説明

マイクロポンプ

【課題】駆動要素の慣性力又は揚力や、流路の容積変化に依存することなく、マイクロチップ又はバイオチップ内流路の流体を輸送する。
【解決手段】マイクロポンプは、マイクロチップ又はバイオチップの流路壁(4)によって形成されたU形流路(20)を有する。U形流路は、流入側流路部分(21)及び流出側流路部分(22)を有し、円板形、円柱形又は円筒形の回転子(10,90)が、流路(21,22)の折返し部(23)に回転可能に配置される。回転子は、流路(21,22)を区画する隔壁(5)の先端面と対向する。回転子は、遠隔駆動手段(レーザー光L,L1,L2,L3)によって、その回転中心軸線(X-X)を位置決めされ且つ回転駆動される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロポンプに関するものであり、より詳細には、1mm以下の流路断面寸法を有するマイクロチップ又はバイオチップ内の流路に配置可能なマイクロポンプに関するものである。
【背景技術】
【0002】
光重合性樹脂原料にレーザー光を照射して三次元構造の光重合体を造形する光造形法が知られている。光重合性樹脂は、光硬化性樹脂とも呼ばれる。光重合性樹脂の光造形法を用いた微小構造体の製造方法が、例えば、特開2001−158050号公報及び特開平11−170377号公報等に開示されている。光造形法においては、液状の光重合性樹脂原料にレーザー光が照射され、光重合体からなる三次元構造体が、液状の樹脂原料内に造形される。このような光造形法によれば、レーザー光の集光点及び2光子吸収を正確に制御することにより、比較的複雑な三次元構造を有するマイクロギア等の微小構造体を光重合性樹脂原料によって高精度に成形することができる。
【0003】
光重合性樹脂の光造形法によって成形した微小構造体を駆動する方法として、レーザー光を微小構造体の可動部に照射し、可動部を光トラッピングした状態でレーザー光の集光点を移動させて可動部を駆動する微小構造体の駆動方法が知られている(特開2003−25295号公報)。
【0004】
このような光駆動の原理を利用してサンプル液及び試薬液を混合攪拌する光圧ミキサを備えたマイクロチップが、特開2001−252897号公報に開示されている。光圧ミキサは、リソグラフィ技術によって成形され、サンプル液流路及び試薬液流路の合流部に配置される。レーザー光が光圧ミキサに照射され、光圧ミキサは、光圧によって回転し、合流部においてサンプル液及び試薬液を混合攪拌する。
【0005】
光駆動の原理を利用した流体輸送方法として、液体中に浮遊した微粒子をレーザー光で遠隔操作し、微粒子の運動を利用してマイクロチップ内の液体を流動させる方法が提案されている。
【0006】
近年、微小なマイクロチップ又はバイオチップ等を用いて化学合成分析プロセスを実行するマイクロ化学分析シテスムの研究・開発が注目されている。一般に、この種のマイクロチップ等においては、DNA又は蛋白質等を含む流体を電気泳動によって輸送し、或いは、図16に示す如く、外付けシリンジポンプ等の比較的大型の外部機器101を流体管路102によってマイクロチップ100の流出口に接続した構成のシステムが使用される。外部機器101を用いたシステムにおいては、外部機器101の吐出口が流体管路103によって分析装置105に接続され、流体供給系106の流体が、マイクロチップ100及び外部機器101の制御下に分析装置105に給送される。
【0007】
通常のスケール(ミリ、インチ又はフィートのオーダーの寸法)からマイクロスケール(マイクロメーターのオーダーの寸法)に適用可能なディスク形ポンプの構造がPCT国際公開公報WO2005/024230に記載されている。この公報に記載されたポンプは、ポンプハウジング内に配置された回転ディスクと、回転ディスクの表面を部分的に横断するワイパーと、回転ディスクに連結されるモーターとから主に構成される。ディスクの回転時に、粘性力による回転運動(rotational momentum)が流体に与えられるとともに、遠心力が流体に作用し、流体は、ワイパーの作用によってディスクの表面から下流側流路に差し向けられる。
【特許文献1】特開2001−158050号公報
【特許文献2】特開平11−170377号
【特許文献3】特開2003−25295号公報
【特許文献4】特開2001−252897号公報
【特許文献5】PCT国際公開公報WO2005/024230
【発明の開示】
【発明が解決しようとする課題】
【0008】
前述の外部機器101を用いたマイクロ化学分析シテスムにおいては、流体管路102の接続部に液漏れ又は気泡混入等の問題が生じ易く、これは、分析の精度を低下させる要因となっている。しかも、外部機器101及び外部管路102、103の内部容積は、マイクロチップ100の内部流路の容積に比べてかなり大きく、このため、外部機器101及び流体管路102、103を含む流体回路は、比較的多量のサンプル及び試薬等を全体として保有しなければならない。この結果、サンプル及び試薬等の微量化に限界が生じ、分析プロセスに要するコストを所望の如く低減し難いといった問題が生じている。
【0009】
これに対し、上記特許文献4に記載された光駆動可能な光圧ミキサは、マイクロチップの流路内に配置可能な回転子を有する。回転子は、3本以上の直線流路が合流する合流部に配置される。光圧ミキサの回転子が回転すると、回転子の近傍に流体圧力が発生し、異種流体の混合攪拌が合流部において実行される。回転子近傍に形成される流体圧力は、流体を混合攪拌する上では有効に働くかもしれない。しかし、回転体周囲の高圧領域及び低圧領域の各圧力が互いに打消し合うように作用するので、流体輸送に有効に働く流路方向の圧力勾配又は流体輸送力は得られない。従って、この構造の光圧ミキサによって流体の連続輸送を実行することはできない。
