説明

マスクブランク製造用スパッタリング装置及び表示装置用マスクブランクの製造方法並びに表示装置用マスクの製造方法

【課題】大型サイズの基板であっても、なお且つ複数種類の基板サイズに対しても、いずれも欠陥品質が良好で、光学特性の面内均一性が良好な薄膜を形成できるスパッタリング装置を提供する。
【解決手段】透光性基板上に転写パターンを形成するための薄膜を成膜する際に用いるスパッタリング装置であって、少なくとも一つ以上の成膜チャンバと、成膜チャンバ内に配置される複数のスパッタリングカソード7と、複数のスパッタリングカソード7と対向配置され、成膜中、基板が一定位置に配置されるように基板を保持する基板保持手段95と、スパッタリングガスを、複数のスパッタリングカソード7間を通過して基板表面の近傍に供給するスパッタリングガス供給手段9とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶表示パネル等で使用されるカラーフィルターや薄膜トランジスタ(TFT)基板等の表示装置の部品製造に使用される大型マスク(表示装置用マスク)の原版である大型マスクブランク(表示装置用マスクブランク)の製造方法、該マスクブランクの製造に好適に用いられるスパッタリング装置、及び該マスクブランクを用いる表示装置用マスクの製造方法に関する。
さらには、液晶表示パネル等で使用されるカラーフィルターや薄膜トランジスタ(TFT)基板等の表示装置の部品製造に使用される大型マスク(表示装置用マスク)の原版である複数種類の基板サイズの大型マスクブランク(表示装置用マスクブランク)の製造方法、該マスクブランクの製造に好適に用いられるスパッタリング装置、及び該マスクブランクを用いる表示装置用マスクの製造方法に関する。
【背景技術】
【0002】
一般に、半導体装置の製造工程では、フォトリソグラフィー法を用いて微細パターンの形成が行われている。また、この微細パターンの形成には通常何枚ものフォトマスク(転写用マスク)と呼ばれている基板が使用される。この転写用マスクは、一般に透光性のガラス基板上に、金属薄膜等からなる微細パターンを設けたものであり、この転写用マスクの製造においてもフォトリソグラフィー法が用いられている。
【0003】
フォトリソグラフィー法による転写用マスクの製造には、ガラス基板等の透光性基板上に転写パターン(マスクパターン)を形成するための薄膜(例えば遮光膜など)を有するマスクブランクが用いられる。このマスクブランクを用いた転写用マスクの製造は、マスクブランク上に形成されたレジスト膜に対し、所望のパターン描画を施す露光工程と、所望のパターン描画に従って前記レジスト膜を現像してレジストパターンを形成する現像工程と、レジストパターンに従って前記薄膜をエッチングするエッチング工程と、残存したレジストパターンを剥離除去する工程とを有して行われている。上記現像工程では、マスクブランク上に形成されたレジスト膜に対し所望のパターン描画を施した後に現像液を供給して、現像液に可溶なレジスト膜の部位を溶解し、レジストパターンを形成する。また、上記エッチング工程では、このレジストパターンをマスクとして、ドライエッチング又はウェットエッチングによって、レジストパターンの形成されていない薄膜が露出した部位を溶解し、これにより所望のマスクパターンを透光性基板上に形成する。こうして、転写用マスクが出来上がる。
【0004】
ところで、上記転写用マスクは、半導体装置の製造だけでなく、例えば、液晶表示パネル等で使用されるカラーフィルターや薄膜トランジスタ(TFT)基板等の表示装置の部品の製造にも使用される。近年、液晶表示パネル等の大型化や高画質化の傾向が著しく、また3次元(3D)液晶表示装置の出現などにより、これらの部品の製造に使用される大型マスクの原版である大型マスクブランクの欠陥品質や光学特性の面内均一性などの特性に対する要求は厳しくなるばかりである。
【0005】
特許文献1には、大型の基板であっても均一な膜厚分布の薄膜を成膜することができるように、基板の搬送方向と直交して、少なくとも基板の全幅に相当する長さにわたり整列された複数個のターゲットセグメントから構成されたインライン型スパッタリング装置が開示されている。また、特許文献2には、大型基板に効率良く成膜を行うことができ、成膜分布の均一化を図れるように、基板の移動方向に対して垂直方向に所定の間隔で配置された複数のスパッタカソードからなるスパッタカソード群を備えたインライン型のスパッタリング装置が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2000−129436号公報
【特許文献2】特開2005−256032号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、本発明者は、上記先行文献に開示されているようなインライン型スパッタリング装置を用いた大型マスクブランクの製造には、以下のような課題があることを見い出した。
【0008】
上述したように、近年の液晶表示パネル等の大型化や高画質化などにより、大型マスクブランクの特性に対する要求は高まるばかりであり、例えば欠陥品質に関しては、第10世代でサイズが600nm以上の欠陥のないことが要求されるようになってきている。例えば具体的には、1200mm×1400mmサイズで上記600nm以上のサイズの欠陥個数が、100個以下が実用上好ましいとされている。従来のインライン型スパッタリング装置では、成膜チャンバ内で、基板と対向する所定の位置に設置された固定ターゲットに対して基板を所定方向に搬送させながら基板表面に薄膜を成膜するため、成膜チャンバ内での基板搬送手段(可動部)による発塵を抑制することができず、欠陥品質の向上には限界があった。また、大型基板サイズであっても、膜厚分布や反射率ばらつきなどの光学特性の面内均一性の要求が厳しくなってきている。大型マスクブランクの場合、小さいサイズのもので330mm×450mmから、大きいサイズは1220mm×1400mmまたはそれ以上のものまで、基板サイズが多種類あり、これら多種類のいずれの基板サイズに対しても光学特性の面内均一性が要求される。例えば、透明基板上に遮光膜と反射防止膜が形成されたバイナリ用マスクブランクにおいては、反射防止膜の表面反射率を15%以下(波長λ:436nm)、その面内ばらつきを±3%以内にしなければならない。
【0009】
また、透明基板上に半透光膜、遮光膜及び反射防止膜が形成された階調マスクブランク(グレートーンマスクとも言う。)においては、半透光膜の露光光透過率を5〜60%(波長λ:365nm〜436nm)、その面内ばらつきを±1%以内にしなければならないという厳しい光学特性の均一性が要求されてきている。上記先行文献に開示されているようなインライン型スパッタリング装置では、基板の搬送方向と直交する方向で複数個のターゲットを配置しているものの、これら複数個のターゲット上を基板が搬送されながら成膜を行っているため、基板に対するターゲットからの粒子の方向性が一定ではなく、光学特性の面内均一性の向上には限界があり、大型マスクブランクに要求されている厳しい品質を得ることは困難であった。
【0010】
そこで本発明は、このような従来の課題を解決するべくなされたものであり、その目的とするところは、第1に、大型サイズの基板であっても、なお且つ複数種類の基板サイズに対しても、いずれも欠陥品質が良好で、光学特性の面内均一性が良好な薄膜を形成できるマスクブランク製造用スパッタリング装置を提供することである。
【0011】
また、第2に、大型サイズであっても、欠陥品質が良好で、光学特性の面内均一性が良好な表示装置用マスクブランクの製造方法を提供することである。
また、第3に、パターン欠陥の少ない、光学特性が良好な大型サイズの表示装置用マスクの製造方法を提供することである。
【課題を解決するための手段】
【0012】
本発明者は、上記課題を解決するため鋭意研究した結果、以下の本発明を完成したものである。
すなわち、上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
透光性基板上に転写パターンを形成するための薄膜を成膜する際に用いるマスクブランク製造用スパッタリング装置であって、少なくとも一つ以上の成膜チャンバと、前記成膜チャンバ内に配置される複数のスパッタリングカソードと、前記複数のスパッタリングカソードと対向配置され、成膜中、基板が一定位置に配置されるように基板を保持する基板保持手段と、スパッタリングガスが前記複数のスパッタリングカソード間を通過して前記基板表面の近傍に供給するように設けられたスパッタリングガス供給手段と、を備えたことを特徴とするマスクブランク製造用スパッタリング装置である。
【0013】
構成1の発明によれば、成膜チャンバ内で成膜中、スパッタリングカソードに装着されるスパッタリングターゲットに対して、基板が一定位置に配置されるように基板を保持する基板保持手段により基板が移動せず静止した状態で成膜が行われるため、基板搬送手段(可動部)による発塵が生じないので、欠陥品質を向上させることができる。しかも、基板に対して複数のスパッタリングカソードを対向配置するとともに、これら複数のスパッタリングカソード間を通過して基板表面の近傍にスパッタリングガスが供給されるようにスパッタリングガス供給手段を備えているため、大型サイズの基板であっても、なお且つ複数種類の基板サイズに対しても、いずれも光学特性の面内均一性が良好な薄膜を形成することができる。
【0014】
(構成2)
前記スパッタリングカソードは、前記薄膜が形成される前記基板主表面と、前記スパッタリングカソードに取り付けられるスパッタリングターゲットの被スパッタ面が平行になるように対向配置されていることを特徴とする構成1に記載のマスクブランク製造用スパッタリング装置である。
構成2の発明にあるように、構成1に係るスパッタリング装置のスパッタリングカソードは、前記薄膜が形成される基板主表面と、スパッタリングカソードに取り付けられるスパッタリングターゲットの被スパッタ面が平行になるように対向配置され、ターゲットに対する基板の相対運動がないので、スパッタリングガスによりスパッタリングターゲットから叩き出された粒子は、インライン成膜のような斜め入射の粒子が少ないため、比較的直進性が高く、前記基板主表面に対して粒の成長方向が揃った薄膜が成膜されることになる。従って、基板主表面に堆積された薄膜の膜密度が高くなり、膜密度が高くなる分、所望の光学濃度を得るために必要とする膜厚の薄膜化が可能となるので、微細パターンの形成が可能となり、高いパターン線幅均一性が得られる。
【0015】
(構成3)
複数の基板サイズを含む領域に見合う数の前記スパッタリングカソードが配置されていることを特徴とする構成1又は2に記載のマスクブランク製造用スパッタリング装置である。
構成3の発明にあるように、複数の基板サイズを含む領域に見合う数のスパッタリングカソードを配置することにより、大型サイズの基板で、なお且つ複数種類の基板サイズに応じて、スパッタリングカソード、スパッタリングターゲットを準備する必要がなく、1台のスパッタリング装置で対応することが可能であり、これら複数種類の基板サイズに対して、いずれも光学特性の面内均一性が良好な薄膜を形成することができる。
【0016】
(構成4)
前記複数のスパッタリングカソードの個々に独立して電力を印加できる電力供給手段を備えていることを特徴とする構成1乃至3のいずれか一項に記載のマスクブランク製造用スパッタリング装置である。
構成4の発明にあるように、構成1のスパッタリング装置における複数のスパッタリングカソードの個々に独立して電力を印加できる電力供給手段を備えていることにより、複数種類の基板サイズや、成膜する薄膜の材料、要求される光学特性、並びに光学特性の均一性、膜厚の面内均一性、用途などに応じて、各スパッタリングカソードへの印加電力を制御することで、形成される薄膜の光学特性の均一性をより向上させることが可能になる。
【0017】
(構成5)
前記基板保持手段は、前記スパッタリングカソードの下方に位置するように配置され、かつ、複数の基板サイズに応じ、成膜される基板主表面の反対側の裏面に複数箇所に当接して基板を支持する基板支持手段と、該基板支持手段を昇降する昇降手段と、を備えたことを特徴とする構成1乃至4のいずれか一項に記載のマスクブランク製造用スパッタリング装置である。
