動機(駆動源)に採用した場合において、エンジンを比較的低負荷状態で駆動させることがある。エンジンが低負荷の状態とは、例えば作業車両が停止状態のときや、動力伝達継断用の主クラッチを切りにしたとき等が挙げられる。
【0005】
しかし、エンジンの低負荷駆動時に、メイン噴射に先行する前噴射(パイロット噴射やプレ噴射)をコモンレール式燃料噴射装置にて実行すると、着火不良及び燃焼不良を招来し易い傾向にあり、排気ガス中の一酸化炭素(CO)量が過剰になり、外部に白煙として排出されるという問題があった。特に、エンジンをハイアイドル回転速度で低負荷駆動させると(高速回転・低負荷駆動)、白煙の発生が顕著になるのであった。
【0006】
そこで、本願発明は、上記の問題を解消したエンジン装置を提供することを技術的課題とするものである。
【課題を解決するための手段】
【0007】
請求項1の発明に係るエンジン装置は、作業車両に搭載されるエンジンと、1燃焼サイクル中に前記エンジンに燃料を多段噴射するコモンレール式燃料噴射装置とを備えており、前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記作業車両での作業時より低い低負荷状態であれば、メイン噴射に先行する前噴射を実行しないというものである。
【0008】
請求項2の発明は、請求項1に記載したエンジン装置において、前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記低負荷状態以外の状態であれば前記前噴射を実行するというものである。
【0009】
請求項3の発明は、請求項1又は2に記載したエンジン装置において、前記エンジンからの動力伝達を継断する主クラッチを更に備えており、前記コモンレール式燃料噴射装置は、前記主クラッチが動力遮断状態であれば前記前噴射を実行しないというものである。
【0010】
請求項4の発明は、請求項3に記載したエンジン装置において、前記主クラッチの動力継断状態を検出する継断検出手段を更に備えており、前記コモンレール式燃料噴射装置は、前記継断検出手段の検出結果に応じて前記前噴射の実行可否を決定するというものである。
【0011】
請求項5の発明は、請求項4に記載したエンジン装置において、エンジン回転速度を検出する回転速度検出手段を更に備えており、前記コモンレール式燃料噴射装置は、前記継断検出手段が前記主クラッチの動力遮断状態を検出し且つ前記回転速度検出手段にて検出されたエンジン回転速度が所定回転速度以上であれば、前記前噴射を実行しないというものである。
【0012】
請求項6の発明は、請求項1又は2に記載したエンジン装置において、前記コモンレール式燃料噴射装置の噴射量を検出する噴射量検出手段を更に備えており、前記コモンレール式燃料噴射装置は、前記噴射量検出手段の検出結果に応じて前記前噴射の実行可否を決定するというものである。
【0013】
請求項7の発明に係るエンジン装置は、作業車両に搭載されるエンジンと、1燃焼サイクル中に前記エンジンに燃料を多段噴射するコモンレール式燃料噴射装置とを備えており、前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記作業車両での作業時より低い低負荷状態であれば、メイン噴射に先行する前噴射の噴射量を予め設定された規定量よりも少なくするというものである。
【0014】
請求項8の発明は、請求項7に記載したエンジン装置において、前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記低負荷状態以外の状態であれば前記前噴射の噴射量を前記規定量にするというものである。
【発明の効果】
【0015】
請求項1の発明に係るエンジン装置によると、作業車両に搭載されるエンジンと、1燃焼サイクル中に前記エンジンに燃料を多段噴射するコモンレール式燃料噴射装置とを備えており、前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記作業車両での作業時より低い低負荷状態であれば、メイン噴射に先行する前噴射を実行しないから、前記エンジンの低負荷駆動時は、エンジン回転速度の高低に拘らず前記前噴射をなくして、着火不良及び燃焼不良を招来するおそれを少なくできる。その結果、排気ガス中の一酸化炭素(CO)量を低減でき、前記エンジンの低負荷駆動時の白煙発生という問題を回避できる。
【0016】
請求項2の発明によると、前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記低負荷状態以外の状態であれば前記前噴射を実行するから、前記エンジンの低負荷駆動時の白煙発生を抑制できるものでありながら、前記前噴射によるNOx低減及び騒音低減という効果も確保できる。
【0017】
請求項3の発明によると、前記エンジンからの動力伝達を継断する主クラッチを更に備えており、前記コモンレール式燃料噴射装置は、前記主クラッチが動力遮断状態であれば、前記前噴射を実行しないから、前記主クラッチの動力継断状態と前記前噴射の可否とを組み合わせる簡単な制御によって、前記エンジンの低負荷駆動時の白煙発生という問題を容易に防止できる。
【0018】
請求項4の発明では、前記主クラッチの動力継断状態を検出する継断検出手段を更に備えており、前記コモンレール式燃料噴射装置は、前記継断検出手段の検出結果に応じて前記前噴射の実行可否を決定する。この場合、前記主クラッチの動力遮断操作は、前記作業車両に搭乗したオペレータが例えばクラッチペダル等の操作手段を操作することによって実行される。前記前噴射の実行有無は、エンジン音やエンジン駆動感覚の変化を招来すると解されるものの、このような変化はオペレータの操作に起因して発生する。従って、オペレータに違和感を与えることがない。
【0019】
請求項5の発明によると、エンジン回転速度を検出する回転速度検出手段を更に備えており、前記コモンレール式燃料噴射装置は、前記継断検出手段が前記主クラッチの動力遮断状態を検出し且つ前記回転速度検出手段にて検出されたエンジン回転速度が所定回転速度以上であれば、前記前噴射を実行しないから、前記エンジンにおいて、前記前噴射を実行すれば着火不良や燃焼不良を招来し易い高速回転・低負荷駆動時に、的確に前記前噴射を禁止でき、排気ガス中の一酸化炭素(CO)量を確実に抑制できる。従って、前記エンジンの高速回転・低負荷駆動時の白煙発生防止効果が高い。
【0020】