【0010】
また、レーザー光で遠隔操作可能な微粒子を液体中に浮遊させ、微粒子の運動によってチップ内流体を流動させる前述の流体輸送方法では、レーザー光の遮断時に微粒子が不確定位置に浮遊してしまう。このため、このような微粒子を用いてチップ内流体を制御する方法を実用化することは、極めて困難である。
【0011】
他方、PCT国際公開公報WO2005/024230に記載されたポンプ構造をマイクロポンプに適用することにより、マイクロ化学分析シテスムのマイクロチップに組み込み可能なマイクロポンプを実現し得るかもしれない。しかしながら、この国際公開公報に記載されたポンプ構造は、流路の片側面を回転ディスクの円板面によって形成した構成を有し、ポンプの流体輸送機能は、比較的広範な円板面と流体との間の粘性摩擦力と、円板面上の流体に作用する遠心力と、円板面を部分的に横断するワイパーの転向作用とに依存したものである。この構成のマイクロポンプの場合、十分な粘性摩擦力及び遠心力を確保すべく、円板面の径を比較的大きく設定しなければならず、しかも、円板面と流体との距離を考慮すると、流路を円板面の側にかなり偏平化しなければならない。このため、上記国際公開公報に記載されたポンプ構造をマイクロチップ等のマイクロポンプに適用する場合、流路幅を増大する必要が生じるので、寸法上の理由等より、設計上の困難が生じる。
【0012】
これに対し、本発明者は、PCT国際出願PCT/JP2006/314707において、一対の固定軸に支承した一対の回転子を光駆動させる構成のマイクロポンプを提案している。この構成のマイクロポンプは、マイクロチップ又はバイオチップ内の流路において有効に流体輸送を行うという観点からは所期の目的を達成した。
【0013】
しかしながら、この種のマイクロポンプは、駆動要素によって流体に与えられる慣性力又は揚力、或いは、駆動要素の駆動によって生じる流路の容積変化を主に利用したものである。このため、流体に含まれる細胞又は細菌等の生体試料が駆動要素の物理的作用によって破壊され又は損傷することが懸念される。
【0014】
本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、駆動要素の慣性力又は揚力や、流路の容積変化に依存することなく、マイクロチップ又はバイオチップ内流路の流体を輸送することができるマイクロポンプを提供することにある。
【課題を解決するための手段】
【0015】
本発明は、上記目的を達成すべく、マイクロチップ又はバイオチップ内の流路に配置可能なマイクロポンプであって、
隔壁によって区画された流入側流路部分及び流出側流路部分を有するU形流路と、
前記隔壁の先端面と対向するように前記U形流路の折返し部に回転可能に配置されるとともに、遠隔駆動手段によってその回転中心軸線を位置決めされ且つ回転駆動される円板形、円柱形又は円筒形の回転子とを有することを特徴とするマイクロポンプを提供する。
【0016】
本発明のマイクロポンプは、U形流路の折返し部分に円板形、円柱形又は円筒形の回転子を配置した構造を有する。回転子は、遠隔駆動手段によって遠隔駆動される。流路内の流体は、回転子の外周面に摩擦接触し、回転子は、回転子周囲の流体を周方向に引きずり又はドラッグする。流体は、回転子の引きずり作用又はドラッグ作用によって流入側流路部分から流出側流路部分に向かって連続輸送される。このような構成のマイクロポンプは、ローブポンプのように複数の回転子を精密配置し、或いは、ギアポンプのように回転子を噛合状態で駆動させることなく流体を輸送する。また、本発明のマイクロポンプは、流路の容積変化に依存せず、流体の粘性力に主に依存した構造を有する。このため、流体の脈動が流路に発生し難く、しかも、細胞や細菌等の生体試料は、破壊され又は損傷することなく輸送される。
【0017】
折返し部の流体には、流出側流路部分に向かって上昇する圧力勾配が形成される。この圧力勾配は、流体の輸送を妨げるように作用する。しかしながら、本発明者の解析及び実験によれば、回転子外周面との摩擦接触によって付勢された流体は、このような圧力勾配にもかかわらず、流入側流路部分から流出側流路部分に向かって流動することが判明した。これは、慣性力よりも粘性力が支配的に働くマイクロスケール流路の流体の特性に起因すると考えられる。
【0018】
U形流路の流入側流路部分及び流出側流路部分は、好ましくは平行に配置されるが、折返し部に向かって収斂し又は拡開する角度をなして流入側流路部分及び流出側流路部分を配置しても良い。
【発明の効果】
【0019】
本発明のマイクロポンプによれば、駆動要素の慣性力又は揚力や、流路の容積変化に依存することなく、マイクロチップ又はバイオチップ内流路の流体を輸送することができる。
【発明を実施するための最良の形態】
【0020】
本発明の好適な実施形態によれば、回転子は、光透過性を有する光重合性樹脂の硬化体からなり、遠隔駆動手段としてレーザー光が用いられる。回転子は、レーザー光の光トラッピング作用によって捕捉される。他の遠隔駆動手段として、磁場又は電場等の外場を利用することも原理的に可能である。回転子は、このような外場の変化に応答して駆動する素材によって成形される。
【0021】
遠隔駆動手段としてレーザー光を用いた場合、回転子は、レーザー光の光駆動作用によって遠隔駆動され、その回転中心軸線を中心に回転する。好ましくは、回転子は、回転子の中心に配置され且つ第1のレーザー光が照射される中心軸と、中心軸の両側に配置され且つ第2及び第3のレーザー光が夫々照射される一対の被駆動軸とを有する。更に好ましくは、回転子は、円形底板と、底板の外縁部に連接した外周壁と、外周壁の内側に形成された中空領域とを有し、中心軸及び被駆動軸は、底板に立設される。