構成5の発明にあるように、構成1のマスクブランク製造用スパッタリング装置における基板保持手段を、スパッタリングカソードの下方に位置するように配置され、かつ、複数の基板サイズに応じ、成膜される基板主表面の反対側の裏面に複数箇所接して基板を支持する基板支持手段と、該基板支持手段を昇降する昇降手段とすることにより、表示装置用マスクブランクのような、複数の基板サイズ、重量の異なる基板に対応することができるとともに、従来のインライン型スパッタリング装置で成膜する際に使用していた基板サイズに応じた基板ホルダーを用意する必要がない。
【0018】
(構成6)
前記複数のスパッタリングカソードを、複数種類の基板サイズに応じて、前記透光性基板の前記薄膜が形成される基板主表面に対して平行な面内を移動させるスパッタリングカソード移動手段を備えたことを特徴とする構成1乃至5のいずれか一項に記載のマスクブランク製造用スパッタリング装置である。
構成6の発明にあるように、複数のスパッタリングカソードを、複数種類の基板サイズに応じて、基板主表面に対して平行な面内を移動させるスパッタリングカソード移動手段を備えていることにより、複数種類の基板サイズに対応した異なるサイズのスパッタリングターゲットを準備する必要なく薄膜を成膜することができるので、製造コストが安くすみ、且つ、光学特性の面内均一性が良好な薄膜を形成することができる。
【0019】
(構成7)
前記スパッタリングカソードは、X軸方向に複数個並べられたスパッタリングカソードを構成するカソードユニットが、Y軸方向に複数個並べて配置されており、前記スパッタリングカソード移動手段は、前記カソードユニット内の複数のスパッタリングカソードをX軸方向に移動させるX軸方向移動手段と、前記カソードユニットをY軸方向に移動させるY軸方向移動手段と、を備えたことを特徴とする構成6に記載のマスクブランク製造用スパッタリング装置である。
構成7の発明にあるように、構成6に係るスパッタリング装置のスパッタリングカソードは、X軸方向に複数個並べられたスパッタリングカソードを構成するカソードユニットが、Y軸方向に複数個並べて配置されており、前記スパッタリングカソード移動手段は、前記カソードユニット内の複数のスパッタリングカソードをX軸方向に移動させるX軸方向移動手段と、前記カソードユニットをY軸方向に移動させるY軸方向移動手段によって、基板サイズに応じて移動するので、基板サイズに応じた各スパッタリングカソードの位置制御性が良く、且つ、各スパッタリングカソードを移動させる駆動系も少なくて済むので、発塵も少なく、欠陥品質を向上させることができる。
【0020】
(構成8)
前記スパッタリングカソード、及び/又は前記カソードユニットが、前記透光性基板の主表面に対して垂直方向に移動可能なZ軸方向移動手段を備えたことを特徴とする構成7記載のマスクブランク製造用スパッタリング装置である。
構成8の発明にあるように、各スパッタリングカソード、及び/又はカソードユニットが、透光性基板の主表面に対して垂直方向に移動可能なZ軸方向移動手段を備えているので、透光性基板の主表面に形成する薄膜の面内膜厚均一性向上のために、各スパッタリングカソードに搭載されるスパッタリングターゲットと、透光性基板との距離を制御することができるので、形成される薄膜の光学特性の均一性をより向上させることが可能となる。
【0021】
(構成9)
前記X軸方向移動手段は、前記カソードユニット内の複数のスパッタリングカソードに対応して、各スパッタリングカソードを移動するための伝動手段が設けられ、前記伝動手段に、前記スパッタリングカソードに電力供給手段からの電力を伝導する伝導手段が設けられていることを特徴とする構成7記載のマスクブランク製造用スパッタリング装置である。
構成9の発明にあるように、各スパッタリングカソードを移動するための伝動手段に各スパッタリングカソードに電力供給手段からの電力を伝導する伝導手段が設けられているので、スパッタリング装置の簡素化が図れる。
【0022】
(構成10)
前記基板保持手段は、前記スパッタリングカソードと同じ側に位置するように配置され、かつ、成膜される基板主表面の複数箇所に当接して、スパッタリングカソードの上方で前記基板を支持するように構成された基板支持手段を備え、前記スパッタリングガス供給手段は、前記基板主表面に対向して前記スパッタリングカソードの下方に配置していることを特徴とする構成1乃至9のいずれか一に記載のマスクブランク製造用スパッタリング装置である。
構成10の発明にあるように、基板保持手段を、スパッタリングカソードと同じ側に位置するように配置され、かつ、成膜される基板主表面に複数箇所接して基板を支持する基板支持手段とすること、及び、スパッタリングガス供給手段は、基板主表面に対応してスパッタリングカソードの下方に配置しているので、スパッタリングガス供給手段により成膜チャンバに導入されたスパッタリングガスが、基板を避けて引かれず、各スパッタリングカソード側から引かれることになるので、基板に対するスパッタリングガスの流れが均一になるので、薄膜の光学特性の均一性が良好になる。
【0023】
(構成11)
前記基板保持手段は、前記スパッタリングカソードと同じ側に位置するように配置され、かつ、複数の基板サイズに応じ、成膜される基板主表面の複数箇所に当接して、前記スパッタリングカソードの上方で前記基板を支持するように構成された基板支持手段を備え、前記スパッタリングガス供給手段は、前記基板主表面に対向して前記スパッタリングカソードの下方に配置していることを特徴とする構成1乃至9のいずれか一項に記載のマスクブランク製造用スパッタリング装置である。
構成11の発明にあるように、基板保持手段を、スパッタリングカソードと同じ側に位置するように配置され、かつ、複数の基板サイズに応じ、成膜される基板主表面に複数箇所接して基板を支持する基板支持手段とすることにより、表示装置用マスクブランクのような、複数の基板サイズ、重量の異なる基板に対応することができるとともに、従来のインライン型スパッタリング装置で成膜する際に使用していた基板サイズに応じた基板ホルダーを用意する必要がない。また、スパッタリングガス供給手段は、基板主表面に対応してスパッタリングカソードの下方に配置しているので、スパッタリングガス供給手段により成膜チャンバに導入されたスパッタリングガスが、基板を避けて引かれず、各スパッタリングカソード側から引かれることになるので、基板に対するスパッタリングガスの流れが均一になるので、薄膜の光学特性の均一性が良好になる。
【0024】
(構成12)
構成1乃至11のいずれか一項に記載のスパッタリング装置を用いて、透光性基板上に転写パターンを形成するための薄膜を成膜することを特徴とする表示装置用マスクブランクの製造方法である。
構成12の発明によれば、基板に対して対向して設けられた複数のスパッタリングターゲット間を通過して基板表面の近傍にスパッタリングガスが供給されているので、基板表面に供給されるスパッタリングガスの分布の流れが生じないため、その結果、表示装置用マスクブランクのような大型サイズの基板であっても、光学特性の面内均一性が良好なマスクブランクを得ることができる。また、成膜時は、基板とスパッタリングターゲットが一定の位置関係にあるように、基板がスパッタリングターゲットに対して移動せず静止した状態で成膜が行われるので、欠陥品質が良好な表示装置用マスクブランクを得ることができる。
【0025】
(構成13)
透光性基板上に転写パターンを形成するための薄膜を成膜してマスクブランクを製造する表示装置用マスクブランクの製造方法であって、前記薄膜は、前記基板に対して対向して設けられた複数のスパッタリングターゲットに対して、スパッタリングガスによりスパッタして成膜され、かつ、成膜時は前記基板と前記スパッタリングターゲットが一定の位置関係にあるようにして成膜され、前記スパッタリングガスは、前記複数のスパッタリングターゲット間を通過して前記基板表面の近傍に供給するようにしたことを特徴とする表示装置用マスクブランクの製造方法である。
構成13の発明によれば、基板に対して対向して設けられた複数のスパッタリングターゲット間を通過して基板表面の近傍にスパッタリングガスが供給されているので、基板表面に供給されるスパッタリングガスの分布の流れが生じないため、その結果、表示装置用マスクブランクのような大型サイズの基板であっても、光学特性の面内均一性が良好なマスクブランクを得ることができる。また、成膜時は、基板とスパッタリングターゲットが一定の位置関係にあるように、基板がスパッタリングターゲットに対して移動せず静止した状態で成膜が行われるので、欠陥品質が良好な表示装置用マスクブランクを得ることができる。
【0026】
(構成14)
前記薄膜は、遮光膜または、半透光膜または、半透光膜と遮光膜をこの順に設けた積層膜であることを特徴とする構成12または13記載の表示装置用マスクブランクの製造方法である。
構成14の発明にあるように、透光性基板上に転写パターンを形成するための薄膜として、遮光膜を形成したバイナリマスクブランクや、半透光膜を形成した位相シフトマスクブランクやフォトマスクブランク、半透光膜と遮光膜の積層膜をこの順に形成した階調マスクブランクなどの表示装置用マスクブランクの製造に好適である。
【0027】
(構成15)
構成12乃至14のいずれか一項に記載の表示装置用マスクブランクの製造方法により得られるマスクブランクの前記薄膜をパターニングして転写パターンを形成することを特徴とする表示装置用マスクの製造方法である。
構成12乃至14のいずれか一項に記載の表示装置用マスクブランクの製造方法により得られる欠陥品質が良好で、光学特性の面内均一性が良好なマスクブランクを用いて、前記薄膜をパターニングして転写パターンを形成することにより、パターン欠陥の少ない、光学特性が良好な大型サイズの表示装置用マスクを得ることができる。
【発明の効果】
【0028】
本発明に係るスパッタリング装置によれば、大型サイズの基板であっても、なお且つ複数種類の基板サイズに対しても、いずれも欠陥品質が良好で、光学特性の面内均一性が良好な薄膜を形成することができる。
また、本発明に係る表示装置用マスクブランクの製造方法によれば、大型サイズであっても、欠陥品質が良好で、光学特性の面内均一性が良好なマスクブランクを得ることができる。
【0029】
また、本発明に係る表示装置用マスクの製造方法によれば、欠陥品質が良好で、光学特性の面内均一性が良好な本発明に係るマスクブランクを用いて、パターン欠陥の少ない、
光学特性が良好な大型サイズの表示装置用マスクを得ることができる。
【図面の簡単な説明】
【0030】
【図1】本発明のマスクブランク製造用スパッタリング装置の一実施形態に係る全体概略構成図である。
【図2】本発明の第一の実施の形態であるマスクブランク製造用スパッタリング装置における成膜チャンバ内の基板に対する複数のスパッタリングカソードの配置関係を示す図である。
【図3】(a)及び(b)はそれぞれ本発明の第一の実施の形態であるマスクブランク製造用スパッタリング装置におけるスパッタリングガス供給手段、及び基板保持手段の構成を示す図である。
【図4】本発明の第一の実施の形態であるマスクブランク製造用スパッタリング装置におけるスパッタリングガス供給流路を示す図である。
【図5】(a)及び(b)はそれぞれ複数のスパッタリングカソードに異なる材料のスパッタリングターゲットを装着する場合のスパッタリングターゲットの配置を示す図である。
【図6】(a)本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置における成膜チャンバ内の大型基板に対する複数のスパッタリングカソードの配置関係を示す図である。(b)本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置における成膜チャンバ内の中小型基板に対する複数のスパッタリングカソードの配置関係を示す図である。
【図7】本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置におけるスパッタリングガス供給手段、及び基板保持手段の構成を示す図である。
【図8】本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置におけるX軸方向移動手段及びY軸方向移動手段を示す図である。
【図9】本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置におけるX軸方向移動手段の詳細構成を示す図である。
【図10】(a)及び(b)は、実施例6のマスクブランクを製造する際に使用した本発明のマスクブランク製造用スパッタリング装置の構成を示す図である。
【図11】図10のマスクブランク製造用スパッタリング装置におけるY軸方向移動手段を示す図である。