請求項6の発明によると、前記コモンレール式燃料噴射装置の噴射量を検出する噴射量検出手段を更に備えており、前記コモンレール式燃料噴射装置は、前記噴射量検出手段の検出結果に応じて前記前噴射の実行可否を決定するから、前記エンジンの負荷状態に適切に対応して前記前噴射を実行したりなくしたりでき、着火不良及び燃焼不良を的確に防止して、前記エンジンの低負荷駆動時の白煙発生という問題に確実に対処できる。
【0021】
請求項7の発明に係るエンジン装置によると、作業車両に搭載されるエンジンと、1燃焼サイクル中に前記エンジンに燃料を多段噴射するコモンレール式燃料噴射装置とを備えており、前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記作業車両での作業時より低い低負荷状態であれば、メイン噴射に先行する前噴射の噴射量を予め設定された規定量よりも少なくするから、前記エンジンの低負荷駆動時は、エンジン回転速度の高低に拘らず前記前噴射の噴射量を減らして、着火不良及び燃焼不良を招来するおそれを少なくでき、請求項1の場合と同様に、排気ガス中の一酸化炭素(CO)量を低減して、前記エンジンの低負荷駆動時の白煙発生という問題を回避できる。
【0022】
請求項8の発明によると、前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記低負荷状態以外の状態であれば前記前噴射の噴射量を前記規定量にするから、請求項2の場合と同様に、前記エンジンの低負荷駆動時の白煙発生を抑制できるものでありながら、前記前噴射によるNOx低減及び騒音低減という効果も確保できる。
【図面の簡単な説明】
【0023】
【図1】トラクタの側面図である。
【図2】トラクタの平面図である。
【図3】トラクタの油圧回路図である。
【図4】トラクタにおける動力伝達系のスケルトン図である。
【図5】車速と無段変速機の変速比との関係を説明する図である。
【図6】エンジンの燃料系統説明図である。
【図7】エンジン及び排気ガス浄化装置の関係を示す機能ブロック図である。
【図8】ECUと変速コントローラとの関係を示す機能ブロック図である。
【図9】燃料の噴射タイミングを説明する図であり、(a)は第1例の高負荷状態の場合、(b)は第1例の低負荷状態の場合、(c)は第2例の高負荷状態の場合、(d)は第2例の低負荷状態の場合である。
【図10】燃料噴射制御の第1例を示すフローチャートである。
【図11】エンジン負荷(軸トルク)とCO発生量との関係を示すグラフである。
【図12】燃料噴射制御の第2例を示すフローチャートである。
【図13】燃料噴射制御の第3例を示すフローチャートである。
【図14】燃料噴射制御の第4例を示すフローチャートである。
【発明を実施するための形態】
【0024】
以下に、本願発明を具体化した実施形態を図面に基づいて説明する。
【0025】
(1).トラクタの概略構造
まず、図1及び図2を参照しながら、作業車両の一例であるトラクタ141の概略構造について説明する。図1及び図2に示すように、トラクタ141の走行機体142は、左右一対の前車輪143と左右一対の後車輪144とで支持されている。走行機体142の前部に搭載したエンジン70にて後車輪144及び前車輪143を駆動することにより、トラクタ141は前後進走行するように構成される。エンジン70はボンネット146にて覆われる。また、走行機体142の上面にはキャビン147が設置されている。該キャビン147の内部には、操縦座席148と、かじ取りすることによって前車輪143の操向方向を左右に動かす操縦ハンドル149とが設置されている。キャビン147の外側部には、オペレータが乗降するステップ150が設けられ、該ステップ150より内側で且つキャビン147の底部より下側には、エンジン70に燃料を供給する燃料タンク151が設けられている。
【0026】
図1及び図2に示すように、キャビン147内にある操縦ハンドル149は、操縦座席148の前方に位置する操縦コラム190上に設けられている。操縦コラム190の右方には、エンジン70の回転速度を設定保持するスロットルレバー197と、走行機体142を制動操作する左右一対のブレーキペダル191とが設けられている。操縦コラム190の左方には、走行機体142の進行方向を前進と後進とに切換操作するための前後進切換レバー198と、後述する主クラッチ233を継断操作するクラッチペダル192とが配置されている。操縦コラム190の背面側には、ブレーキペダル191を踏み込み位置に保持する駐車ブレーキレバー200が設けられている。
【0027】
ブレーキペダル191の右方には、スロットルレバー197にて設定されたエンジン70の回転速度を下限回転速度として、これ以上の範囲にて回転速度を増減速させるアクセルペダル199が配置されている。操縦座席148の右側コラム上には、対地作業機としてのロータリ耕耘機164の高さ位置を手動で変更調節する作業機昇降レバー193、PTO変速レバー194、及び変速操作用の主変速レバー201等が配置されている。操縦座席148の左側コラム上には副変速レバー195が配置され、左側コラムの前方にはデフロックペダル196が配置されている。
【0028】
図1及び図2に示すように、走行機体142は、前バンパ152及び前車軸ケース153を有するエンジンフレーム154と、エンジンフレーム154の後部にボルトにて着脱自在に固定する左右の機体フレーム156とにより構成される。機体フレーム156の後部には、エンジン70の駆動力を適宜変速して後車輪144及び前車輪143に伝達するためのミッションケース157が連結されている。後車輪144は、ミッションケース157の外側面から外向きに突出するように装着された後車軸ケース158を介して取り付けられている。ミッションケース157内には、エンジン70からの駆動力を変速する無段変速機159(図3及び図4参照)が設けられている。
【0029】
ミッションケース157の後部上面には、ロータリ耕耘機164を昇降動する油圧式の作業機用昇降機構160が着脱可能に取り付けられている。ロータリ耕耘機164は、ミッションケース157の後部に、一対の左右ロワーリンク161及びトップリンク162からなる3点リンク機構を介して連結される。ミッションケース157の後側面には、ロータリ耕耘機164にPTO駆動力を伝達するためのPTO軸163が後ろ向きに突設されている。
【0030】
図1及び図2に示すように、ロータリ耕耘機164の後部側には、散播用の播種機170が肥料散布機(図示省略)と交換可能に取り付けられている。播種機170は、種子を入れるタンク171と、タンク171内の種子を定量ずつ繰り出す繰出部172と、繰出部172の繰出ローラ(図示省略)を駆動する電動モータ173とを備えている。タンク171内の種子は、繰出部172からロータリ耕耘機164後方の既耕耘地面に散播される。なお、肥料散布機をロータリ耕耘機164に取り付けた場合は、肥料散布機の肥料(薬剤)がロータリ耕耘機164後方の既耕耘地面に散布されることになる。