【0022】
レーザー光を走査せず、レーザー光の集光によって生じる放射圧によって回転子を回転させるようにすることも可能である。このような回転子は、好ましくは、光トラッピングされるトラップ部と、回転中心軸線から径方向外方に延びる複数の翼又は羽根とを有し、トラップ部と翼又は羽根の径方向内端部とを回転中心軸線の軸線方向に一体連結した構成を有する。更に好ましくは、翼又は羽根は、トラップ部の両側に点対称に配置され、トラップ部に直列に一体連結される。翼又は羽根は、レーザー光の放射圧によって所定方向の回転力が生じる形状を有する。回転子は、回転中心軸線と実質的に同心の円筒体を有し、翼又は羽根は、円筒体内に収容され、円筒体と一体化する。
【0023】
本発明の更に好適な実施形態によれば、流入側流路部分及び流出側流路部分は平行に配置され、回転子の中心は、隔壁の中心線上に位置決めされる。流路及び回転子は、隔壁の中心線に対して対称の形状を有する。好ましくは、隔壁の先端面は、回転子の外周面と相補する湾曲面を有し、隔壁の先端面と回転子の外周面との間の距離(間隙寸法)は、回転子直径×0.3以下の寸法値に設定される。更に好ましくは、回転子はU形流路内の液体に浮遊し、遠隔駆動手段によって捕捉され、その回転中心軸線を位置決めされる。
【0024】
好適には、U形流路は、流入側流路部分及び流出側流路部分を接続する接続流路部分を備える。接続流路部分は、有効流路幅を有する湾曲流路を含む。湾曲流路は、流入側流路部分及び流出側流路部分の外側流路壁面と連続する湾曲面と、回転子の外周面とによって画成される。流入側流路部分及び流出側流路部分の流路幅を回転子の直径よりも小さい寸法値に設定するとともに、回転子直径×0.7以上の寸法値に設定することが望ましい。隔壁先端面及び流路壁と、回転子の外周面との間のクリアランスを最適化することにより、回転子周囲の圧力勾配と、流体の粘性力に起因する流体輸送力とを適切にバランスさせ、流体を定常的且つ一方向に輸送することができる。
【0025】
所望により、複数の折返し部を直列又はタンデム形に配置し、各々の折返し部に回転子を配置しても良い。
【実施例1】
【0026】
以下、添付図面を参照して、本発明の好適な実施例について詳細に説明する。
図1は、2光子吸収方式の光造形法によってガラス基板上に微小構造体を成形する原理を説明するための斜視図である。
【0027】
図1には、ガラス基板2上の光重合性樹脂原料1の内部にレーザー光Lの集光スポットSを形成し、集光スポットSの位置制御によって液状樹脂原料(原料1)の内部に三次元微小構造の重合体を造形する光造形法が示されている。
【0028】
図1に示す光造形法では、近赤外(又は赤色)フェムト秒パルスレーザー光Lの光源を有する2光子マイクロ光造形装置(図示せず)が使用される。図1(A)に示すように、光源の近赤外(又は赤色)レーザー光Lが、短焦点レンズ(図示せず)を介してガラス基板2上の光重合性樹脂原料1に照射される。ガラス基板2及び原料1は、レーザー光Lに対して透過性を有する。レーザー光Lは、原料1の内部で集光し、集光スポットSを形成する。集光スポットSには、近赤外線で紫外線の吸収と同様の効果を引起こす2光子吸収現象が誘起し、焦点位置近傍(焦点スポットS)の原料1のみが重合する。レーザーシステムは、図1(B)〜図1(D)に示すように、集光スポットSを原料1内で走査し、所望の輪郭の光重合体3を造形する。原料1及びガラス基板2は、未重合の原料1を除去した後にエタノール等の溶剤で洗浄され、かくして、所望の輪郭の光重合体3がガラス基板2上に成形される。このような光造形法による加工分解能は、一般に約0.1〜10μm程度である。
【0029】
図2には、このような光造形法によってガラス基板2上に成形したU形流路(U形チャンネル)20及び回転子10が示されている。
【0030】
基板2上には、流路壁4、隔壁5及び回転子10が、光重合性樹脂の光造形法によって成形される。流路壁4は、平行な外側流路壁面6と、両側の外側流路壁面6に連続する湾曲面7とを形成し、隔壁5は、平行な内側流路壁面8を形成する。流路壁面6、8及び湾曲面7は、基板2に対して垂直に配置される。基板2と平行な頂壁面9が、流路壁4によって形成される。かくして、方形流路断面の直線流路部分21、22及び接続流路部分23を有するU形流路20が、流路壁4及び隔壁5によって基板2上に形成される。回転子10及びU形流路20は、本発明のマイクロディスクポンプ(マイクロポンプ)を構成する。
【0031】
流路部分21、22は、同一の流路幅W1、W2を有する。湾曲面7は、回転子10の中心に対して曲率半径R1を有する半円形態の曲面である。隔壁5の先端には、回転子10の外周面11と相補する形態の湾曲面24が形成される。湾曲面24は、回転子10の中心に対して曲率半径R2を有する幅W3の曲面である。
【0032】
図3は、回転子10の構造を示す斜視図及び部分破断斜視図である。
【0033】
回転子10は、基板2、流路壁4及び隔壁5から独立した別体の回転要素である。回転子10は、外周面11を有する半径R3の真円形外周壁12と、半径R3の真円形底板13と、底板13上に配置された軸部14、15、16とから構成される。外周壁12の下端部は、底板13の外縁部分は連接する。外周壁12及び底板13は、中空部17を有する中空円板を構成する。軸部14、15、16は、底板13の上面に垂直に立設され、等間隔を隔てて回転子10の直径方向に整列する。軸部15は、回転子10の中心に配置され、軸部15の中心軸線は、回転子10の回転中心軸線X−Xを構成する。
【0034】
図2に示すように、外周面11は、湾曲面7から距離G1を隔てて離間し、有効流路幅G1の湾曲流路25が、外周面11と湾曲面7との間に形成される。外周面11は又、湾曲面24から距離G2を隔てて離間し、間隙26が、外周面11と湾曲面24との間に形成される。