【図12】本発明のマスクブランク製造用スパッタリング装置における他の実施形態を示す図である。
【図13】階調マスクの製造工程を示す断面図である。
【図14】(a)及び(b)は、実施例3のマスクブランクを製造する際に使用した本発明のマスクブランク製造用スパッタリング装置の構成を示す図である。
【発明を実施するための形態】
【0031】
以下、図面を参照して本発明の実施の形態を詳述する。
[第1の発明(第一の実施の形態)]
まず、本発明のマスクブランク製造用スパッタリング装置について説明する。
図1は、本発明のスパッタリング装置の一実施形態に係る全体概略構成図である。
図1に示すスパッタリング装置は、マルチチャンバ型(クラスター型)のスパッタリング装置である。その構成としては、搬送チャンバ1を中心に、複数(図1では3つ)の成膜チャンバ2A,2B,2Cがそれぞれ開閉ゲート(ゲートバルブ)3A,3B,3Cを介して連結されている。また、上記搬送チャンバ1は、基板の搬入(ローディング)および搬出(アンローディング)用の減圧室(図示せず)とは開閉ゲート(ゲートバルブ)4を介して連結されている。
【0032】
このような構成のスパッタリング装置の場合、まず、大気(クリーンルーム室内の空気)中に置かれている基板を室内が大気開放されている上記減圧室内に搬入した後、減圧室の真空減圧を行う。次に、これまで閉じていた開閉ゲート4、3Aを開き、図示しない搬送装置(搬送ロボット)で上記減圧室から基板を所定の真空度に真空減圧されている搬送チャンバ1内へ搬入(ローディング5)し、該搬送チャンバ1を経由して、同じく所定の真空度に真空減圧されている第1の成膜チャンバ2A内に搬入・設置される。ここで、上記開閉ゲート3A、4は再度閉じられる。その後、成膜チャンバ2A内に成膜ガス(スパッタリングガス)を導入し、所定ガス圧になったところで放電を開始して、スパッタリング法によって、基板上にパターン形成用の薄膜の成膜が行われる。
【0033】
パターン形成用薄膜が複数層からなるものであり、同じスパッタリングターゲットで成膜可能な場合は、1層目を成膜後、基板をそのまま成膜チャンバ2A内に置いたまま、2層目以降を成膜する。また、パターン形成用薄膜が複数層であり、2層目以降を異なるスパッタリングターゲットで成膜する必要がある場合には、別の例えば成膜チャンバ2Bで成膜を行う。この場合、開閉ゲート3A、3Bを開き、搬送装置で成膜チャンバ2Aから基板を取り出し、搬送チャンバ1を経由して、所定の真空度に真空減圧されている成膜チャンバ2Bに搬入・設置する。ここで、上記開閉ゲート3B、3Aは閉じられる。その後、成膜チャンバ2B内に成膜ガス(スパッタリングガス)を導入し、所定ガス圧になったところで放電を開始して、スパッタリング法によって、2層目以降を成膜する。
なお、パターン形成用薄膜の2層目以降をもう一つの成膜チャンバ2Cを用いて同様に形成してもよい。
【0034】
こうして、成膜すべきパターン形成用薄膜を全て成膜し終えたら、上記減圧室(図示せず)の開閉ゲート4と、その時点で基板が設置されている成膜チャンバの開閉ゲートを開き、搬送装置によって、その成膜チャンバから基板を取り出し、搬送チャンバ1を経由して、上記減圧室へ搬出(アンローディング6)する。そして、上記減圧室を大気開放して、基板(パターン形成用薄膜が形成されたマスクブランク)を取り出す。
以上のようにして、図1に示すスパッタリング装置によるパターン形成用薄膜のスパッタ成膜が行われる。
【0035】
図2は、本発明の第一の実施の形態であるマスクブランク製造用スパッタリング装置における成膜チャンバ内の基板に対する複数のスパッタリングカソードの配置関係を示す図である。また、図3(a)、(b)は、本発明の第一の実施の形態であるマスクブランク製造用スパッタリング装置におけるガス供給手段、及び基板保持手段の構成を示す図である。
【0036】
図2及び図3(a)、(b)に示すように、本発明のスパッタリング装置では、上記成膜チャンバ(例えば2A)内で、基板10と対向配置される複数のスパッタリングカソード7、・・・と、スパッタリングガスがこれら複数のスパッタリングカソード7、・・・間を通過して前記基板10の表面近傍に供給されるように、スパッタリングガス供給手段9である、各スパッタリングカソード7の間に、一つのスパッタリングカソードに対して少なくとも一つ以上のスパッタリングガス導入管91と、スパッタリングガス導入管91により導入されたスパッタリングガスが、基板10の表面近傍に供給するように、基板10を挟んで基板の裏面側にターボ分子ポンプ(TMP)92とを備えている。尚、各スパッタカソード7には、スパッタカソード7にスパッタリングターゲット8を装着した際に、スパッタリングターゲット8を囲むように、スパッタシールド75が備えられている。本発明のスパッタリング装置を用いて薄膜を成膜する場合には、上記複数のスパッタリングカソード7、・・・の夫々にスパッタリングターゲット8、・・・が装着される。また、本発明のスパッタリング装置は、成膜中、成膜チャンバ内で前記基板10は移動せずに静止した状態で成膜が行われるようにするため、スパッタリングカソード7の下方に位置するように配置され、かつ、複数の基板サイズに応じ、成膜される基板主表面と反対側の裏面に複数箇所当接して基板10を支持する基板支持手段95を備えている。基板サイズに応じて少なくとも基板裏面の外縁部に当接するように、基板支持手段95には、昇降手段(図示せず)を備えている。比較的大きな基板サイズに対して薄膜を成膜する際には、基板裏面の内側に位置する基板支持手段95は、基板裏面に当接しないように、昇降手段により基板から離れた距離まで下降するようにする。なお、表示装置を転写に影響のない基板裏面の内側に基板支持手段95が当接するようにしても構わない。また、基板支持手段95に昇降手段を設けずに、基板サイズに応じて、基板支持手段95が着脱自在に取り付けられるようにしても構わない。この基板支持手段95の高さを変えることにより、基板10とスパッタリングカソード7に装着されるスパッタリングターゲット8間との距離を簡単に調節することができる。
【0037】
また、上記スパッタリングカソード7は、薄膜が形成される基板10の主表面と、スパッタリングカソード7に取り付けられるスパッタリングターゲット8の被スパッタ面が平行になるように対向配置するようにしている。基板主表面とスパッタリングターゲット8の被スパッタ面が平行になるように対向配置しているので、スパッタリングガスによりスパッタリングターゲット8から叩き出された粒子は直進性が高く、基板主表面に対して粒の成長が揃った薄膜が成膜されることになる。従って、基板主表面に堆積された薄膜の膜密度が高くなり、膜密度が高くなる分、所望の光学濃度を得るために必要とする膜厚の薄膜化が可能となるので、微細パターンの形成が可能となり、高い線幅均一性が得られる。
【0038】
上記スパッタリングカソード7は、複数の基板サイズを含む領域に見合う数のスパッタリングカソードを配置することが好ましい。例えば、図2では、スパッタ成膜を行う最大サイズの基板の大きさ(領域)を破線Sで示しているが、この最大サイズの基板の大きさに見合う、例えばこの最大サイズの基板の領域を十分にカバーするだけの数のスパッタリングカソード7を配置することが好ましい。これによって、大型サイズの基板で、なお且つ複数種類の基板サイズに対しても、1台のスパッタリング装置(もしくは1つの成膜チャンバ)で対応することが可能であり、これら複数種類の基板サイズに対して、いずれも光学特性の面内均一性が良好な薄膜を形成することができる。
【0039】
また、本発明においては、上記複数のスパッタリングカソード7、・・・は、各カソードに装着されている各スパッタリングターゲット8間のターゲット間隔を考慮して、互いに一定の間隔をもって、あるいは互いに近接させた状態で配置することができるが、少なくとも成膜ガスが図4中の矢印gで示すように、これらカソード間を通過して基板面に対するほぼ垂直方向から基板10の表面近傍に供給されるのに必要な間隙を少なくとも有している。
【0040】
また、対向配置される上記スパッタリングカソード7に装着されるスパッタリングターゲット8と基板10との間隔(距離)は、主にスパッタリングターゲット8のサイズに依存し、小さいサイズのスパッタリングターゲットの場合は上記間隔を小さく、大きいサイズの場合は上記間隔を大きくできる。本発明のスパッタリング装置においては、上記のようにスパッタリングターゲット8のサイズにもよるが、スパッタリングターゲット8と基板10との距離は、通常、30mm〜400mm程度の範囲とすることが好適である。
【0041】
また、本発明のスパッタリング装置においては、上記複数のスパッタリングカソード7、・・・の個々に独立して電力を印加できる電力供給手段を備えていることが好ましい。複数種類の基板サイズや、成膜する薄膜の材料、要求される光学特性、並びに光学特性の均一性、膜厚の面内均一性、用途などに応じて、各スパッタリングカソードへの印加電力を制御(オン・オフを含む)することで、形成される薄膜の光学特性の均一性をより向上させることが可能になる。
【0042】
また、上記複数のスパッタリングカソード7、・・・の夫々に同じ材料のスパッタリングターゲット8を装着してもよいし、もしくは異なる材料のスパッタリングターゲット8を装着することもできる。各スパッタリングカソード7に2種類の異なる材料のスパッタリングターゲットを交互に装着(つまり1つおきに同じ材料)することにより、1つの成膜チャンバを用いて、ターゲットを交換しなくても、異なる材料の積層膜(例えばMoSi系半透光膜とCr系遮光膜の積層膜)を形成することができる。例えば、異なる材料のスパッタリングターゲットを装着する例としては、図5(a)のように、成膜する薄膜の材料がMoSiの場合、Siスパッタリングターゲット81と、MoSi2スパッタリングターゲット82とすることができる。また、異なる材料の積層膜を積層する場合の例としては、図5(b)のように、Crスパッタリングターゲット83と、MoSixスパッタリングターゲット84とすることができる。
【0043】
本発明のスパッタリング装置によれば、成膜中、スパッタリングカソードに装着されるスパッタリングターゲットに対して、基板が一定位置に配置されるように保持する基板保持手段を備えているので、成膜チャンバ内でスパッタリングターゲットに対して基板が移動せず静止した状態で成膜が行われるので、基板搬送手段(可動部)による発塵が生じないため、欠陥品質を向上させることができる。しかも、本発明のスパッタリング装置は、基板に対して複数のスパッタリングカソードを対向配置するとともに、これら複数のスパッタリングカソード間を通過して基板表面の近傍にスパッタリングガスが供給されるスパッタリングガス供給手段を備えているので、基板面に対しほぼ垂直方向から成膜ガスが基板面全体に供給され、基板表面に供給されるスパッタリングガスの分布の流れが生じないため、その結果、大型サイズの基板であっても、なお且つ複数種類の基板サイズに対しても、いずれも光学特性の面内均一性が良好な薄膜を形成することができる。
【0044】
[第1の発明(第二の実施の形態)]
本発明の第二の実施の形態に係わるマスクブランク製造用スパッタリング装置について説明する。尚、上述で説明した第一の実施の形態に係わるマスクブランク製造用スパッタリング装置と重複する構成については、以下、同一の名称、符号を用いて説明する。
【0045】
図6(a)は、本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置における成膜チャンバ内の大型基板に対する複数のスパッタリングカソードの配置関係を示す図、図6(b)は、本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置における成膜チャンバ内の中小型基板に対する複数のスパッタリングカソードの配置関係を示す図である。また、図7は、本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置におけるスパッタリングガス供給手段、及び基板保持手段の構成を示す図、図8は、本発明のマスクブランク製造用スパッタリング装置におけるX軸方向移動手段及びY軸方向移動手段を示す図である。また、図9は、
本発明の第二の実施の形態であるマスクブランク製造用スパッタリング装置におけるX軸方向移動手段の詳細構成を示す図である。
【0046】