【0031】
(2).トラクタの油圧回路構造
次に、主に図3を参照しながら、トラクタ141の油圧回路210構造を説明する。トラクタ141の油圧回路210は、エンジン70の回転動力にて駆動する作業用油圧ポンプ204及び走行用油圧ポンプ205を備えている。作業用油圧ポンプ204及び走行用油圧ポンプ205は、ミッションケース157における前側壁部材222の前面側に設けられている(図4参照)。作業用油圧ポンプ204は、作業機用昇降機構160の昇降制御油圧シリンダ215に作動油を供給するための制御電磁弁211に接続されている。制御電磁弁211は、作業機昇降レバー193の操作にて切り換え作動可能に構成されている。作業機昇降レバー193にて制御電磁弁211を切り換え作動させると、昇降制御油圧シリンダ215が伸縮駆動して、作業機用昇降機構160と左右ロワーリンク161とをつなぐリフトアーム169(図1参照)を昇降回動させる。その結果、ロワーリンク161を介してロータリ耕耘機164が昇降動することになる。
【0032】
走行用油圧ポンプ205は、ミッションケース157の無段変速機159及びパワーステアリング用の油圧シリンダ203に作動油を供給するものである。この場合、ミッションケース157は作動油タンクとしても利用されていて、ミッションケース157内部の作動油が各油圧ポンプ204,205に供給される。走行用油圧ポンプ205は、パワーステアリング用のコントロール弁212を介してパワーステアリング用の油圧シリンダ203に接続されている一方、左右一対のブレーキ作動機構245用のブレーキシリンダ247に対するオートブレーキ電磁弁246にも接続されている。
【0033】
更に、走行用油圧ポンプ205は、PTO変速機構228のPTOクラッチ248を作動させるPTOクラッチ油圧電磁弁249と、無段変速機159に対する比例制御弁213及び始動用電磁弁217並びにこれらにて作動する切換弁214と、副変速機構227の副変速油圧シリンダ250を作動させる高速クラッチ電磁弁251と、前後進切換機構226の前進用油圧クラッチ252に対する前進用クラッチ電磁弁253と、後進用油圧クラッチ254に対する後進用クラッチ電磁弁255と、二駆四駆切換機構229の四駆用油圧クラッチ256に対する四駆油圧電磁弁257と、倍速用油圧クラッチ258に対する倍速油圧電磁弁259とに接続されている。
【0034】
PTOクラッチ油圧電磁弁249、前進用クラッチ電磁弁253、後進用クラッチ電磁弁255、四駆油圧電磁弁257、及び倍速油圧電磁弁259は、これらを適宜制御して各々に対応するクラッチシリンダを作動させることによって、各油圧クラッチ248,252,254,256,258を切換駆動させるように構成されている。なお、油圧回路210は、リリーフ弁や流量調整弁、チェック弁、オイルクーラ、オイルフィルタ等も備えている。
【0035】
(3).トラクタの動力伝達系統
次に、主に図4を参照しながら、トラクタ141の動力伝達系統を説明する。中空箱形に形成されたミッションケース157の前面には前側壁部材222が、後面には後側壁部材223が着脱自在に固定されている。ミッションケース157の内部は仕切壁221によって前室224と後室225とに分けられている。図示は省略するが、前室224と後室225とは内部の作動油が相互に移動し得るように連通している。ミッションケース157の前室224側には、無段変速機159からの回転動力を正転又は逆転方向に切り換える前後進切換機構226と、前後進切換機構226を経由した回転動力を変速する機械式の副変速機構227と、エンジン70からの回転動力を適宜変速してPTO軸163に伝達するPTO変速機構228と、前後車輪143,144の二駆と四駆とを切り換える二駆四駆切換機構229とが配置されている。また、後室225側には、無段変速機159と、副変速機構227を経由した回転動力を左右の後車輪144に伝達する差動ギヤ機構230とが配置されている。
【0036】
エンジン70から後ろ向きに突出するエンジン出力軸74には、フライホイール231が直結するように取り付けられている。フライホイール231とこれから後ろ向きに延びる主動軸232とは、動力継断用の主クラッチ233を介して連結されている。主動軸232とミッションケース157から前向きに突出する主変速入力軸234とは、両端に自在軸継手を備えた動力伝達軸235を介して連結されている。エンジン70の回転動力は、エンジン出力軸74から主動軸232及び動力伝達軸235を介して主変速入力軸234に伝達され、次いで、無段変速機159及び副変速機構227によって適宜変速される。該変速動力が差動ギヤ機構230を介して左右の後車輪144に伝達される。無段変速機159及び副変速機構227による変速動力は、二駆四駆切換機構229及び前車軸ケース153内の差動ギヤ機構236を介して、左右の前車輪143にも伝達される。
【0037】
後室225の内部にある無段変速機159は、主変速入力軸234に主変速出力軸237を同心状に配置したインライン方式のものであり、可変容量形の油圧ポンプ部240と、該油圧ポンプ部240から吐出される高圧の作動油にて作動する定容量形の変速用油圧モータ部241とを備えている。油圧ポンプ部240には、主変速入力軸234の軸線に対して傾斜角を変更可能してその作動油供給量を調節するポンプ斜板242が設けられている。ポンプ斜板242には、主変速入力軸234の軸線に対するポンプ斜板242の傾斜角を変更調節する主変速油圧シリンダ243を関連させている。主変速油圧シリンダ243の駆動にてポンプ斜板242の傾斜角を変更することによって、油圧ポンプ部240から油圧モータ部241に供給される作動油量が変更調節され、無段変速機159の主変速動作が行われる。
【0038】
すなわち、主変速レバー201の操作量に比例して作動する比例制御弁213からの作動油にて切換弁214が作動すると、主変速油圧シリンダ190が駆動し、これに伴い主変速入力軸234の軸線に対するポンプ斜板242の傾斜角が変更される。実施形態のポンプ斜板242は、傾斜略零(零を含むその前後)の中立角度を挟んで一方(正)の最大傾斜角度と他方(負)の最大傾斜角度との間の範囲で角度調節可能であり、且つ、走行機体142の車速が最低のときにいずれか一方に傾斜した角度(この場合は負で且つ最大付近の傾斜角度)になるように設定されている(図5参照)。