【0035】
図4は、マイクロディスクポンプの作動原理を示す斜視図である。
【0036】
図4に示す如く、独立した3本のレーザービームL1、L2、L3が軸部14、15、16に夫々照射される。流路壁4、隔壁5及び回転子10は、レーザービームL1、L2、L3に対して透過性を有する。レーザービームL1、L2、L3は、軸部14、15、16の内部に集光し、集光スポットT1、T2、T3を軸部14、15、16内に夫々形成する。
【0037】
光トラッピングは、光の放射圧を利用して物体をレーザー光(レーザービームL1、L2、L3)の焦点(集光スポットT1、T2、T3)で捕捉する技術である。これは、光が物体に入射して屈折する際に光の運動量変化が生じ、これに反作用する力が光の放射圧として物体に働く原理を利用したものである。放射圧の合力は、レーザー光の集点に向かう方向に物体に作用するので、物体をレーザー光Lの集点に捕捉することができる。光トラッピングされる物体は、流体の屈折率よりも高い屈折率を有する透明又は半透明の物体(光が透過する物体)であり、物体の材質とは直接に関連しない。このため、上記光重合性樹脂として、硬化後に透明又は半透明の回転子10を形成する材質のものが使用される。なお、このような光トラッピングの原理自体は、既に知られているので、光トラッピングに関する更なる詳細な説明は、省略する。
【0038】
軸部14、15、16は、レーザービームL1、L2、L3によって夫々捕捉(光トラッピング)され、レーザービームL1、L2、L3の運動、変位又は走査に従って移動し又は静止する。
【0039】
図4に示すように、レーザービームL2は、軸部15の中心を回転中心軸線X−X上に拘束する。レーザービームL1、L3は、回転中心軸線X−Xを中心に同一方向(時計廻り方向)に回転運動し、レーザービームL1、L3に捕捉された軸部14、16は、回転中心軸線X−Xを中心に同一方向(時計廻り方向)に移動する。この結果、回転子10は、軸線X−Xを中心に矢印方向に回転する。
【0040】
回転子10の外周面11は、U形流路20内の液体と摩擦接触し、液体は、外周面11の回転運動によって引きずられ又はドラッグされる。即ち、液体は、その粘性によって回転子10の回転力を受け、接続流路部分23から直線流路部分22に流動する。この作用は、流体の慣性力に比して流体の粘性が流体の運動に大きく影響するマイクロスケールデバイス特有の性質に起因すると考えられる。ここに、接続流路部分23から直線流路部分22に遷移する領域(遷移領域30(図5))には、比較的高い流体圧力が発生するが、回転子10及びU形流路20の寸法及び位置関係は、この流体圧力によって流体の流れが阻止されることがないように設定される。
【0041】
以下、回転子10及びU形流路20の寸法及び位置関係等について説明する。以下の説明は、有限要素法(FEM)を用いたマイクロ数値流体解析の結果と、実証実験の結果との一致性又は共通性から本発明者が得た知見に基づく。なお、この解析及び実験においては、グリコールエーテルアサテート(密度960kg/m2、粘性係数1.92×10-3Pa・S)が輸送液として用いられた。また、回転子10の直径(2×R3)は10μm(一定値)に設定された。
【0042】
図5(A)及び図5(B)は、流路幅W1、W2と、回転子10の直径(2×R3)との関係を概略的に示す平面図であり、図5(C)は、流路幅W1、W2と、流体の流速(流量)との関係を示す線図である。
【0043】
図5(A)には、流路幅W1、W2を拡大した状態が例示されており、図5(B)には、流路幅W1、W2を縮小した状態が例示されている。回転子10は、レーザービームL1、L2、L3によって回転数5.7rpmの回転速度で回転駆動され、U形流路20内の液体は、直線流路部分21から直線流路部分22に流動する。流路幅W1、W2を5〜10.5μmの範囲で変化させると、接続流路部分23から直線流路部分22に流出する液体の流量は、図5(C)に示す如く変化し、流路幅W1、W2=8.5μmにおいて最大流量が得られた。
【0044】
図5(B)に示す如く、流路幅W1、W2を7μm未満に設定した場合、遷移領域30に高い流体圧力が発生する。遷移領域30の前後の領域31では、流体圧力が徐々に降下する。従って、遷移領域30において最大値を示す圧力勾配が、U形流路20内に形成され、この結果、回転子10によって付勢された液体(矢印33)は、遷移領域30において流動を妨げられ、遷移領域30において逆流し(矢印34)、外側流路壁面7に沿って流路部分21の側に流れる。このため、マイクロディスクポンプの流量は、図5(C)に示すように低下する。
【0045】
他方、図5(A)に示すように流路幅W1、W2を7μm以上に設定した場合、U形流路20内の液体の圧力勾配は平準化し、直線流路部分21から直線流路部分22に円滑に流動する。従って、流路幅W1、W2の寸法値は、回転子10の直径(2×R3)の70%以上の値に好ましく設定される。
【0046】
また、流路幅W1、W2を回転子10の直径(2×R3)よりも大きな寸法値に設定した場合、回転子10が接続流路部分23から直線流路部分21、22に流出することが懸念される。このため、流路幅W1、W2の寸法値は、回転子10の直径(2×R3)よりも小さい値に好ましく設定される。
【0047】
図6には、外周面11の近傍における流体圧力の変化が示されている。
【0048】