図6及び図7に示すように、本発明のマスクブランク製造用スパッタリング装置では、上記成膜チャンバ(例えば2A)内で、基板Sと対向配置される複数のスパッタリングカソード7、・・・を備えている。また、スパッタリングガスがこれら複数のスパッタリングカソード7、・・・間を通過して前記基板Sの表面近傍に供給されるようにスパッタリングガス供給手段9を備えており、このスパッタリングガス供給手段9は、薄膜が形成される基板表面に対向して上記各スパッタリングカソード7の下方に配置され、各スパッタリングカソード7の下方に、一つのスパッタリングカソードに対して少なくとも一つ以上のスパッタリングガス導入管91と、スパッタリングガス導入管91により導入されたスパッタリングガスが、基板Sの表面近傍に供給されるように、成膜チャンバの下部にターボ分子ポンプ92とを備えている。本発明のスパッタリング装置を用いて薄膜を成膜する場合には、上記複数のスパッタリングカソード7、・・・の夫々にスパッタリングターゲット8、・・・が装着される。なお、各スパッタリングカソード7にスパッタリングターゲット8が装着された際に、このスパッタリングターゲット8を囲むように覆うスパッタシールド75が備えられている。
【0047】
また、本発明のスパッタリング装置は、成膜中、成膜チャンバ内で前記基板Sは移動せずに静止した状態で成膜が行われるようにするため、スパッタリングカソード7と同じ側に位置するように配置され、かつ、複数の基板サイズに応じ、成膜される基板主表面の複数箇所に当接して、上記スパッタリングカソード7の上方で基板Sを支持する基板支持手段95を備えている。基板サイズに応じて少なくとも基板主表面の外縁部に当接するように、基板支持手段95には、昇降手段(図示せず)を備えている。比較的大きな基板サイズに対して薄膜を成膜する際には、基板主表面の内側に位置する基板支持手段95は、基板主表面に当接しないように、昇降手段により基板から離れた距離まで下降するようにする。なお、表示装置の転写に影響のない基板主表面の内側に基板支持手段95が当接するようにしても構わない。また、基板支持手段95に昇降手段を設けずに、基板サイズに応じて、基板支持手段95が着脱自在に取り付けられるようにしても構わない。この基板支持手段95の高さを変えることにより、基板Sとスパッタリングカソード7に装着されるスパッタリングターゲット8間との距離を簡単に調節することができる。
【0048】
また、本発明のスパッタリング装置は、上記複数のスパッタリングカソード7、・・・を、複数種類の基板サイズに応じて、基板Sの薄膜が形成される基板主表面に対して平行な面内を移動させるスパッタリングカソード移動手段を備えている。図7及び図8を参照して説明すると、成膜チャンバ内に配置される複数のスパッタリングカソード7、・・・は、X軸方向に複数個並べられたスパッタリングカソード7を構成するカソードユニット30が、Y軸方向に複数個並べて配置されている。上記スパッタリングカソード移動手段は、上記カソードユニット30内の複数のスパッタリングカソード7をX軸方向に移動させるX軸方向移動手段と、上記カソードユニット30をY軸方向に移動させるY軸方向移動手段とを備えている。尚、X軸方向を基板の短辺と平行な方向、Y軸方向を基板の長辺と平行な方向とすることができる。また、X軸方向を基板の長辺と平行な方向、Y軸方向を基板の短辺と平行な方向とすることもできる。
【0049】
さらに図9を参照して、上記X軸方向移動手段を説明する。
上記X軸方向移動手段は、上記カソードユニット30内の複数のスパッタリングカソードに対応して、各(個々の)スパッタリングカソード7を移動するための伝動手段であるシャフト部材31が設けられている。各スパッタリングカソード7の下に取り付けられた係合部材33は、上記シャフト部材31の表面に螺刻されている凹凸と係合(螺合)するとともに、上記シャフト部材31の下に設けられた案内レール34とも係合する。また、上記シャフト部材31の一端には、これを回転駆動させるためのカソード駆動用モータ35が取り付けられている。交流電源36によって上記カソード駆動用モータ35が駆動すると、上記シャフト部材31が回転し、これと係合する上記係合部材33が移動するため、上記カソードユニット30内のスパッタリングカソード7も同時にX軸方向へ移動する。
【0050】
また、上記Y軸方向移動手段は、上記カソードユニット30の両端部においてY軸方向に沿って配置された2本の平行なカソードユニット搬送レール32,32と、上記カソードユニット30を駆動するための駆動用モータ37とから構成されている。カソードユニット駆動用モータ37が図示していない電源によって駆動すると、上記カソードユニット30が上記カソードユニット搬送レール32上をY軸方向に移動する。
【0051】
以上説明したように、上記X軸方向移動手段及びY軸方向移動手段を備えたスパッタリングカソード移動手段によって、上記カソードユニット30内に複数個並べられた各スパッタリングカソード7をX軸方向に移動させるとともに、Y軸方向への上記カソードユニット30の移動によってカソードユニット30内の複数のスパッタリングカソード7をカソードユニット30毎にY軸方向へ移動させることができる。
【0052】
前述の図6(a)は、成膜チャンバ2A内の大型基板Sに対する複数のスパッタリングカソード7、・・・の配置関係を示し、図6(b)は、成膜チャンバ2A内の中小型基板Sに対する複数のスパッタリングカソード7、・・・の配置関係を示している。本発明の第二の実施の形態に係わるスパッタリング装置は、このようなスパッタリングカソード移動手段を備えていることで、複数種類の基板サイズに対応した異なるサイズのスパッタリングターゲットを準備する必要なく薄膜を成膜することができる。
【0053】
また、本発明の第二の実施の形態に係わるスパッタリング装置においても、上述の第一の実施の形態と同様に、上記複数のスパッタリングカソード7、・・・の個々に独立して電力を印加できる電力供給手段を備えていることが好ましい。複数種類の基板サイズや、成膜する薄膜の材料、要求される光学特性、並びに光学特性の均一性、膜厚の面内均一性、用途などに応じて、各スパッタリングカソードへの印加電力を制御(オン・オフを含む)することで、形成される薄膜の光学特性の均一性をより向上させることが可能になる。
【0054】
前述の図9に示す構成においては、上記スパッタリングカソード移動手段におけるX軸方向移動手段は、上記カソードユニット30内の各スパッタリングカソード7を移動するための伝動手段であるシャフト部材31が設けられており、この伝動手段であるシャフト部材31に、上記スパッタリングカソード7に電力供給手段(スパッタ電源)38からの電力を伝導する伝導手段が設けられている。具体的には、電力供給手段38からのカソード電位ケーブル39を上記シャフト部材31を介して、アノード電位ケーブル40を上記案内レール34を介して夫々スパッタリングカソード7に配線することで、上記スパッタリングカソード7に電力供給手段38からの電力が供給されるように構成している。このように各スパッタリングカソード7を移動するための伝動手段に、各スパッタリングカソード7に電力供給手段からの電力を伝導する伝導手段が設けられているので、スパッタリング装置の簡素化が図れる。
【0055】
また、上述の第一の実施の形態と同様に、上記各スパッタリングカソード7は、薄膜が形成される基板Sの主表面と、スパッタリングカソード7に取り付けられるスパッタリングターゲット8の被スパッタ面が平行になるように対向配置することが好ましい。本発明のスパッタリング装置では、基板主表面に対して平行な面内をスパッタリングカソード7が移動するスパッタリングカソード移動手段を備えているので、基板主表面とスパッタリングターゲット8の被スパッタ面が平行になるように対向配置させることが簡単に実現できる。
【0056】
このように基板主表面とスパッタリングターゲット8の被スパッタ面が平行になるように対向配置することにより、スパッタリングガスによりスパッタリングターゲット8から叩き出された粒子は直進性が高く、基板主表面に対して粒の成長が揃った薄膜が成膜されることになる。従って、基板主表面に堆積された薄膜の膜密度が高くなり、膜密度が高くなる分、所望の光学濃度を得るために必要とする膜厚の薄膜化が可能となるので、微細パターンの形成が可能となり、高い線幅均一性が得られる。
【0057】
上記スパッタリングカソード7は、複数の基板サイズを含む領域に見合う数のスパッタリングカソードを配置することが好ましい。例えば、図6では、スパッタ成膜を行う最大サイズの基板の大きさ(領域)を破線Sで示しているが、この最大サイズの基板の大きさに見合う、例えばこの最大サイズの基板の領域を十分にカバーするだけの数のスパッタリングカソード7を配置することが好ましい。なお、本発明の第二の実施の形態のスパッタリング装置においては、スパッタリングカソード移動手段を備えているため、スパッタリングカソード移動手段によるスパッタリングカソード7の移動可能距離も考慮した数のスパッタリングカソード7を配置することができる。
【0058】
また、上述の第一の実施の形態と同様に、対向配置される上記スパッタリングカソード7に装着されるスパッタリングターゲット8と基板10との間隔(距離)は、主にスパッタリングターゲット8のサイズに依存し、小さいサイズのスパッタリングターゲットの場合は上記間隔を小さく、大きいサイズの場合は上記間隔を大きくできる。本発明のスパッタリング装置においては、上記のようにスパッタリングターゲット8のサイズにもよるが、スパッタリングターゲット8と基板10との距離は、通常、30mm〜400mm程度の範囲とすることが好適である。
【0059】
また、上述の第一の実施の形態と同様に、上記複数のスパッタリングカソード7、・・・の夫々に同じ材料のスパッタリングターゲット8を装着してもよいし、もしくは異なる材料のスパッタリングターゲット8を装着することもできる。各スパッタリングカソード7に2種類の異なる材料のスパッタリングターゲットを交互に装着(つまり1つおきに同じ材料)することにより、1つの成膜チャンバを用いて、ターゲットを交換しなくても、異なる材料の積層膜(例えばMoSi系半透光膜とCr系遮光膜の積層膜)を形成することができる。例えば、異なる材料のスパッタリングターゲットを装着する例としては、成膜する薄膜の材料がMoSiの場合、Siスパッタリングターゲットと、MoSi2スパッタリングターゲットとすることができる。また、異なる材料の積層膜を積層する場合の例としては、Crスパッタリングターゲットと、MoSiXスパッタリングターゲットとすることができる。
【0060】
また、図10は、本発明のマスクブランク製造用スパッタリング装置における他の実施形態を示すもので、成膜チャンバ内に配置される複数のスパッタリングカソードは、X軸方向を長辺とする矩形状のスパッタリングカソード7がY軸方向に複数個並べて配置されている。各スパッタリングカソード7には同じく矩形状のスパッタリングターゲット8が装着されている。図10(a)は、成膜チャンバ2A内の大型基板Sに対する複数のスパッタリングカソード7、・・・の配置関係を示し、図10(b)は、成膜チャンバ2A内の中小型基板Sに対する複数のスパッタリングカソード7、・・・の配置関係を示している。この実施形態においては、上記矩形状のスパッタリングカソード7の両端部においてY軸方向に沿って配置された2本の平行なカソードユニット搬送レール32,32と、上記スパッタリングカソード7を駆動するための駆動用モータとから構成されているスパッタリングカソード移動手段(Y軸方向移動手段)を備えており、上記スパッタリングカソード駆動用モータが図示していない電源によって駆動すると、上記矩形状のスパッタリングカソード7が上記カソードユニット搬送レール32上をY軸方向に移動する(図11を参照)。
【0061】
また、図12も、本発明のマスクブランク製造用スパッタリング装置における他の実施形態を示すもので、上記スパッタリングカソード7が基板Sの主表面に対して垂直方向に移動可能なZ軸方向移動手段を備えた構成を示している。上記Z軸方向移動手段は、上記スパッタリングカソード7を垂直方向に移動する昇降手段50と、基板主表面に対するスパッタリングカソード7の角度を調整する角度調整手段51とを備えている。図12は、一例として両脇の2個のスパッタリングカソード7を基板に近づけ、なお且つ基板主表面に向けるように角度を調整した状態を示している。
【0062】