【0039】
ポンプ斜板242の傾斜角が略零(中立角度)のときは、油圧ポンプ部240にて油圧モータ部241が駆動されず、主変速入力軸234と略同一回転速度にて主変速出力軸237が回転する。主変速入力軸234の軸線に対してポンプ斜板242を一方向(正の傾斜角)側に傾斜させたときは、油圧ポンプ部240が油圧モータ部241を増速作動させ、主変速入力軸234より速い回転速度で主変速出力軸237が回転する。その結果、主変速入力軸234の回転速度に油圧モータ部241の回転速度が加算されて、主変速出力軸237に伝達される。このため、主変速入力軸234の回転速度より高い回転速度の範囲で、ポンプ斜板242の傾斜角(正の傾斜角)に比例して、主変速出力軸237からの変速動力(車速)が変更される。ポンプ斜板242が正で且つ最大付近の傾斜角度のときに、走行機体142は最高車速になる(図5の白抜き四角箇所参照)。
【0040】
主変速入力軸234の軸線に対してポンプ斜板242を他方向(負の傾斜角)側に傾斜させたときは、油圧ポンプ部240が油圧モータ部241を減速(逆転)作動させ、主変速入力軸234より低い回転速度で主変速出力軸237が回転する。その結果、主変速入力軸234の回転速度から油圧モータ部241の回転速度が減算されて、主変速出力軸237に伝達される。このため、主変速入力軸234の回転速度より低い回転速度の範囲で、ポンプ斜板242の傾斜角(負の傾斜角)に比例して、主変速出力軸237からの変速動力が変更される。ポンプ斜板242が負で且つ最大付近の傾斜角度のときに、走行機体142は最低車速になる(図5の白抜き丸箇所参照)。
【0041】
なお、実施形態では、後述する作業機(変速)コントローラ271の指令にて作動する始動用電磁弁217からの作動油にて切換弁214を作動させると、主変速レバー201の操作位置に拘らず、主変速油圧シリンダ243が駆動し、これに伴い主変速入力軸234の軸線に対するポンプ斜板242の傾斜角が変更される。
【0042】
(4).エンジン及びその周辺の構造
次に、図6及び図7を参照して、エンジン70及びその周辺の構造を説明する。図6に示すように、エンジン70は4気筒型のディーゼルエンジンであり、上面にシリンダヘッド72が締結されたシリンダブロック75を備えている。シリンダヘッド72の一側面には吸気マニホールド73が接続されており、他側面には排気マニホールド71が接続されている。シリンダブロック75の側面のうち吸気マニホールド73の下方には、エンジン70の各気筒に燃料を1燃焼サイクル中に多段噴射するコモンレール装置117(コモンレール式燃料噴射装置)が設けられている。吸気マニホールド73の吸気上流側に接続された吸気管76には、エンジン70の吸気圧(吸気量)を調節するための吸気絞り装置81とエアクリーナ(図示省略)とが接続される。
【0043】
図7に示すように、4気筒分の各インジェクタ115に、コモンレール装置117及び燃料供給ポンプ116を介して、燃料タンク118が接続される。各インジェクタ115は電磁開閉制御型の燃料噴射バルブ119を備えている。コモンレール装置117は円筒状のコモンレール120を備えている。燃料供給ポンプ116の吸入側には、燃料フィルタ121及び低圧管122を介して燃料タンク118が接続されている。燃料タンク118内の燃料が燃料フィルタ121及び低圧管122を介して燃料供給ポンプ116に吸い込まれる。実施形態の燃料供給ポンプ116は吸気マニホールド73の近傍に配置されている。一方、燃料供給ポンプ116の吐出側には、高圧管123を介してコモンレール120が接続されている。コモンレール120には、4本の燃料噴射管126を介して、4気筒分のインジェクタ115が接続されている。
【0044】
上記の構成において、燃料タンク118の燃料は燃料供給ポンプ116によってコモンレール120に圧送され、高圧の燃料がコモンレール120に蓄えられる。各燃料噴射バルブ119がそれぞれ開閉制御されることによって、コモンレール120内の高圧の燃料が各インジェクタ115からエンジン70の各気筒に噴射される。すなわち、各燃料噴射バルブ119を電子制御することによって、各インジェクタ115から供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)が高精度にコントロールされる。従って、エンジン70からの窒素酸化物(NOx)を低減できると共に、エンジン70の騒音振動を低減できる。
【0045】
図9に示すように、コモンレール装置117は、上死点(TDC)を挟む付近でメイン噴射Aを実行するように構成されている。また、コモンレール装置117は、メイン噴射A以外に、上死点より約60°以前のクランク角度θ1の時期に、NOx及び騒音の低減を目的として少量のパイロット噴射Bを実行したり、上死点直前のクランク角度θ2の時期に、騒音低減を目的としてプレ噴射Cを実行したり、上死点後のクランク角度θ3及びθ4の時期に、粒子状物質(以下、PMという)の低減や排気ガスの浄化促進を目的としてアフタ噴射D及びポスト噴射Eを実行したりするように構成されている。
【0046】
パイロット噴射Bは、メイン噴射Aに対して大きく進角した時期に噴射することによって、燃料と空気との混合を促進させるものである。プレ噴射Cは、メイン噴射Aに先立って噴射することによって、メイン噴射Aでの着火時期の遅れを短縮するものである。アフタ噴射Dは、メイン噴射Aに対してやや遅角させて噴射することによって、拡散燃焼を活性化させ、エンジン70からの排気ガス温度を上昇させる(PMを再燃焼させる)ものである。ポスト噴射Eは、メイン噴射Aに対して大きく遅角した時期に噴射することによって、実際の燃焼過程に寄与せずに未燃焼の燃料として後述するDPF50に供給するものである。DPF50に供給された未燃焼の燃料は後述するディーゼル酸化触媒53上で反応し、その反応熱によってDPF50内の排気ガス温度が上昇することになる。図9におけるグラフの山の高低は、大まかに言って各噴射段階A〜Eでの噴射量の差異を表現している。メイン噴射Aに先行する噴射(例えばパイロット噴射Bやプレ噴射C)を総称して前噴射と言うこととする。
【0047】
なお、図7に示すように、燃料タンク118には、燃料戻り管129を介して燃料供給ポンプ116が接続されている。円筒状のコモンレール120の長手方向の端部に、コモンレール120内の燃料の圧力を制限する戻り管コネクタ130を介して、コモンレール戻り管131が接続されている。すなわち、燃料供給ポンプ116の余剰燃料とコモンレール120の余剰燃料とが、燃料戻り管129及びコモンレール戻り管131を介して燃料タンク118に回収されることになる。