前述の如く、遷移領域30には、回転子10の回転時に高い流体圧力が発生する。図6(B)に示すように、流体圧力は、隔壁5の中心線上の中立点に対し、上流側の流路部分21に向かって降下し、下流側の流路部分22に向かって上昇する。最大圧力は、間隙26に隣接して遷移領域30に顕れ、最低圧力は、間隙26に隣接する流路部分21、23の遷移領域35に顕れる。遷移領域30の流体圧力は、下流側の流路部分22に向かって漸減し、遷移領域35の流体圧力は、上流側の流路部分21に向かって漸増する。遷移領域30の流体圧力が概ね10mPaを超えると、図5(B)に示すように逆流34が発生するので、遷移領域30の流体圧力を10mPa以下に設定することが望ましい。
【0049】
図7には、回転子10の回転速度と、マイクロディスクポンプの流速(平均流速)との関係が示されている。
【0050】
図7に示す回転速度及び流速(液体流速)の相関関係は、有限要素法(FEM)を用いたマイクロ数値流体解析の結果と、実証実験の実験結果とに基づく理論的な相関関係であるが、解析結果及び実験結果のいずれにも近似する。図7に示す如く、マイクロディスクポンプの流速は、回転子10の回転数に概ね正比例し、回転数の増大に伴って増大する。本発明者の実験によれば、マイクロディスクポンプは、約3pl/minの流量を達成した。
【0051】
図8には、距離G2(間隙)の寸法値と、マイクロディスクポンプの流速(流量)との関係が示されている。
【0052】
回転子10の中心位置は、レーザービームL2による軸部15の捕捉によって定まる。レーザービームL2によって回転子10を変位させ、隔壁5の湾曲面24に対して離間させ又は接近させると、間隙26の距離G2は変化する。図8(C)は、距離G2の変化と関連したマイクロディスクポンプの流速変化を示す線図である。
【0053】
図8(A)に示す如く、間隙26を縮小すると、マイクロディスクポンプの流速は増大し、図8(B)に示すように間隙26を拡大すると、マイクロディスクポンプの流速は減少する。図8(C)には、距離G2と流速との相関関係が示されており、液体の流速は、距離G2の寸法値に対し、概ね反比例する。従って、距離G2(間隙26)の設定又は制御によってマイクロディスクポンプの流量を設定し又は制御することが可能である。
【0054】
図9には、回転子10及びU形流路20の高さ寸法と関連した流路20の流速分布が示されている。
【0055】
回転子10の高さ寸法hは、流路20の高さ寸法Hよりも小さい値に設定される。このため、回転子10の上面及び下面と、基板2及び頂壁面9との間には、図9(A)に示す如く、間隙27、28が形成される。図9には、間隙27、28の高さ寸法E1、E2の合計値Eを2μm、4μmに設定した場合に得られるマイクロディスクポンプの流速変化が示されている。図9(C)において、横軸(X軸)は、高さ方向の中立点J(高さH/2)を基準とした高さ方向の流路内位置(距離(μm))を示し、縦軸(Y軸)は、マイクロディスクポンプの流速(μm/s)を示す。
【0056】
マイクロディスクポンプの流速は、間隙寸法E(=E1+E2)を減少させると、図9(C)に示すように増大する。なお、間隙27、28の寸法Eを増大させた場合であっても、圧力変動による逆流発生の問題(図5(B))は生じない。
【0057】
図10(A)は、U形流路20の折返し部(接続流路部分23)における直線流路部分21、22の相対角度θを示す概略平面図であり、図10(B)は、角度θ、流路幅及び直線部最大流速(直線流路部分21、22の最大流速)の関係を示す線図である。
【0058】
直線流路部分21、22の相対角度θを変化させると、回転子10の回転時に得られる直線流路部分21、22の最大流速は角度θの増大に伴って低減する(図10(B))。流路幅は、11mm以下、或いは、回転子10の直径以下に好ましく設定し得る。角度θは、90度以下に設定することが望ましい。本例に関して本発明者が実施した解析の結果によれば、直線部最大流速を増大しようとする場合には、図10(B)に示す如く角度θ=0度に設定することが望ましく、平均流速又は流量を増大しようとする場合には、角度θを30〜90度の範囲に設定することが望ましい。
【0059】
図11は、マイクロディスクポンプを駆動するための駆動システムの構成を概略的に示すシステム構成図である。
【0060】
駆動システム50は、図1に示す光造形法において使用される2光子マイクロ光造形装置と実質的に同一の構成を有し、光源51、NDフィルター52、シャッター53、ビームエキスパンダー54、ガルバノミラー55、対物レンズ56、コンピュータ57、CCDカメラ58及びステージ(図示せず)を備える。光源51は、チタンサファイアレーザー装置からなり、近赤外レーザー光(波長:750nm)を発光する。レーザー光Lは、NDフィルター52及びシャッター53を通過し、ビームエキスパンダー54よってビーム幅を拡張された後、ガルバノミラー55及び対物レンズ56によって回転子10内に集光する。シャッター53及びガルバノミラー55は、コンピュータ57によって制御され、レーザー光Lの集光位置(集光スポットT1:T2:T3)を任意の位置に移動させることができる。なお、駆動システム50は、レーザービームL1、L2、L3を個別制御可能な構成を有する。
【0061】
駆動システム50は、図4に示すように、レーザービームL1、L2、L3を軸部14、15、16に照射する。駆動システム50は、コンピュータ57の記憶部に格納された制御プログラムの制御下にシャッター53及びガルバノミラー55を作動し、軸部14、15、16をレーザービームL1、L2、L3によって光トラッピングし、回転子10を捕捉する。駆動システム50は、シャッター53及びガルバノミラー55を制御し、レーザービームL1、L3によって軸部14、16を同一回転方向に移動させる。回転子10は、レーザービームL2によって位置を拘束された軸部15を中心に回転する。好ましくは、レーザービームL1、L3は、軸部14、16の回転方向前方の面又は縁部近傍に集光スポットT1、T3を形成するように照射され、軸部14、16は、レーザービームL1、L3によって引っ張られる。