各スパッタリングカソード7が基板主表面に対して垂直方向に移動可能なZ軸方向移動手段を備えていることにより、基板の主表面に形成する薄膜の面内膜厚均一性向上のために、各スパッタリングカソードに搭載されるスパッタリングターゲットと、基板との距離を制御することができるので、形成される薄膜の光学特性の均一性をより向上させることが可能となる。なお、図12は各スパッタリングカソード7がZ軸方向移動手段を備えている構成を示したが、これには限定されず、たとえばX軸方向に複数個並べられたスパッタリングカソード7を構成する前記カソードユニット30がZ軸方向移動手段を備える構成としてもよい。また、各スパッタリングカソードとカソードユニットのいずれもZ軸方向移動手段を備える構成としてもよい。
【0063】
以上説明したように、本発明の第二の実施の形態に係わるスパッタリング装置によれば、成膜中、スパッタリングカソードに装着されるスパッタリングターゲットに対して、基板が一定位置に配置されるように保持する基板保持手段を備えているので、成膜チャンバ内でスパッタリングターゲットに対して基板が移動せず静止した状態で成膜が行われるので、基板搬送手段(可動部による発塵が生じないため、欠陥品質を向上させることができる。しかも、本発明のスパッタリング装置は、基板に対して複数のスパッタリングカソードを対向配置するとともに、これら複数のスパッタリングカソードを、複数種類の基板サイズに応じて、基板主表面に対して平行な面内を移動させるスパッタリングカソード移動手段を備えていることにより、複数種類の基板サイズに対応した異なるサイズのスパッタリングターゲットを準備する必要なく薄膜を成膜することができるので、製造コストが安くすみ、且つ、光学特性の面内均一性が良好な薄膜を形成することができる。
【0064】
[第2の発明]
本発明は、表示装置用マスクブランクの製造方法についても提供するものである。
すなわち、上述の本発明のマスクブランク製造用スパッタリング装置を用いて、透光性基板上に転写パターンを形成するための薄膜を成膜することを特徴とする表示装置用マスクブランクの製造方法である。
本発明によれば、複数種類の基板サイズに対応した異なるサイズのスパッタリングターゲットを準備する必要なく薄膜を成膜することができるので、製造コストが安くすみ、且つ、光学特性の面内均一性が良好な薄膜を形成することができる。また、成膜時は、基板とスパッタリングターゲットが一定の位置関係にあるように、基板がスパッタリングターゲットに対して移動せず静止した状態で成膜が行われるので、欠陥品質が良好な表示装置用マスクブランクを得ることができる。
【0065】
また、本発明は、透光性基板上に転写パターンを形成するための薄膜を成膜してマスクブランクを製造する表示装置用マスクブランクの製造方法であって、前記薄膜は、前記基板に対して対向して設けられた複数のスパッタリングターゲットに対して、スパッタリングガスによりスパッタして成膜され、かつ、成膜時は前記基板と前記スパッタリングターゲットが一定の位置関係になるようにして成膜され、前記スパッタリングガスは、前記複数のスパッタリングターゲット間を通過して前記基板表面の近傍に供給するようにしたことを特徴とする表示装置用マスクブランクの製造方法である。
【0066】
基板に対して対向して設けられた複数のスパッタリングターゲット間を通過して基板表面の近傍にスパッタリングガスが供給されているので、基板表面に供給されるスパッタリングガスの分布の流れが生じないため、その結果、表示装置用マスクブランクのような大型サイズの基板であっても、光学特性の面内均一性が良好なマスクブランクを得ることができる。また、成膜時は、基板とスパッタリングターゲットが一定の位置関係にあるように、基板がスパッタリングターゲットに対して移動せず静止した状態で成膜が行われるので、欠陥品質が良好な表示装置用マスクブランクを得ることができる。
【0067】
表示装置用マスクブランクの場合、上記薄膜としては、遮光膜または、半透光膜または、半透光膜と遮光膜をこの順に設けた積層膜が用いられる。この場合の遮光膜は、遮光層の上に反射防止層を積層した構成のものも含まれる。
すなわち、本発明は、透光性基板上に転写パターンを形成するための薄膜として、遮光膜を形成した表示装置用バイナリマスクブランクや、半透光膜を形成した表示装置用位相シフトマスクブランク、表示装置用フォトマスクブランク、半透光膜と遮光膜の積層膜をこの順に形成した表示装置用階調マスクブランクなどの製造に好適である。
上記バイナリマスクブランクは、透光性基板上に遮光部と透光部(基板が露出している)を有する2階調マスクや、遮光部と透光部の他に、パターン転写に用いる露光光の解像限界以下の微細遮光パターンからなる半透光部を有する3階調マスクの製造に用いられる。
【0068】
また、上記位相シフトマスクブランクは、透光性基板上にパターンの解像性を高めるために必要な所望の位相差(たとえば、180°±20°)と、所望の透過率(たとえば、1%〜20%)の特性を有する半透光部を有する位相シフトマスクの製造に用いられる。
【0069】
また、上記フォトマスクブランクは、たとえば、特開2011−75656号の日本公開特許公報に記載されるフォトマスクの製造に用いられる。このフォトマスクは、エッチング加工がなされる被加工体上に形成されたレジスト膜に対して、ライン・アンド・スペース・パターンを含む所定の転写パターンを転写させ、前記レジスト膜を前記エッチング加工におけるマスクとなるレジストパターンとなすフォトマスクであって、透光性基板上に形成されるライン・アンド・スペース・パターンのラインパターンが半透光部により設けられ、スペースパターンが透光部により設けられているフォトマスクを指す。上記フォトマスクにおける半透光部は、ライン・アンド・スペース・パターンのピッチ幅が小さくなった場合であっても、透光部を介してレジスト膜に照射される透過光の強度が低下することを抑制することができる透過率(たとえば1%〜30%)を有する特徴を有する。
【0070】
また、上記位相シフトマスクブランクやフォトマスクブランクにおいて、半透光膜上に遮光膜を形成して、透光性基板上に半透光部と遮光部と透光部を有する位相シフトマスクやフォトマスクを製造することもできる。
また、上記階調マスクブランクは、透光性基板上に遮光部と透光部の他に、露光光透過率を所定量低減させる半透光膜からなる少なくとも1つの半透光部を有する3階調以上の多階調マスクの製造に用いられる。
【0071】
上記マスクブランク用透光性基板としては、使用する露光波長に対して透明性を有するものであれば特に制限されない。表示装置を製造する際に使用する露光光源としては、超高圧水銀灯が一般に使用され、露光波長としては、i線(波長365nm)、h線(波長405nm)、g線(波長436nm)を含むマルチ波長や、i線(波長365nm)の場合がある。本発明では、合成石英基板、その他各種のガラス基板(例えば、ソーダライムガラス、アルミノシリケートガラス等)を用いることができる。
【0072】
表示装置用大型マスクブランクの場合、小さいサイズのもので330mm×450mmから、大きいサイズは1220mm×1400mmまたはそれ以上のものまで、基板サイズが多種類ある。本発明は、このような表示装置用マスクブランクとして使用される一辺が500mm以上の大型基板サイズのマスクブランクの製造に好適である。
【0073】
表示装置用マスクブランクに用いられる上記遮光膜の材料としては、クロム、タンタル、ルテニウム、タングステン、チタン、ハフニウム、モリブデン、ニッケル、バナジウム、ジルコニウム、ニオブ、パラジウム、ロジウム等の遷移金属単体あるいはその化合物を含む材料などを用いることができる。例えば、クロムや、クロムに酸素、窒素、炭素などの元素から選ばれる1種以上の元素を添加したクロム化合物で構成した遮光膜が挙げられる。また、例えば、タンタルに、酸素、窒素、ホウ素などの元素から選ばれる1種以上の元素を添加したタンタル化合物で構成した遮光膜が挙げられる。遮光膜を、遮光層と表面反射防止層の2層構造や、さらに遮光層と基板との間に裏面反射防止層を加えた3層構造としたものなどがある。また、遮光膜の膜厚方向における組成が連続的又は段階的に異なる組成傾斜膜としてもよい。
【0074】
また、上記遮光膜として、遷移金属及びケイ素(遷移金属シリサイド、特にモリブデンシリサイドを含む)の化合物を含む材料を用いることもできる。
この遮光膜は、遷移金属及びケイ素の化合物を含む材料からなり、これらの遷移金属及びケイ素と、酸素及び/又は窒素を主たる構成要素とする材料が挙げられる。遷移金属には、モリブデン、タンタル、タングステン、チタン、ハフニウム、ニッケル、バナジウム、ジルコニウム、ニオブ、パラジウム、ルテニウム、ロジウム、クロム等が適用可能である。特に、遮光膜をモリブデンシリサイドの化合物で形成する場合であって、遮光層(MoSi等)と表面反射防止層(MoSiON等)の2層構造や、さらに遮光層と基板との間に裏面反射防止層(MoSiON等)を加えた3層構造がある。
【0075】
また、表示装置用マスクブランクに用いられる上記半透光膜の材料としては、クロム、タンタル、タングステン、チタン、モリブデン、珪素、ジルコニウム、アルミニウム等の金属単体あるいはその化合物を含む材料や、遷移金属及びケイ素(遷移金属シリサイド、特にモリブデンシリサイドを含む)の化合物を含む材料などを用いることができる。
この半透光膜は、例えば遷移金属及びケイ素(遷移金属シリサイドを含む)の化合物を含む材料からなり、これらの遷移金属及びケイ素と、酸素及び/又は窒素を主たる構成要素とする材料が挙げられる。遷移金属には、モリブデン、タンタル、タングステン、チタン、ハフニウム、ニッケル、バナジウム、ジルコニウム、ニオブ、パラジウム、ルテニウム、ロジウム、クロム等が適用可能である。また、クロム、タンタル、タングステン、チタン、モリブデン、珪素、ジルコニウム、アルミニウム等の化合物の場合、これら金属に、酸素、窒素、炭素、フッ素などの元素から選ばれる1種以上の元素を添加した金属化合物が適用可能である。各元素の組成比や膜厚は、露光光に対して所定の透過率となるように調整される。
【0076】
また、半透光膜上に遮光膜を有する形態の階調マスクブランク、位相シフトマスクブランク、フォトマスクブランクの場合、上記半透光膜の材料として上記遷移金属及びケイ素を含む材料を選択した場合、遮光膜の材料としては、半透光膜に対してエッチング選択性を有する(エッチング耐性を有する)特にクロムや、クロムに酸素、窒素、炭素などの元素を添加したクロム化合物で構成することが好ましい。半透光膜との積層構造で、所定の遮光性能(光学濃度)となるように、遮光膜材料の組成や膜厚は調整される。
また、上記半透光膜と遮光膜との間に、遮光膜や半透光膜に対してエッチング耐性を有するエッチングストッパー膜を設けてもよい。
【0077】
[第3の発明]
本発明は、表示装置用マスクの製造方法についても提供するものである。
すなわち、本発明は、上述の本発明に係る表示装置用マスクブランクの製造方法により得られるマスクブランクの前記薄膜をパターニングして転写パターンを形成することを特徴とする表示装置用マスクの製造方法である。前記薄膜のパターニングはリソグラフィー法を用いて行うことができる。
本発明に係る表示装置用マスクブランクの製造方法により得られる欠陥品質が良好で、光学特性の面内均一性が良好なマスクブランクを用いて、前記薄膜をパターニングして転写パターンを形成することにより、近年の表示装置用マスクで要求されている高品質を満足するような、パターン欠陥の少ない、しかも光学特性が良好である大型サイズの表示装置用マスクを得ることができる。
【実施例】
【0078】
以下、実施例により、本発明の実施の形態を更に具体的に説明する。
(実施例1)
使用する基板は、大型合成石英ガラス基板(大きさ1220mm×1400mm、厚さ13mm)である。
上記ガラス基板上に、前述の図1乃至図4に示す本発明に係るスパッタリング装置を用いて、以下の遮光膜の成膜を行った。
本発明に係るスパッタリング装置において、
・成膜チャンバ2A内に、合計59個のスパッタリングカソードを配置
・1つのスパッタリングカソードのサイズ:1辺125mmの正六角形
・各スパッタリングカソードに9インチスパッタリングターゲット(229mmφ)を配置(基板主表面とスパッタリングターゲットの被スパッタ面とが平行になるように配置)
・スパッタリングターゲットと基板間の距離:300mm
とした。
【0079】