【0048】
排気マニホールド71の排気下流側に接続された排気管77には、エンジン70の排気圧を調節するための排気絞り装置82と、排気ガス浄化装置の一例であるディーゼルパティキュレートフィルタ50(以下、DPFという)とが接続される。各気筒から排気マニホールド71に排出された排気ガスは、排気管77、排気絞り装置82及びDPF50を経由して浄化処理をされてから外部に放出される。
【0049】
図6に示すように、DPF50は、排気ガス中の粒子状物質(以下、PMという)等を捕集するためのものである。実施形態のDPF50は、耐熱金属材料製のケーシング51内にある略筒型のフィルタケース52に、例えば白金等のディーゼル酸化触媒53とスートフィルタ54とを直列に並べて収容したものである。フィルタケース52の排気上流側にディーゼル酸化触媒53が配置され、排気下流側にスートフィルタ54が配置される。スートフィルタ54は、排気ガスをろ過可能な多孔質隔壁にて区画された多数のセルを有するハニカム構造に構成されている。
【0050】
ケーシング51の一側部には、排気管77のうち排気絞り装置82の排気下流側に連通する排気導入口55が設けられている。前記ケーシング51の一側部と、フィルタケース52の一側部は第1側壁板56及び第2側壁板57にて塞がれている。ケーシング51の他側部は第1蓋板59及び第2蓋板60にて塞がれている。両蓋板59,60の間は、フィルタケース52内に複数の連通管62を介して連通する排気音減衰室63に構成されている。また、第2蓋板60を略筒型の排気出口管61が貫通している。排気出口管61の外周面には、排気音減衰室63に向けて開口する複数の連通穴58が形成されている。排気出口管61及び排気音減衰室63等によって消音器64を構成している。
【0051】
ケーシング51の一側部に形成された排気導入口55には排気ガス導入管65が挿入されている。排気ガス導入管65の先端は、ケーシング51を横断して排気導入口55と反対側の側面に突出している。排気ガス導入管65の外周面には、フィルタケース52に向けて開口する複数の連通穴66が形成されている。排気ガス導入管65のうち排気導入口55と反対側の側面に突出する部分は、これに着脱可能に螺着された蓋体67にて塞がれている。
【0052】
DPF50には、検出手段の一例として、スートフィルタ54の詰まり状態を検出するDPF差圧センサ68が設けられている。DPF差圧センサ68は、DPF50内におけるスートフィルタ54の上流側と下流側との各排気圧の圧力差(入口側と出口側との排気ガス差圧)を検出するものである。この場合、排気ガス導入管65の蓋体67に、DPF差圧センサ68を構成する上流側排気圧センサ68aが装着され、スートフィルタ54と排気音減衰室63との間に、下流側排気圧センサ68bが装着されている。
【0053】
なお、DPF50の上下流間の圧力差と、スートフィルタ54(DPF50)内のPM堆積量との間に特定の関連性があるから、DPF差圧センサ68にて検出される圧力差に基づき、DPF50内のPM堆積量が演算にて求められる。そして、PM堆積量の演算結果に基づき、吸気絞り装置81、排気絞り装置82、又はコモンレール120を作動制御することにより、スートフィルタ54(DPF50)の再生制御が実行される。
【0054】
上記の構成において、エンジン70からの排気ガスは、排気導入口55を介して排気ガス導入管65に入って、排気ガス導入管65に形成された各連通穴66からフィルタケース52内に噴出し、ディーゼル酸化触媒53からスートフィルタ54の順に通過して浄化処理される。排気ガス中のPMは、スートフィルタ54(各セル間の多孔質隔壁)に捕集される。ディーゼル酸化触媒53及びスートフィルタ54を通過した排気ガスは、消音器64を介して排気出口管61から機外に放出される。
【0055】
排気ガスがディーゼル酸化触媒53及びスートフィルタ54を通過するに際して、排気ガス温度が再生可能温度(例えば約250〜300℃)を超えていれば、ディーゼル酸化触媒53の作用によって、排気ガス中のNO(一酸化窒素)が不安定なNO(二酸化窒素)に酸化される。そして、NOがNOに戻る際に放出するO(酸素)にて、スートフィルタ54に堆積したPMを酸化除去することにより、スートフィルタ54のPM捕集能力が回復する。すなわち、スートフィルタ54(DPF50)が再生する。
【0056】
(5).エンジンの制御関連の構成
次に、図7及び図8等を参照しながら、エンジン70の制御関連の構成を説明する。図7及び図8に示すように、トラクタ141は、制御手段として、エンジン70における各気筒の燃料噴射バルブ119を作動させるECU11と、作業機(変速)コントローラ271とを備えている。ECU11は、各種演算処理や制御を実行するCPU31、各種データを予め固定的に記憶させたROM32、制御プログラムや各種データを書換可能に記憶するEEPROM33、制御プログラムや各種データを一時的に記憶するRAM34、時間計測用のタイマ35、及び入出力インターフェイス等を有している。作業機コントローラ271もECU11と同様に、CPU281、ROM282、EEPROM283、RAM284、タイマ285及び入出力インターフェイス等を有している。
【0057】
制御手段であるECU11及び作業機コントローラ271は、目安として、入出力系機器のハーネスの長さがなるべく短くなるように組み合せてそれらを制御するようにしており、それぞれの配置箇所でコントローラボックス(図示省略)内に格納されている。ECU11と作業機コントローラ271とは互いにCAN通信バス272を介して電気的に接続されている。実施形態のECU11は、エンジン70又はその近傍に配置される(図2参照)。作業機コントローラ271は、例えばキャビン147内における操縦座席148の下方に配置される(図2参照)。なお、制御手段は通信バスを介して3つ以上を接続する構成でもよい。後述する各入出力系機器はいずれの制御手段に接続されてもよい。
【0058】
ECU11の入力側には、少なくともコモンレール120内の燃料圧力を検出するレール圧センサ12、燃料ポンプ116を回転又は停止させる電磁クラッチ13、エンジン70の回転速度(エンジン出力軸74のカムシャフト位置)を検出する回転速度検出手段としてのエンジン速度センサ14、インジェクタ115の燃料噴射回数(1行程の燃料噴射期間中の回数)を検出及び設定する噴射設定器15、吸気系の吸気ガス温度を検出する吸気温度センサ17、排気系の排気ガス温度を検出する排気温度センサ18、エンジン70の冷却水温度を検出する冷却水温度センサ19、コモンレール120内の燃料温度を検出する燃料温度センサ20、並びに、DPF差圧センサ68(上流側排気圧センサ68a及び下流側排気圧センサ68b)等が接続されている。