【0062】
図12及び図13には、マイクロディスクポンプの他の実施例が示されている。マイクロディスクポンプは、光透過性を有する光重合性樹脂の光造形法によって製作されたヘリカルロータ(螺旋形回転素子)を有する。
【0063】
図2〜図4に示す回転子10を備えたマイクロディスクポンプは、ガルバノミラーによってレーザー光を走査して回転子10を駆動させるように構成されることから、レーザー走査系の機器類を要する。これは、装置の小型化を困難にする。他方、レーザー光を走査せず、光の角運動量の変化等を利用し、レーザー光の集光によって生じる放射圧で回転子を自律的に回転させることが可能である。
【0064】
図12は、レーザー光の集光によって回転するヘリカルロータ40の構造を例示する斜視図である。
【0065】
図12(A)及び図12(B)に示すように、ヘリカルロータ40は、光トラッピングされるトラップ部41を基端側に有する軸部42と、軸部42の先端に連接した複数(本例では5体)の螺旋翼43とから構成される。螺旋翼43は、互いに等間隔(角度間隔)を隔てて配置され、回転中心軸線X−Xから径方向外方に延びる。螺旋翼43の径方向内端部は軸部42の先端に一体的に連結される。各螺旋翼43は、平面視において全体的に湾曲した羽根の形態を有する。複数の螺旋翼43は、全体として、図12(C)に示す如く適当な形状異方性を有し、一定方向の回転力がレーザー光L(入射光、反射光)の放射圧によってヘリカルロータ40に作用する。
【0066】
ヘリカルロータ40は、レーザー光Lの方向に見て時計廻り方向に回転するように形状設計されており、ヘリカルロータ40の回転方向は、トラップ部41及び螺旋翼43の相対位置によって決定される。即ち、図12(A)に示す如く螺旋翼43をトラップ部41の光源側に配置した場合、ヘリカルロータ40は光源側から見て時計廻り方向に回転するが、図12(B)に示すように螺旋翼43をトラップ部41の非光源側に配置した場合、ヘリカルロータ40は光源側から見て反時計廻り方向に回転する。
【0067】
このような光トラッピングの特性を利用して特定方向に回転するように形状設計した複式構造のヘリカルロータ80が、図13に示されている。
【0068】
図13(A)に示す如く、ヘリカルロータ80は、光トラッピングされる軸状のトラップ部81を中心部に有する。トラップ部81の両側(上側及び下側)に配置された複数の螺旋翼83、84がトラップ部81の上面及び下面に連接する。螺旋翼83、トラップ部81及び螺旋翼84は直列に一体連結される。
【0069】
図13(C)に示すように、レーザー光Lをヘリカルロータ80に照射し、トラップ部81に集光スポットTを形成すると、螺旋翼83、84に生じる放射圧によって一定方向(光源側から見て時計廻り方向)の光トルクが生じる。この結果、ヘリカルロータ80は軸線X−Xを中心に一定方向に回転する。このように回転翼83、84の回転方向を統一し、回転力を増大させることより、光トラッピングによるヘリカルロータ80の捕捉と同時にヘリカルロータ80を高速回転させることが可能となる。
【0070】
ヘリカルロータ80は、図13(B)に示すように円筒85内に収容され、各螺旋翼83、84の径方向外端部は円筒85と一体化する。かくして、ヘリカルロータ80を内装し且つ円筒状外周面を有する円柱状又は円筒状の回転子90が形成され、回転子90は、図13(C)に示すようにレーザー光Lの照射により一定方向に回転する。円筒85は、流体の乱れを抑制するとともに、円滑且つ連続的に剪断力を液体に伝達し、脈動のない連続的な層流を形成するように働く。円筒85に生じる放射圧は、ほとんどが光軸方向に作用するので、回転力を抑制する効果は少ないと考えられる。なお、このような回転子90は、光透過性を有する光重合性樹脂の光造形法によって一体成形され、或いは、光重合性樹脂の光造形法によって成形したヘリカルロータ80及び円筒85を一体的に組付けることより製作される。
【0071】
回転子90は、前述の回転子10と同じく、U形流路20(図2)の折返し部(接続流路部分23)に配置され、本発明のマイクロディスクポンプを構成する。このようなマイクロディスクポンプによれば、以下の如き利点が得られる。
(1)レーザー走査を必要とせず、レーザー照射のみで回転子90を高速回転させることができる。
(2)オンチップレーザー光源を用いた光源一体型ポンプを実現することができる。
(3)全体的に円筒形態を有するので、粘性力を効率良く流体に伝えることができる。
(4)液体輸送時の液体脈動を確実に防止するとともに、細胞等の柔らかい生体試料を損傷させずに確実に輸送することができる。
【0072】
図14は、本発明のマイクロディスクポンプを組み込んだマイクロチップの構成を示す平面図及びIII−III線断面図である。
【0073】
図14には、サイズが異なる複数のマイクロディスクポンプPを備えたマイクロチップ60が示されている。マイクロチップ60は、流路壁4をガラス基板2上に被覆した微小な平板構造を有する。流路壁4は、所定位置に所定形態の流路62を形成する。マイクロセパレータ66、マイクロピンセット67及びマイクロバルブ68が、流路62の所定位置に配置される。これらの流体制御デバイスも又、マイクロディスクポンプPとともに光造形法によって流路62内に造形される。
【0074】
マイクロディスクポンプPは、流路62の所定位置に介挿される。マイクロディスクポンプPの流路部分21、22は、流路62の所定位置に開口し、回転子10の回転によって流路62内の液体を輸送する。流路23、マイクロセパレータ66、マイクロピンセット67、マイクロバルブ68及びマイクロディスクポンプPは、分析装置75に給送すべき液体を制御する流体回路を構成する。