具体的には、各スパッタリングカソードに装着するスパッタリングターゲットにクロム(Cr)ターゲットを用い、下地層、遮光層及び反射防止層で構成される遮光膜の成膜を行った。まず、アルゴン(Ar)と窒素(N2)との混合ガス(ガス流量比=8:2)をスパッタリングガスとし、膜厚14nmのCrN層(下地層)を成膜した。続いて、アルゴン(Ar)とメタン(CH4)との混合ガス(ガス流量比=95:5)をスパッタリングガスとし、膜厚61nmのCrC層(遮光層)を成膜した。最後に、アルゴン(Ar)と一酸化窒素(NO)との混合ガス(ガス流量比=85:15)をスパッタリングガスとして、膜厚25nmのCrON層(反射防止層)を成膜し、合計膜厚100nmの3層積層構造のクロム系遮光膜を形成した。
なお、上記各スパッタリングガスは、成膜チャンバ内の複数のスパッタリングカソード間の間隙を通過して前記基板表面の近傍に供給されるようにした。また、成膜時のガス圧、各スパッタリングカソードに印加するDC電源の電力は適宜調節して行った。この遮光膜は、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において光学濃度(OD)が3.2となるように調整されている。
【0080】
以上のようにして、表示装置用バイナリマスクブランクを作製した。
得られたバイナリマスクブランクの分光反射率を分光反射率計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、膜面反射率は平均10%であり、その変動幅は2%未満の範囲内であった。また、面内(均等30箇所)について同様に膜面反射率を測定した結果、面内の膜面反射率のばらつきは±1.5%以内に収まっており、大型マスクブランクであっても、上記遮光膜における光学特性の均一性が良好であることが確認できた。
【0081】
また、得られたバイナリマスクブランクに対し、600nm感度の欠陥検査装置(パルステック社製)を用いて、マスクブランクの主表面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は70個未満であり、本実施例により得られたバイナリマスクブランクは大型サイズであっても、欠陥品質が良好であることが確認できた。
【0082】
次に、上記バイナリマスクブランクを用いて表示装置用マスクを作製した。
すなわち、上記バイナリマスクブランクの表面にレーザー描画用のポジ型レジスト膜を形成し、このレジスト膜に対し、所望のパターン描画、現像を行い、所定のレジストパターンを形成した。次いで、このレジストパターンをマスクとして、ウェットエッチングにより上記遮光膜をエッチングして転写パターンを形成した。
【0083】
こうして得られた表示装置用バイナリマスクに対し、上記欠陥検査装置を用いて欠陥検査を行ったところ、パターン欠陥は検出されなかった。すなわち、本発明により得られる欠陥品質が良好で、光学特性の面内均一性が良好なマスクブランクを用いて、表示装置用マスクを作製することにより、近年の表示装置用マスクで要求されている高品質を満足するような、パターン欠陥の少ない、しかも光学特性が良好である大型サイズの表示装置用マスクが得られることを確認できた。
【0084】
(実施例2)
使用する基板は、大型合成石英ガラス基板(大きさ1220mm×1400mm、厚さ13mm)である。
上記ガラス基板上に、前述の図1乃至図4に示す本発明に係るスパッタリング装置を用いて、以下のMoSi半透光膜の成膜を行った。
なお、半透光膜の成膜は、実施例1の遮光膜の成膜を行った成膜チャンバ2A以外の例えば成膜チャンバ2B内で行った。この成膜チャンバ2B内の構成は、使用するスパッタリングターゲット材料が異なる点以外は、実施例1の遮光膜の成膜を行った成膜チャンバ2A内とまったく同様の構成とした。
【0085】
具体的には、各スパッタリングカソードに装着するスパッタリングターゲットにモリブデン(Mo)とシリコン(Si)との混合ターゲット(Mo:Si=20原子%:80原子%)を用い、アルゴン(Ar)をスパッタリングガスとし、膜厚4.5nmのMoSi4膜(Mo:20原子%、Si:80原子%)を成膜した。このとき、露光光源である超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域における透過率が40%となるように膜厚を調整した。
なお、上記スパッタリングガスは、成膜チャンバ内の複数のスパッタリングカソード間の間隙を通過して前記基板表面の近傍に供給されるようにした。また、成膜時のガス圧、各スパッタリングカソードに印加するDC電源の電力は適宜調節して行った。
【0086】
基板上に形成されたMoSi半透光膜の分光透過率を分光光度計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、半透光膜の透過率の変動幅は4%未満の範囲内であった。また、面内(均等30箇所)について同様に半透光膜の透過率を測定した結果、面内の透過率のばらつきは±1%以内に収まっており、大型サイズの基板であっても、上記半透光膜における光学特性の均一性が良好であることが確認できた。
【0087】
また、上記MoSi半透光膜を形成した基板に対し、600nm感度の欠陥検査装置(パルステック社製)を用いて、MoSi半透光膜面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は60個未満であり、欠陥品質が良好であることが確認できた。
【0088】
次に、上記MoSi半透光膜の上に、実施例1と同じく成膜チャンバ2A内で、以下の遮光膜の成膜を行った。
具体的には、各スパッタリングカソードに装着するスパッタリングターゲットにクロム(Cr)ターゲットを用い、下地層、遮光層及び反射防止層で構成される遮光膜の成膜を行った。まず、アルゴン(Ar)と窒素(N2)との混合ガス(ガス流量比=8:2)をスパッタリングガスとし、膜厚14nmのCrN層(下地層)を成膜した。続いて、アルゴン(Ar)とメタン(CH4)との混合ガス(ガス流量比=95:5)をスパッタリングガスとし、膜厚58nmのCrC層(遮光層)を成膜した。最後に、アルゴン(Ar)と一酸化窒素(NO)との混合ガス(ガス流量比=85:15)をスパッタリングガスとして、膜厚25nmのCrON層(反射防止層)を成膜し、合計膜厚97nmの3層積層構造のクロム系遮光膜を形成した。
【0089】
なお、成膜時のガス圧、各スパッタリングカソードに印加するDC電源の電力は適宜調節して行った。この遮光膜は、上記MoSi半透光膜との積層構造において、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において光学濃度(OD)が3.2となるように調整されている。
【0090】
以上のようにして、ガラス基板上にMoSi半透光膜及びCr系遮光膜をこの順に積層した構造の表示装置用階調マスクブランクを作製した。
得られた階調マスクブランクの分光反射率を分光反射率計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、膜面反射率は平均10%であり、その変動幅は2%未満の範囲内であった。また、面内(均等30箇所)について同様に膜面反射率を測定した結果、面内の膜面反射率のばらつきは±1.5%以内に収まっており、大型マスクブランクであっても、上記遮光膜(反射防止層)における光学特性の均一性が良好であることが確認できた。
【0091】
また、得られた階調マスクブランクに対し、前記600nm感度の欠陥検査装置を用いて、マスクブランクの主表面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は85個未満であり、本実施例により得られた階調マスクブランクは大型サイズであっても、欠陥品質が良好であることが確認できた。
【0092】
次に、上記階調マスクブランクを用いて表示装置用階調マスクを作製した。
図13に示す製造工程にしたがって説明する。
まず、ガラス基板10の上に半透光膜11及び遮光膜12を形成した上記階調マスクブランク上に、レーザー描画用のポジ型レジスト膜13を形成した(図13(a)参照)。
【0093】
次に上記マスクブランク上に形成されたレジスト膜13に対し、レーザー描画装置を用いて所望のパターン描画を行った後、現像して、遮光部となる領域上にレジストパターン13aを形成した(図13(b)参照)。
次に、上記レジストパターン13aをマスクとして、ウェットエッチングにより遮光膜12のエッチングを行って遮光膜パターン12aを形成した(図13(c)参照)。
なお、Cr系遮光膜とMoSi半透光膜とは、互いのエッチング条件に対して耐性を有している。
【0094】
次に、残存するレジストパターン13aを剥離して、再び全面に上記と同じレジスト膜を形成し、パターン描画、現像して、半透光部となる領域上にレジストパターン13bを形成した(図13(d)参照)。このレジストパターン13bおよび露出している遮光膜パターン12aをマスクとして、透光部領域上の半透光膜11をウェットエッチングにより除去した。
【0095】
残存するレジストパターン13bを剥離して、表示装置用階調マスク20を得た(図13(e)参照)。この諧調マスク20は、ガラス基板10上に、半透光膜パターン11aと遮光膜パターン12aの積層膜からなる遮光部21、ガラス基板10が露出している透光部22、および半透光膜パターン11aからなる半透光部23を含む転写パターンが形成された3階調マスクである。
【0096】
こうして得られた表示装置用階調マスクに対し、上記欠陥検査装置を用いて欠陥検査を行ったところ、パターン欠陥は検出されなかった。すなわち、本発明により得られる欠陥品質が良好で、光学特性の面内均一性が良好なマスクブランクを用いて、表示装置用マスクを作製することにより、近年の表示装置用マスクで要求されている高品質を満足するような、パターン欠陥の少ない、しかも光学特性が良好である大型サイズの表示装置用マスクが得られることを確認できた。
【0097】
(実施例3)
上述の実施例1のスパッタリング装置におけるスパッタリングカソード及びスパッタリングターゲットを、図14(a)、図14(b)に示すように、成膜チャンバ2A内の下方に、合計32個のスパッタリングカソードを配置させ、かつ、各スパッタリングカソード間にスパッタリングガス導入管を設けたスパッタリング装置を使用した以外は、上述の実施例1と同様にして表示装置用バイナリマスクブランクを作製した。
得られたバイナリマスクブランクの分光反射率を分光反射率計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、膜面反射率は平均10%であり、その変動幅は2%未満の範囲であった。また、面内(均等30箇所)について同様に膜面反射率を測定した結果、面内の膜面反射率のばらつきは±1.0%以内に収まっており、大型マスクブランクであっても、上記遮光膜における光学特性の均一性が良好であることが確認できた。
【0098】
これは、実施例1に記載のスパッタリング装置に比べて、基板主表面に薄膜(遮光膜)が形成される面側に、スパッタリングガス導入管とターボ分子ボンプが設けられているので、スパッタリングガス導入管より導入されたスパッタリングガスが、基板を避けてターボ分子ポンプに引かれず、各スパッタリングカソード間から引かれることになるので、基板に対するスパッタリングガスの流れが均一になることによるものと思われる。
また、得られたバイナリマスクブランクに対し、600nm感度の欠陥検査装置(パルステック社製)を用いて、マスクブランクの主表面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は50個未満であり、本実施例により得られたバイナリマスクブランクは大型サイズであっても、欠陥品質が良好であることが確認できた。
【0099】
これは、スパッタリングターゲットの上方に基板を配置しているので、スパッタリングターゲットからの発塵が基板に堆積されないことによるものと思われる。
また、上述の実施例1と同様に得られたバイナリマスクブランクを用いて表示装置用マスクを作製したところ、パターン欠陥は検出されなかった、近年の表示装置用マスクで要求されている高品質をも満足するような、パターン欠陥の少ない、しかも光学特性が良好である大型サイズの表示装置用マスクが得られることが確認できた。
【0100】
(比較例1)
本発明に係るスパッタリング装置に替えて従来のインライン型スパッタリング装置を用いて遮光膜の成膜を行ったこと以外は、上記実施例1と同様にして表示装置用バイナリマスクブランクを作製した。