【0059】
ECU11の出力側には、エンジン4気筒分の各燃料噴射バルブ119の電磁ソレノイドがそれぞれ接続されている。すなわち、コモンレール120に蓄えた高圧燃料が燃料噴射圧力、噴射時期及び噴射期間等を制御しながら、1行程中に複数回に分けて燃料噴射バルブ119から噴射されることによって、窒素酸化物(NOx)の発生を抑えると共に、すすや二酸化炭素等の発生も低減した完全燃焼を実行し、燃費を向上させるように構成されている。また、ECU11の出力側には、エンジン70の吸気圧(吸気量)を調節するための吸気絞り装置81、エンジン70の排気圧を調節するための排気絞り装置82、ECU11の故障を警告報知するECU故障ランプ22、DPF50内における排気ガス温度の異常高温を報知する排気温度警告ランプ23、及び、DPF50再生動作に伴い点灯する再生ランプ24等が接続されている。
【0060】
図8に示すように、作業機コントローラ271には、出力関連の各種電磁弁、すなわち前進用油圧クラッチ252に対する前進用クラッチ電磁弁253、後進用油圧クラッチ254に対する後進用クラッチ電磁弁255、副変速油圧シリンダ250に対する高速クラッチ電磁弁251、主変速レバー201の操作量に比例して主変速油圧シリンダ243を作動させる比例制御弁213と、四駆用油圧クラッチ256に対する四駆油圧電磁弁257、倍速用油圧クラッチ258に対する倍速油圧電磁弁259、左右のオートブレーキ電磁弁246、PTOクラッチ248に対するPTOクラッチ油圧電磁弁249、及び、作業機用昇降機構160の昇降制御油圧シリンダ215に作動油を供給する制御電磁弁211等が接続されている。
【0061】
更に、作業機コントローラ271には、入力関連の各種センサ及びスイッチ類、すなわち操縦ハンドル149の回動操作量(操舵角度)を検出する操舵ポテンショ290、前後進切換レバー198の操作位置から前進用及び後進用油圧クラッチ252,254の入り切り状態を検出する前後進ポテンショ291、主変速出力軸237の出力回転速度を検出する主変速出力軸回転センサ292、スロットルレバー197の操作位置を検出するスロットル位置センサ16、前後四輪143,144の回転速度(車速)を検出する車速センサ25、四駆油圧電磁弁257を切換操作する四駆モードスイッチ293、倍速油圧電磁弁259を切換操作する倍速モードスイッチ294、ブレーキペダル191の踏み込みの有無を検出するブレーキペダルスイッチ295、オートブレーキ電磁弁246を切換操作するオートブレーキスイッチ296、主変速レバー201の操作位置を検出する主変速ポテンショ297、副変速レバー195の操作位置を検出する副変速レバーセンサ298、及び、主クラッチ233の動力継断状態を検出する継断検出手段としての主クラッチセンサ300等が接続されている。主クラッチセンサ300は、主クラッチ233の動力継断状態を直接検出するものでもよいし、クラッチペダル192の操作位置から間接的に主クラッチの動力継断状態を検出するものでもよい。
【0062】
ECU11のEEPROM33又は作業機コントローラ271のEEPROM283には、エンジン70の回転速度NとトルクT(負荷)との関係を示す出力特性マップ(図示省略)が予め記憶されている。ECU11は、エンジン速度センサ14にて検出される回転速度とスロットル位置センサ16にて検出されるスロットル位置とからエンジン70のトルクTを求め、トルクTと出力特性マップとを用いて目標噴射量を演算し、該演算結果に基づきコモンレール装置117を作動させる燃料噴射制御を実行するように構成されている。なお、コモンレール装置117の噴射量は、各燃料噴射バルブ119の開弁期間を調節して、各インジェクタ115への噴射期間を変更することによって調節される。ECU11は、各燃料噴射バルブ119の開弁期間及びレール圧センサ12にて検出される燃料圧力に基づいて、コモンレール装置117が噴射した実際の噴射量(インジェクタ115全体の噴射量)を算出するように構成されている。すなわち、ECU11がコモンレール装置117の噴射量を検出する噴射量検出手段としての役割を担っている。
【0063】
(6).燃料噴射制御の説明
次に、図10等のフローチャートを参照しながら、コモンレール装置117による燃料噴射制御について説明する。実施形態のコモンレール装置117は、エンジン70にかかる負荷が比較的高い高負荷状態であればメイン噴射に先行する前噴射B,Cを行う通常の燃料噴射制御と、エンジン70にかかる負荷がトラクタ141での作業時より低い低負荷状態であれば前噴射B,Cを行わない修正噴射制御とを実行するように構成されている。燃料噴射制御及び修正噴射制御はECU11の指令に基づいて実行される。すなわち、図10以降のフローチャートにて示すアルゴリズムはEEPROM33に記憶されていて、該アルゴリズムをRAM34に呼び出してからCPU31にて処理することによって、燃料噴射制御及び修正噴射制御が実行されることになる。
【0064】
図10のフローチャートは燃料噴射制御の第1例である。当該第1例では、エンジン70にかかる負荷を主クラッチ233の動力継断状態から判別する。また、第1例では、前噴射B,Cとしてプレ噴射Cのみを採用し、エンジン70負荷の高低に拘らずパイロット噴射Bを全く行わない設定である。主クラッチ233が動力接続状態ならば、プレ噴射Cありの通常の燃料噴射制御(図9(a)参照)が実行され、主クラッチ233が動力遮断状態ならば、プレ噴射Cなしの修正噴射制御(図9(b)参照)が実行される。この場合、図10のフローチャートに示すように、ECU11は、主クラッチセンサ300の検出値を読み込んで(S01)、当該検出値から主クラッチ233が動力接続状態か否かを判別する(S02)。主クラッチ233が動力接続状態であれば(S02:YES)、プレ噴射Cありの通常の燃料噴射制御をコモンレール装置117に実行させる(S03)。主クラッチ233が動力遮断状態であれば(S02:NO)、プレ噴射Cなしの修正燃料噴射をコモンレール装置117に実行させる(S04)。ステップS03及びS04の後は、電源印加用のキースイッチ(図示省略)を切り操作しない限り、ステップS01に戻って制御を続行する。
【0065】