【0075】
このように構成されたマイクロチップ60においては、マイクロディスクポンプPの回転子10を光トラッピングによって回転させることにより、流体管路70から流体管路71、72、73、74に向かう連続流が、流路62に形成される。マイクロチップ60は、外付けシリンジポンプ等の外部機器に依存することなく、流体管路70の流体を分析装置75に給送する。従って、このようなマイクロチップ60によれば、外部機器(外付けシリンジポンプ等)とマイクロチップ60との接続工程を省略し、外部機器接続に伴う液漏れや、気泡混入等の問題を回避することが可能となる。
【0076】
また、このようなマイクロチップ60を使用した化学合成分析プロセスにおいては、試料又は試薬等を微量化し、分析プロセスに要するコストを低減するとともに、外部機器接続の手間をなくし、作業の効率化を図ることができる。
【0077】
更に、上記構成のマイクロチップ60は、レーザー光によって各流体制御デバイスを遠隔駆動することができることから、ピエゾデバイスや静電アクチュエータ等の高価且つ精密な機器の使用や、これに伴う配線等を要しない。従って、このようなマイクロチップ60の構成は、実用的に有利である。
【0078】
図15は、マイクロディスクポンプPの変形例を示す概略平面図である。
【0079】
複数の回転子10及びU形流路20を本発明に従ってタンデム形に配置し又は直列に配置することができる。マイクロディスクポンプPの流量(流速)は、回転子10及びU形流路20のタンデム配置又は直列配置によって増大する。
【0080】
以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
【0081】
例えば、上記実施例では、マイクロチップ上の流体制御デバイス、流路及びポンプハウジング等の全構成要素を光重合性樹脂の光造形法によって成形しているが、射出成形法で成形した樹脂成形体の流路や、ガラスチップに形成した流路等の如く、他の素材で流路(U形流路を含む)を形成しても良い。この場合、光重合性樹脂原料が流路内に注入され、回転子が流路内に光造形される。
【0082】
また、上記実施例では、隔壁は先端部に湾曲面を備えるが、隔壁の先端面を平面又は平坦面に成形することも可能である。
【0083】
更に、上記実施例では、液体に浮遊する回転子がU形流路内に配置されているが、回転子の中心部を貫通する中心固定軸によって回転子を支承しても良い。
【産業上の利用可能性】
【0084】
本発明のマイクロポンプは、マイクロチップ又はバイオチップの流路内に配置され、チップ内流体を制御下に輸送又は圧送するのに使用される。マイクロポンプは、流体を付勢し、後続の分析機器等に向かう流体の連続流を形成する。マイクロポンプは、流体の輸送だけでなく、細胞等の生体試料を破壊せず又は損傷させずに輸送する生体試料輸送手段として好適に使用し得る。このようなマイクロポンプを備えたマイクロチップ等の使用により、外部機器とマイクロチップ又はバイオチップとの間の煩雑且つ非効率的な接続を省略し、液漏れや気泡混入等の問題を解消するとともに、試料等の微量化及び分析プロセスのコスト削減を図ることができる。将来的には、使い捨て可能な高機能細胞分析システム等が本発明に従って実現することが期待される。
【0085】
また、本発明によれば、駆動システムを装備した顕微鏡にマイクロチップを配置し、駆動システムのレーザー光によってマイクロチップ内のマイクロポンプを光駆動することにより、流体の輸送及び流体回路の制御を行うことが可能となる。これは、例えば、観察用顕微鏡の画像を観察しながら自動分析を行う形態のマイクロ化学分析方法を可能にする。
【0086】
更に、本発明は、半導体レーザー等のチップ型レーザーをマイクロ流体回路に内蔵した一体型分析チップに関し、その実現可能性を示唆する。従って、本発明は、マイクロチップ又はバイオチップ等の使用環境及び応用性をかなり向上させるであろう。
【図面の簡単な説明】
【0087】
【図1】2光子吸収方式の光造形法によってガラス基板上に微小構造体を成形する原理を説明するための斜視図である。
【図2】光造形法によってガラス基板上に成形したU形流路及び回転子の構成を示す平面図、I−I線断面図及びII−II線断面図である。
【図3】回転子の構造を示す斜視図及び部分破断斜視図である。
【図4】マイクロポンプの作動原理を示す斜視図である。
【図5】図5(A)及び図5(B)は、流路幅と回転子直径との関係を概略的に示す平面図であり、図5(C)は、流路幅と流速との関係を示す線図である。
【図6】図6(A)は、回転子及び流路の位置関係を概略的に示す斜視図であり、図6(B)は、回転子外周面の近傍における流体圧力の変化を示す線図である。
【図7】回転子の回転速度とマイクロポンプの流速との関係を示す線図である。
【図8】図8(A)及び図8(B)は、隔壁と回転子との位置関係を概略的に示す平面図であり、図8(C)は、隔壁先端面と回転子外周面との間の間隙寸法と、マイクロポンプの流速との関係を示す線図である。
【図9】図9(A)は、回転子及びU形流路の高さ関係を示す断面図であり、図9(B)及び図9(C)は、高さ方向の流速分布を示す断面図及び線図である。
【図10】図10(A)は、直線流路部分の相対角度θを示す概略平面図であり、図10(B)は、角度θ、流路幅及び直線部最大流速の関係を示す線図である。
【図11】マイクロポンプを駆動するための駆動システムの構成を概略的に示すシステム構成図である。
【図12】図12(A)及び図12(B)は、レーザー光の集光によって生じる放射圧で自律的に回転するように形状設計されたヘリカルロータ(螺旋形回転素子)を示す斜視図であり、図12(C)は、ヘリカルロータの横断面図である。