なお、上記インライン型スパッタリング装置は、実施例1で使用した本発明のスパッタリング装置で用いているスパッタリングカソード及びスパッタリングターゲットと同じサイズのものを、基板の搬送方向と直交する基板の幅方向において複数個配置し、先行文献(特許文献1,2)におけるインライン型スパッタリング装置と同様の構成としたものを用いた。この遮光膜は、上述の実施例と同様に、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において光学濃度(OD)が3.2となるように調整され、得られた遮光膜は、膜厚15nmのCrN層(下地層)、膜厚65nmのCrC層(遮光層)、膜厚25nmのCrON層(反射防止層)で、合計膜厚105nmの連続組成傾斜膜となった。
上述の実施例1の遮光膜の膜厚と対比してもわかるように、同じ光学濃度(OD)3.2を得るために必要な膜厚は、比較例1の方が厚くならなければならず、これは、実施例1の遮光膜の膜密度に比べて低いことが要因と考えられる。
【0101】
また、得られたバイナリマスクブランクの分光反射率を分光反射率計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、膜面反射率は平均10%であったが、その変動幅は2%の範囲内であった。また、面内(均等30箇所)について同様に膜面反射率を測定した結果、面内の膜面反射率のばらつきは±5%と大きく、大型サイズのマスクブランクに要求されている光学特性の均一性が得られない。
【0102】
また、得られたバイナリマスクブランクに対し、前記600nm感度の欠陥検査装置を用いて、マスクブランクの主表面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は120個以上検出され、大型サイズのマスクブランクに要求されている欠陥品質が得られない。
【0103】
(実施例4)
使用する基板は、大型合成石英ガラス基板(大きさ1220mm×1400mm、厚さ13mm)である。
上記ガラス基板上に、前述の図1、図6乃至図9に示す本発明に係るスパッタリング装置を用いて、以下の遮光膜の成膜を行った。なお、実施例で使用したスパッタリング装置は、前述に説明した本発明の第二の実施の形態に係るスパッタリング装置において、X軸方向を基板の短辺と平行な方向、Y軸方向を基板の長辺と平行な方向としたスパッタリング装置を使用した。
本発明に係るスパッタリング装置において、
・成膜チャンバ2A内に、合計32個のスパッタリングカソードを配置
・1つのスパッタリングカソードのサイズ:1辺125mmの正六角形
・各スパッタリングカソードは、隣接するスパッタカソードとの距離が等しくなるように配置
・各スパッタリングカソード間の隙間:140mm
・各スパッタリングカソードに9インチスパッタリングターゲット(229mmφ)を配置(基板主表面とスパッタリングターゲットの被スパッタ面とが平行になるように配置)
・スパッタリングターゲットと基板間の距離:350mm
とした。
【0104】
具体的には、各スパッタリングカソードに装着するスパッタリングターゲットにクロム(Cr)ターゲットを用い、下地層、遮光層及び反射防止層で構成される遮光膜の成膜を行った。まず、アルゴン(Ar)と窒素(N2)との混合ガス(ガス流量比=8:2)をスパッタリングガスとし、膜厚14nmのCrN層(下地層)を成膜した。続いて、アルゴン(Ar)とメタン(CH4)との混合ガス(ガス流量比=95:5)をスパッタリングガスとし、膜厚61nmのCrC層(遮光層)を成膜した。最後に、アルゴン(Ar)と一酸化窒素(NO)との混合ガス(ガス流量比=85:15)をスパッタリングガスとして、膜厚25nmのCrON層(反射防止層)を成膜し、合計膜厚100nmの3層積層構造のクロム系遮光膜を形成した。
なお、上記各スパッタリングガスは、成膜チャンバ内の複数のスパッタリングカソード間の間隙を通過して前記基板表面の近傍に供給されるようにした。また、成膜時のガス圧、各スパッタリングカソードに印加するDC電源の電力は適宜調節して行った。この遮光膜は、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において光学濃度(OD)が3.2となるように調整されている。
【0105】
以上のようにして、表示装置用バイナリマスクブランクを作製した。
得られたバイナリマスクブランクの分光反射率を分光反射率計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、膜面反射率は平均10%であり、その変動幅は2%未満の範囲内であった。また、面内(均等30箇所)について同様に膜面反射率を測定した結果、面内の膜面反射率のばらつきは±1.2%以内に収まっており、大型マスクブランクであっても、上記遮光膜における光学特性の均一性が良好であることが確認できた。
【0106】
また、得られたバイナリマスクブランクに対し、600nm感度の欠陥検査装置(パルステック社製)を用いて、マスクブランクの主表面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は60個未満であり、本実施例により得られたバイナリマスクブランクは大型サイズであっても、欠陥品質が良好であることが確認できた。
【0107】
次に、上記バイナリマスクブランクを用いて表示装置用マスクを作製した。
すなわち、上記バイナリマスクブランクの表面にレーザー描画用のポジ型レジスト膜を形成し、このレジスト膜に対し、所望のパターン描画、現像を行い、所定のレジストパターンを形成した。次いで、このレジストパターンをマスクとして、ウェットエッチングにより上記遮光膜をエッチングして転写パターンを形成した。
【0108】
こうして得られた表示装置用バイナリマスクに対し、上記欠陥検査装置を用いて欠陥検査を行ったところ、パターン欠陥は検出されなかった。すなわち、本発明により得られる欠陥品質が良好で、光学特性の面内均一性が良好なマスクブランクを用いて、表示装置用マスクを作製することにより、近年の表示装置用マスクで要求されている高品質を満足するような、パターン欠陥の少ない、しかも光学特性が良好である大型サイズの表示装置用マスクが得られることを確認できた。
【0109】
(実施例5)
使用する基板は、中小型合成石英ガラス基板(大きさ520mm×800mm、厚さ10mm)である。
各スパッタリングカソード間からスパッタリングガスが供給される程度の隙間を設けたこと、スパッタリングターゲットと基板間の距離を300mmとしたこと以外は、実施例4と同様にして表示装置用バイナリマスクブランクを作製した。得られたバイナリマスクブランクの分光反射率を分光反射率計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長範囲において、膜面反射率は平均10%であり、その変動幅は2%未満の範囲であった。また、面内(均等30箇所)について同様に膜面反射率を測定した結果、面内の膜面反射率のばらつきは±0.8%以内に収まっており、中小型マスクブランクであっても、上記遮光膜における光学特性の均一性が良好であることが確認できた。
【0110】
また、得られたバイナリマスクブランクに対し、600nm感度の欠陥検査装置(パルステック社製)を用いて、マスクブランクの主表面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は15個未満であり、本実施例により得られたバイナリマスクブランクは中小型サイズであっても、欠陥品質が良好であることが確認できた。また、上述の実施例と同様に得られたバイナリマスクブランクを用いて表示装置用マスクを作成したところ、パターン欠陥は検出されなかった。近年の表示装置用マスクで要求されている高品質をも満足するような、パターン欠陥の少ない、しかも光学特性が良好である中小型サイズの表示装置用マスクが得られることが確認できた。
【0111】
(実施例6)
使用する基板は、大型合成石英ガラス基板(大きさ1220mm×1400mm、厚さ13mm)である。
上記ガラス基板上に、前述の図10(a)に示す本発明に係るスパッタリング装置を用いて、以下の遮光膜の成膜を行った。
本発明に係るスパッタリング装置において、
・成膜チャンバ2A内に、合計4個のスパッタリングカソードを配置
・1つのスパッタリングカソードのサイズ:300mm×1400mmの矩形状
・各スパッタリングカソードは、隣接するスパッタリングカソードとの距離が等しくなるように配置
・各スパッタリングカソードに250mm×1300mmスパッタリングターゲットを配置(基板主表面とスパッタリングターゲットの被スパッタ面とが平行になるように配置)
・各スパッタリングカソード間の隙間:133mm
・スパッタリングターゲットと基板間の距離:400mm
とした。
成膜条件は、実施例4と同様の条件で行い、表示装置用バイナリマスクブランクを作製した。
【0112】
得られたバイナリマスクブランクの分光反射率を分光反射率計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、膜面反射率は平均10%であり、その変動幅は2%未満の範囲内であった。また、面内(均等30箇所)について同様に膜面反射率を測定した結果、面内の膜面反射率のばらつきは±1.5%以内に収まっており、大型マスクブランクであっても、上記遮光膜における光学特性の均一性が良好であることが確認できた。実施例4と比べると、面内の膜面反射率のばらつきが0.3%大きくなっているのは、矩形ターゲットは縦方向(X軸方向)が1枚のターゲットである為に、縦方向の膜厚調整ができないことが原因と考えられる。
【0113】
また、得られたバイナリマスクブランクに対し、600nm感度の欠陥検査装置(パルステック社製)を用いて、マスクブランクの主表面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は70個未満であり、本実施例により得られたバイナリマスクブランクは大型サイズであっても、欠陥品質が良好であることが確認できた。また、上述の実施例と同様に得られたバイナリマスクブランクを用いて表示装置用マスクを作成したところ、パターン欠陥は検出されなかった。近年の表示装置用マスクで要求されている高品質をも満足するような、パターン欠陥の少ない、しかも光学特性が良好である大型サイズの表示装置用マスクが得られることが確認できた。
【0114】
(実施例7)
使用する基板は、大型合成石英ガラス基板(大きさ1220mm×1400mm、厚さ13mm)である。
上記ガラス基板上に、前述の図1、図6乃至図9に示す本発明に係るスパッタリング装置を用いて、以下のMoSi半透光膜の成膜を行った。なお、半透光膜の成膜は、実施例4の遮光膜の成膜を行った成膜チャンバ2A以外の例えば成膜チャンバ2B内で行った。この成膜チャンバ2B内の構成は、使用するスパッタリングターゲット材料が異なる点以外は、実施例4の遮光膜の成膜を行った成膜チャンバ2A内とまったく同様の構成とした。
【0115】
具体的には、各スパッタリングカソードに装着するスパッタリングターゲットにモリブデン(Mo)とシリコン(Si)との混合ターゲット(Mo:Si=20原子%:80原子%)を用い、アルゴン(Ar)をスパッタリングガスとし、膜厚4.5nmのMoSi4膜(Mo:20原子%、Si:80原子%)を成膜した。このとき、露光光源である超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域における透過率が40%となるように膜厚を調整した。なお、上記スパッタリングガスは、成膜チャンバ内の複数のスパッタリングカソード間の間隙を通過して前記基板表面の近傍に供給されるようにした。また、成膜時のガス圧、各スパッタリングカソードに印加するDC電源の電力は適宜調節して行った。
【0116】
基板上に形成されたMoSi半透光膜の分光透過率を分光光度計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、半透光膜の透過率の変動幅は4%未満の範囲内であった。また、面内(均等30箇所)について同様に半透光膜の透過率を測定した結果、面内の透過率のばらつきは±1.2%以内に収まっており、大型サイズの基板であっても、上記半透光膜における光学特性の均一性が良好であることが確認できた。
【0117】
また、上記MoSi半透光膜を形成した基板に対し、600nm感度の欠陥検査装置(パルステック社製)を用いて、MoSi半透光膜面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は60個未満であり、欠陥品質が良好であることが確認できた。
【0118】
次に、上記MoSi半透光膜の上に、実施例4と同じく成膜チャンバ2A内で、以下の遮光膜の成膜を行った。