このように制御すると、主クラッチ233が動力遮断状態にある低負荷駆動時は、エンジン70回転速度の高低に拘らずプレ噴射Cをなくして、着火不良及び燃焼不良を招来するおそれを少なくできる。その結果、排気ガス中の一酸化炭素(CO)量を低減でき、エンジン70の低負荷駆動時の白煙発生という問題を回避できる。図11には、エンジン70高速回転時(2500rpm一定)におけるエンジン70負荷(軸トルク)とCO発生量との関係をグラフ化したものであり、エンジン70負荷(軸トルク、Nm)を横軸に採り、排気ガス中のCO発生量(ppm)を縦軸に採っている。図11のグラフでは、黒塗り三角(▲)が低負荷駆動時にプレ噴射Cを行わない第1例の場合、黒塗り四角(■)が低負荷駆動時にプレ噴射Cを行う従来の場合である。これらの結果から明らかなように、軸トルクの小さい低負荷状態では、プレ噴射Cをしない第1例のCO発生量が従来の半分以下になっている。
【0066】
なお、第1例では、前噴射B,Cとしてプレ噴射Cのみを採用したが、これに代えて、前噴射B,Cとしてパイロット噴射Bのみを採用して、エンジン70負荷の高低に拘らずプレ噴射Cを全く行わない設定にしてもよい。
【0067】
図12のフローチャートは燃料噴射制御の第2例である。当該第2例では、前噴射B,Cとしてパイロット噴射B及びプレ噴射Cの両方を採用している。そして、主クラッチ233が動力接続状態ならば、パイロット噴射B及びプレ噴射C共にありの通常の燃料噴射制御(図9(c)参照)が実行され、主クラッチ233が動力遮断状態ならば、パイロット噴射B及びプレ噴射C共になしの修正噴射制御(図9(d)参照)が実行される。この場合、図12のフローチャートは基本的に図10の場合と同様であるが、通常の燃料噴射制御ではパイロット噴射B及びプレ噴射Cの両方を実行し、修正噴射制御ではパイロット噴射B及びプレ噴射Cの両方を禁止することになる。
【0068】
なお、第2例では、前噴射B,Cとしてパイロット噴射B及びプレ噴射Cの両方を採用して、エンジン70の低負荷駆動時にパイロット噴射B及びプレ噴射Cの両方とも禁止する設定にしたが、これに限らず、エンジン70の低負荷駆動時にパイロット噴射B及びプレ噴射Cのうちいずれか一方を禁止する設定にしてもよい。
【0069】
なお、第1例及び第2例において、通常の燃料噴射制御時における前噴射B,Cでの噴射量(プレ噴射Cの噴射量や、パイロット噴射B及びプレ噴射Cの噴射量の和)は、予め設定された規定量に相当すると言える。第1例及び第2例では、プレ噴射Cをなくす(プレ噴射Cをゼロにする)ことによって、修正噴射制御時における前噴射B,Cでの噴射量を通常の燃料噴射制御時よりも少なくした(前記規定量よりも少なくした)が、これに限らず、プレ噴射Cやパイロット噴射Bでの噴射量自体をそれぞれ減らしてもよい。このようにした場合も、着火不良及び燃焼不良を招来するおそれを少なくして、排気ガス中の一酸化炭素(CO)量を低減できることになる。
【0070】
図13のフローチャートは燃料噴射制御の第3例である。当該第3例では、第2例と同様に、前噴射B,Cとしてパイロット噴射B及びプレ噴射Cの両方を採用している。そして、主クラッチ233が動力接続状態ならば、パイロット噴射B及びプレ噴射C共にありの通常の燃料噴射制御(図9(c)参照)が実行され、主クラッチ233が動力遮断状態で、且つ、回転速度検出手段としてのエンジン速度センサ14が予め設定された所定回転速度R0以上を検出していれば、パイロット噴射B及びプレ噴射C共になしの修正噴射制御(図9(d)参照)が実行される。
【0071】
この場合、図13のフローチャートに示すように、ECU11は、主クラッチセンサ300及びエンジン速度センサ14の検出値を読み込み(S11)、主クラッチセンサ300の検出値から主クラッチ233が動力接続状態か否かを判別する(S12)。主クラッチ233が動力接続状態であれば(S12:YES)、パイロット噴射B及びプレ噴射C共にありの通常の燃料噴射制御をコモンレール装置117に実行させる(S13)。主クラッチ233が動力遮断状態であれば(S12:NO)、エンジン速度センサ14の検出値から、エンジン回転速度が所定回転速度R0以上か否かを判別する(S14)。エンジン回転速度が所定回転速度R0未満であれば(S14:NO)、ステップS13に移行して、通常の燃料噴射制御をコモンレール装置117に実行させる。エンジン回転速度が所定回転速度R0以上であれば(S14:YES)、パイロット噴射B及びプレ噴射C共になしの修正燃料噴射をコモンレール装置117に実行させる(S15)。ステップS13及びS15の後は、電源印加用のキースイッチ(図示省略)を切り操作しない限り、ステップS11に戻って制御を続行する。なお、所定回転速度R0は例えば1200rpm程度を目安に設定すれば足りる。
【0072】
このように制御すると、エンジン70において、前噴射B,Cを実行すれば着火不良や燃焼不良を招来し易い高速回転・低負荷駆動時に、的確に前噴射B,Cを禁止でき、排気ガス中の一酸化炭素(CO)量を確実に抑制できる。従って、エンジン70の高速回転・低負荷駆動時の白煙発生防止効果が高いのである。
【0073】
図14のフローチャートは燃料噴射制御の第4例である。当該第4例では、エンジン70にかかる負荷の状態を判別するのに、ECU11にて算出されるコモンレール装置117の実際の噴射量を用いている。この場合、図14のフローチャートに示すように、ECU11は、各燃料噴射バルブ119の開弁期間及びレール圧センサ12の検出値(燃料圧力)を読み込み(S21)、コモンレール装置117が噴射した実際の噴射量(インジェクタ115全体の噴射量)を算出する(S22)。算出値(実際の噴射量)はエンジン70負荷に相当するため、当該算出値が予め設定された設定値より大きい場合は(S23:YES)、通常の燃料噴射制御をコモンレール装置117に実行させる(S24)。算出値が設定値以下であれば(S23:NO)、修正噴射制御をコモンレール装置117に実行させる(S25)。設定値は、トラクタ141での作業時より低い低負荷状態(例えば主クラッチ233を切りにした場合等)のときを示す境界値を意味している。ステップS24及びS25の後は、電源印加用のキースイッチ(図示省略)を切り操作しない限り、ステップS11に戻って制御を続行する。第4例では、エンジン70の低負荷駆動時にパイロット噴射B及びプレ噴射Cのうち少なくとも一方を禁止する設定にすればよい。
【0074】