【図13】図12に示すヘリカルロータの性質を利用して特定方向に回転するように形状設計された複合構造の回転子の構成を示す斜視図である。
【図14】マイクロポンプを組み込んだマイクロチップの構成を示す平面図及びIII−III線断面図である。
【図15】マイクロポンプの変形例を示す概略平面図である。
【図16】従来のマイクロチップを備えたマイクロ化学分析シテスムの全体構成を概略的に示す斜視図である。
【符号の説明】
【0088】
1 光重合性樹脂原料
2 ガラス基板
3 光重合体
4 流路壁
5 隔壁
6 外側流路壁面
7 湾曲面
8 内側流路壁面
9 頂壁面
10 回転子
11 外周面
12 外周壁
13 底板
14、16 軸部(被駆動軸)
15 軸部(中心軸)
20 U形流路
21 直線流路部分(流入側)
22 直線流路部分(流出側)
23 接続流路部分
24 湾曲面(隔壁先端面)
25 湾曲流路
26 間隙
30 遷移領域
40、80 ヘリカルロータ
43、83、84 螺旋翼
41、81 トラップ部
85 円筒
90 回転子
L:L1:L2:L3 レーザー光(レーザービーム)
T:T1:T2:T3 集光スポット
W1:W2 流路幅
G2 距離(間隙寸法)
R3 回転子半径
P マイクロディスクポンプ

【特許請求の範囲】
【請求項1】
マイクロチップ又はバイオチップ内の流路に配置可能なマイクロポンプであって、
隔壁によって区画された流入側流路部分及び流出側流路部分を有するU形流路と、
前記隔壁の先端面と対向するように前記U形流路の折返し部に回転可能に配置されるとともに、遠隔駆動手段によってその回転中心軸線を位置決めされ且つ回転駆動される円板形、円柱形又は円筒形の回転子とを有することを特徴とするマイクロポンプ。
【請求項2】
前記遠隔駆動手段としてレーザー光が用いられ、前記回転子は、光透過性を有する光重合性樹脂の硬化体からなり、前記レーザー光の光トラッピング作用によって捕捉され、前記レーザー光の光駆動作用によって遠隔駆動され、前記回転中心軸線を中心に回転することを特徴とする請求項1に記載のマイクロポンプ。
【請求項3】
前記回転子は、前記U形流路内の液体に浮遊し、前記遠隔駆動手段によって捕捉され、その回転中心軸線を位置決めされることを特徴とする請求項1又は2に記載のマイクロポンプ。
【請求項4】
前記U形流路は、前記流入側流路部分及び流出側流路部分を接続する接続流路部分を有し、該接続流路部分は、前記流入側流路部分及び流出側流路部分の外側流路壁面と連続する湾曲面と、前記回転子の外周面とによって画成された湾曲流路を有することを特徴とする請求項1乃至3のいずれか1項に記載のマイクロポンプ。
【請求項5】
前記隔壁の先端面は、前記回転子の外周面と相補する湾曲面として形成されることを特徴とする請求項1乃至4のいずれか1項に記載のマイクロポンプ。
【請求項6】
前記回転子は、該回転子の中心に配置され且つ第1のレーザー光が照射される中心軸と、該中心軸の両側に配置され且つ第2及び第3のレーザー光が夫々照射される一対の被駆動軸とを有することを特徴とする請求項2に記載のマイクロポンプ。
【請求項7】
前記回転子は、円形底板と、該底板の外縁部に連接した外周壁と、外周壁の内側に形成された中空領域とを有し、前記中心軸及び被駆動軸は、前記底板に立設されることを特徴とする請求項6に記載のマイクロポンプ。
【請求項8】
前記回転子は、光トラッピングされるトラップ部と、前記回転中心軸線から径方向外方に延びる複数の翼又は羽根とを有し、前記トラップ部と前記翼又は羽根の径方向内端部とは、前記回転中心軸線の軸線方向に一体連結されることを特徴とする請求項2に記載のマイクロポンプ。
【請求項9】
前記翼又は羽根は、前記トラップ部の両側に点対称に配置され、該トラップ部に直列に一体連結されることを特徴とする請求項8に記載のマイクロポンプ。
【請求項10】
前記回転子は、前記回転中心軸線から径方向外方に延びる複数の翼又は羽根を備え、該翼又は羽根は、レーザー光の放射圧によって所定方向の回転力が生じる形状を有することを特徴とする請求項2に記載のマイクロポンプ。
【請求項11】
前記回転子は、前記回転中心軸線と実質的に同心の円筒体を有し、前記翼又は羽根は、前記円筒体内に収容され、該円筒体と一体化することを特徴とする請求項8乃至10のいずれか1項に記載のマイクロポンプ。
【請求項12】
前記流入側流路部分及び流出側流路部分の流路幅は、回転子直径×0.7〜1.0の範囲内の寸法値に設定されることを特徴とする請求項1乃至11のいずれか1項に記載のマイクロポンプ。
【請求項13】
前記隔壁の先端面と、前記回転子の外周面との間の距離は、回転子直径×0.3以下の寸法値に設定されることを特徴とする請求項1乃至12のいずれか1項に記載のマイクロポンプ。
【請求項14】
前記流入側流路部分及び流出側流路部分は平行に配置されることを特徴とする請求項1乃至13のいずれか1項に記載のマイクロポンプ。
【請求項15】
前記回転子の中心は、前記隔壁の中心線上に位置決めされ、前記流路及び回転子は、前記隔壁の中心線に対して対称の形状を有することを特徴とする請求項1乃至14のいずれか1項に記載のマイクロポンプ。
【請求項16】
複数の前記折返し部を直列に配置し、各折返し部に前記回転子を配置したことを特徴とする請求項1乃至15のいずれか1項に記載のマイクロポンプ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2008−196481(P2008−196481A)
【公開日】平成20年8月28日(2008.8.28)
【国際特許分類】
【出願番号】特願2008−7954(P2008−7954)
【出願日】平成20年1月17日(2008.1.17)
【出願人】(504182255)国立大学法人横浜国立大学 (429)
【Fターム(参考)】