具体的には、各スパッタリングカソードに装着するスパッタリングターゲットにクロム(Cr)ターゲットを用い、下地層、遮光層及び反射防止層で構成される遮光膜の成膜を行った。まず、アルゴン(Ar)と窒素(N2)との混合ガス(ガス流量比=8:2)をスパッタリングガスとし、膜厚14nmのCrN層(下地層)を成膜した。続いて、アルゴン(Ar)とメタン(CH4)との混合ガス(ガス流量比=95:5)をスパッタリングガスとし、膜厚58nmのCrC層(遮光層)を成膜した。最後に、アルゴン(Ar)と一酸化窒素(NO)との混合ガス(ガス流量比=85:15)をスパッタリングガスとして、膜厚25nmのCrON層(反射防止層)を成膜し、合計膜厚97nmの3層積層構造のクロム系遮光膜を形成した。
【0119】
なお、成膜時のガス圧、各スパッタリングカソードに印加するDC電源の電力は適宜調節して行った。この遮光膜は、上記MoSi半透光膜との積層構造において、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において光学濃度(OD)が3.2となるように調整されている。
【0120】
以上のようにして、ガラス基板上にMoSi半透光膜及びCr系遮光膜をこの順に積層した構造の表示装置用階調マスクブランクを作製した。得られた階調マスクブランクの分光反射率を分光反射率計により測定したところ、超高圧水銀灯から放出される少なくともi線からg線にわたる波長領域において、膜面反射率は平均10%であり、その変動幅は2%未満の範囲内であった。また、面内(均等30箇所)について同様に膜面反射率を測定した結果、面内の膜面反射率のばらつきは±1.7%以内に収まっており、大型マスクブランクであっても、上記遮光膜(反射防止層)における光学特性の均一性が良好であることが確認できた。
【0121】
また、得られた階調マスクブランクに対し、前記600nm感度の欠陥検査装置を用いて、マスクブランクの主表面の欠陥検査を行った結果、サイズが600nm以上の欠陥数は95個未満であり、本実施例により得られた階調マスクブランクは大型サイズであっても、欠陥品質が良好であることが確認できた。
【0122】
次に、上記階調マスクブランクを用いて、図13に示す製造工程にしたがって表示装置用階調マスクを作製した。
得られた表示装置用階調マスクに対し、上記欠陥検査装置を用いて欠陥検査を行ったところ、パターン欠陥は検出されなかった。すなわち、本発明により得られる欠陥品質が良好で、光学特性の面内均一性が良好なマスクブランクを用いて、表示装置用マスクを作製することにより、近年の表示装置用マスクで要求されている高品質を満足するような、パターン欠陥の少ない、しかも光学特性が良好である大型サイズの表示装置用マスクが得られることを確認できた。
【0123】
なお、上述の実施例で示したスパッタリングカソードの形状は、正六角形を例に挙げて説明したが、これに限らず、正方形、正八角形などの正多角形や、長方形、菱形、台形などの多角形、円形、惰円形などにすることもできる。また、スパッタリングターゲットの形状も、円形に限らず、正方形、長方形などの矩形にすることもできる。さらに、上述の実施例のように、各スパッタリングカソード、各スパッタリングターゲットのサイズも全て同じサイズにすることもできるが、複数の異なるサイズのスパッタリングカソード、スパッタリングターゲットを使用することができる。
【0124】
また、上述の実施例では、スパッタリングガスとして不活性ガス(たとえば、アルゴンガス)と活性ガス(たとえば、窒素ガス、メタンガス、一酸化窒素ガス)の混合ガスを雰囲気ガスとする反応性スパッタリングによる表示装置用マスクブランクの製造方法と、それに使用するマスクブランク製造用スパッタリング装置について説明したが、これに限定されない。マスクブランク製造用スパッタリング装置に導入するスパッタリングガスの種類によっては、スパッタリングガスが複数のスパッタリングカソード間を通過して基板表面の近傍に供給するようなスパッタリングガス供給手段でなくてもよい。その場合においては、本発明のマスクブランク製造用スパッタリング装置は、以下の構成であってもよい。
【0125】
(構成A)透光性基板上に転写パターンを形成するための薄膜を成膜する際に用いるマスクブランク製造用スパッタリング装置であって、
少なくとも一つ以上の成膜チャンバと、前記成膜チャンバ内に配置される複数のスパッタリングカソードと、前記複数のスパッタリングカソードと対向配置され、成膜中、基板が一定位置に配置されるように基板を保持する基板保持手段と、前記成膜チャンバ内にスパッタリングガスを供給するスパッタリングガス供給手段と、を備え、
さらに、前記複数のスパッタリングカソードを、複数種類の基板サイズに応じて、前記透光性基板の前記薄膜が形成される基板主表面に対して平行な面内を移動させるスパッタリングカソード移動手段を備えたことを特徴とするマスクブランク製造用スパッタリング装置。
【0126】
上記構成Aのスパッタリング装置は、成膜チャンバ内で成膜中、スパッタリングカソードに装着されるスパッタリングターゲットに対して、基板が一定位置に配置されるように基板を保持する基板保持手段により基板が移動せず静止した状態で成膜が行われるため、従来のような基板搬送手段による発塵が生じないので、欠陥品質を向上させることができる。また、基板に対して複数のスパッタリングカソードを対向配置するとともに、これら複数のスパッタリングカソードを、複数種類の基板サイズに応じて、基板主表面に対して平行な面内を移動させるスパッタリングカソード移動手段を備えていることにより、複数種類の基板サイズに対応した異なるサイズのスパッタリングターゲットを準備する必要なく薄膜を成膜することができるので、製造コストが安くすみ、且つ、光学特性の面内均一性が良好な薄膜を形成することができる。
【0127】
なお、上述の構成Aのスパッタリング装置は、さらに、上記構成7から11の構成を有することもでき、その場合、上記構成7から11に基づく効果を奏することができる。
【符号の説明】
【0128】
1 搬送チャンバ
2A,2B,2C 成膜チャンバ
3A,3B,3C,4 開閉ゲート(ゲートバルブ)
5 ローディング
6 アンローディング
7 スパッタリングカソード
75 スパッタシールド
8 スパッタリングターゲット
9 スパッタリングガス供給手段
91 スパッタリングガス導入管
95 基板支持手段
10 基板
11 半透光膜
12 遮光膜
13 レジスト膜
20 表示装置用階調マスク
21 遮光部
22 透光部
23 半透光部

【特許請求の範囲】
【請求項1】
透光性基板上に転写パターンを形成するための薄膜を成膜する際に用いるマスクブランク製造用スパッタリング装置であって、
少なくとも一つ以上の成膜チャンバと、
前記成膜チャンバ内に配置される複数のスパッタリングカソードと、
前記複数のスパッタリングカソードと対向配置され、成膜中、基板が一定位置に配置されるように基板を保持する基板保持手段と、
スパッタリングガスが前記複数のスパッタリングカソード間を通過して前記基板表面の近傍に供給するように設けられたスパッタリングガス供給手段と、を備えたことを特徴とするマスクブランク製造用スパッタリング装置。
【請求項2】
前記スパッタリングカソードは、前記薄膜が形成される前記基板主表面と、前記スパッタリングカソードに取り付けられるスパッタリングターゲットの被スパッタ面が平行になるように対向配置されていることを特徴とする請求項1に記載のマスクブランク製造用スパッタリング装置。
【請求項3】
複数の基板サイズを含む領域に見合う数の前記スパッタリングカソードが配置されていることを特徴とする請求項1又は2に記載のマスクブランク製造用スパッタリング装置。
【請求項4】
前記複数のスパッタリングカソードの個々に独立して電力を印加できる電力供給手段を備えていることを特徴とする請求項1乃至3のいずれか一項に記載のマスクブランク製造用スパッタリング装置。
【請求項5】
前記基板保持手段は、前記スパッタリングカソードの下方に位置するように配置され、かつ、複数の基板サイズに応じ、成膜される基板主表面の反対側の裏面に複数箇所に当接して基板を支持する基板支持手段と、該基板支持手段を昇降する昇降手段と、を備えたことを特徴とする請求項1乃至4のいずれか一項に記載のマスクブランク製造用スパッタリング装置。
【請求項6】
前記複数のスパッタリングカソードを、複数種類の基板サイズに応じて、前記透光性基板の前記薄膜が形成される基板主表面に対して平行な面内を移動させるスパッタリングカソード移動手段を備えたことを特徴とする請求項1乃至5のいずれか一項に記載のマスクブランク製造用スパッタリング装置。
【請求項7】
前記スパッタリングカソードは、X軸方向に複数個並べられたスパッタリングカソードを構成するカソードユニットが、Y軸方向に複数個並べて配置されており、前記スパッタリングカソード移動手段は、前記カソードユニット内の複数のスパッタリングカソードをX軸方向に移動させるX軸方向移動手段と、前記カソードユニットをY軸方向に移動させるY軸方向移動手段と、を備えたことを特徴とする請求項6に記載のマスクブランク製造用スパッタリング装置。
【請求項8】
前記スパッタリングカソード、及び/又は前記カソードユニットが、前記透光性基板の主表面に対して垂直方向に移動可能なZ軸方向移動手段を備えたことを特徴とする請求項7に記載のマスクブランク製造用スパッタリング装置。
【請求項9】
前記X軸方向移動手段は、前記カソードユニット内の複数のスパッタリングカソードに対応して、各スパッタリングカソードを移動するための伝動手段が設けられ、前記伝動手段に、前記スパッタリングカソードに電力供給手段からの電力を伝導する伝導手段が設けられていることを特徴とする請求項7に記載のマスクブランク製造用スパッタリング装置である。
【請求項10】
前記基板保持手段は、前記スパッタリングカソードと同じ側に位置するように配置され、かつ、成膜される基板主表面の複数箇所に当接して、スパッタリングカソードの上方で前記基板を支持するように構成された基板支持手段を備え、前記スパッタリングガス供給手段は、前記基板主表面に対向して前記スパッタリングカソードの下方に配置していることを特徴とする請求項1乃至9のいずれか一項に記載のマスクブランク製造用スパッタリング装置。
【請求項11】
前記基板保持手段は、前記スパッタリングカソードと同じ側に位置するように配置され、かつ、複数の基板サイズに応じ、成膜される基板主表面の複数箇所に当接して、前記スパッタリングカソードの上方で前記基板を支持するように構成された基板支持手段を備え、前記スパッタリングガス供給手段は、前記基板主表面に対向して前記スパッタリングカソードの下方に配置していることを特徴とする請求項1乃至9のいずれか一項に記載のマスクブランク製造用スパッタリング装置。
【請求項12】
請求項1乃至11のいずれか一項に記載のスパッタリング装置を用いて、透光性基板上に転写パターンを形成するための薄膜を成膜することを特徴とする表示装置用マスクブランクの製造方法。
【請求項13】
透光性基板上に転写パターンを形成するための薄膜を成膜してマスクブランクを製造する表示装置用マスクブランクの製造方法であって、
前記薄膜は、前記基板に対して対向して設けられた複数のスパッタリングターゲットに対して、スパッタリングガスによりスパッタして成膜され、かつ、成膜時は前記基板と前記スパッタリングターゲットが一定の位置関係にあるようにして成膜され、前記スパッタリングガスは、前記複数のスパッタリングターゲット間を通過して前記基板表面の近傍に供給するようにしたことを特徴とする表示装置用マスクブランクの製造方法。
【請求項14】
前記薄膜は、遮光膜または、半透光膜または、半透光膜と遮光膜をこの順に設けた積層膜であることを特徴とする請求項12または13に記載の表示装置用マスクブランクの製造方法。
【請求項15】
請求項12乃至14のいずれか一項に記載の表示装置用マスクブランクの製造方法により得られるマスクブランクの前記薄膜をパターニングして転写パターンを形成することを特徴とする表示装置用マスクの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−215829(P2012−215829A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2012−7936(P2012−7936)
【出願日】平成24年1月18日(2012.1.18)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】