以上の説明から分かるように、実施形態のエンジン装置によると、作業車両141に搭載されるエンジン70と、1燃焼サイクル中に前記エンジン70に燃料を多段噴射するコモンレール式燃料噴射装置117とを備えており、前記コモンレール式燃料噴射装置117は、前記エンジン70にかかる負荷が前記作業車両141での作業時より低い低負荷状態であれば、メイン噴射Aに先行する前噴射B,Cを実行しないから、前記エンジン70の低負荷駆動時は、エンジン70回転速度の高低に拘らず前記前噴射B,Cをなくして、着火不良及び燃焼不良を招来するおそれを少なくできる。その結果、排気ガス中の一酸化炭素(CO)量を低減でき、前記エンジン70の低負荷駆動時の白煙発生という問題を回避できる。
【0075】
また、前記コモンレール式燃料噴射装置117は、前記エンジン70にかかる負荷が前記低負荷状態以外の状態であれば前記前噴射B,Cを実行するから、前記エンジン70の低負荷駆動時の白煙発生を抑制できるものでありながら、前記前噴射B,CによるNOx低減及び騒音低減という効果も確保できる。
【0076】
更に、前記エンジン70からの動力伝達を継断する主クラッチ233を更に備えており、前記コモンレール式燃料噴射装置117は、前記主クラッチ233が動力遮断状態であれば、前記前噴射B,Cを実行しないから、前記主クラッチ233の動力継断状態と前記前噴射B,Cの可否とを組み合わせる簡単な制御によって、前記エンジン70の低負荷駆動時の白煙発生という問題を容易に防止できる。
【0077】
特に第1例及び第2例では、前記主クラッチ233の動力継断状態を検出する継断検出手段300を更に備えており、前記コモンレール式燃料噴射装置117は、前記継断検出手段300の検出結果に応じて前記前噴射B,Cの実行可否を決定している。この場合、前記主クラッチ233の動力遮断操作は、前記作業車両141に搭乗したオペレータが例えばクラッチペダル192を踏み込み操作することによって実行される。前記前噴射B,Cの実行有無は、エンジン70音やエンジン70駆動感覚の変化を招来すると解されるものの、このような変化はオペレータの操作に起因して発生する。従って、オペレータに違和感を与えることがない。
【0078】
また、第3例では、エンジン回転速度を検出する回転速度検出手段14を更に備えており、前記コモンレール式燃料噴射装置117は、前記継断検出手段300が前記主クラッチ233の動力遮断状態を検出し且つ前記回転速度検出手段14にて検出されたエンジン回転速度が所定回転速度R0以上であれば、前記前噴射B,Cを実行しないから、前記エンジン70において、前記前噴射B,Cを実行すれば着火不良や燃焼不良を招来し易い高速回転・低負荷駆動時に、的確に前記前噴射B,Cを禁止でき、排気ガス中の一酸化炭素(CO)量を確実に抑制できる。従って、前記エンジン70の高速回転・低負荷駆動時の白煙発生防止効果が高いのである。
【0079】
更に、第4例では、前記コモンレール式燃料噴射装置117の噴射量を検出する噴射量検出手段11を更に備えており、前記コモンレール式燃料噴射装置117は、前記噴射量検出手段11の検出結果に応じて前記前噴射B,Cの実行可否を決定するから、前記エンジン70の負荷状態に適切に対応して前記前噴射B,Cを実行したりなくしたりでき、着火不良及び燃焼不良を的確に防止して、前記エンジン70の高速回転・低負荷駆動時の白煙発生という問題に確実に対処できるという効果を奏する。
【0080】
(7).その他
本願発明は、前述の実施形態に限らず、様々な態様に具体化できる。各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。
【符号の説明】
【0081】
11 ECU(制御手段、噴射量検出手段)
14 回転速度検出手段
70 エンジン
117 コモンレール装置(コモンレール式燃料噴射装置)
120 コモンレール
141 トラクタ(作業車両)
142 走行機体
192 クラッチペダル
233 主クラッチ
300 主クラッチセンサ(継断検出手段)

【特許請求の範囲】
【請求項1】
作業車両に搭載されるエンジンと、
1燃焼サイクル中に前記エンジンに燃料を多段噴射するコモンレール式燃料噴射装置とを備えており、
前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記作業車両での作業時より低い低負荷状態であれば、メイン噴射に先行する前噴射を実行しない、
エンジン装置。
【請求項2】
前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記低負荷状態以外の状態であれば前記前噴射を実行する、
請求項1に記載したエンジン装置。
【請求項3】
前記エンジンからの動力伝達を継断する主クラッチを更に備えており、
前記コモンレール式燃料噴射装置は、前記主クラッチが動力遮断状態であれば前記前噴射を実行しない、
請求項1又は2に記載したエンジン装置。
【請求項4】
前記主クラッチの動力継断状態を検出する継断検出手段を更に備えており、
前記コモンレール式燃料噴射装置は、前記継断検出手段の検出結果に応じて前記前噴射の実行可否を決定する、
請求項3に記載したエンジン装置。
【請求項5】
エンジン回転速度を検出する回転速度検出手段を更に備えており、
前記コモンレール式燃料噴射装置は、前記継断検出手段が前記主クラッチの動力遮断状態を検出し且つ前記回転速度検出手段にて検出されたエンジン回転速度が所定回転速度以上であれば、前記前噴射を実行しない、
請求項4に記載したエンジン装置。
【請求項6】
前記コモンレール式燃料噴射装置の噴射量を検出する噴射量検出手段を更に備えており、
前記コモンレール式燃料噴射装置は、前記噴射量検出手段の検出結果に応じて前記前噴射の実行可否を決定する、
請求項1又は2に記載したエンジン装置。
【請求項7】
作業車両に搭載されるエンジンと、
1燃焼サイクル中に前記エンジンに燃料を多段噴射するコモンレール式燃料噴射装置とを備えており、
前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記作業車両での作業時より低い低負荷状態であれば、メイン噴射に先行する前噴射の噴射量を予め設定された規定量よりも少なくする、
エンジン装置。
【請求項8】
前記コモンレール式燃料噴射装置は、前記エンジンにかかる負荷が前記低負荷状態以外の状態であれば前記前噴射の噴射量を前記規定量にする、
請求項7に記載したエンジン装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2013−2362(P2013−2362A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−134316(P2011−134316)
【出願日】平成23年6月16日(2011.6.16)
【出願人】(000006781)ヤンマー株式会社 (3,810)
【Fターム(参考)】