説明

一軸型複合サイクル発電プラント及びその運転方法

【課題】実施形態の一軸型複合サイクル発電プラントは、別置きの蒸気源発生装置を設置することなく、無負荷定格速度運転時、必要な低圧蒸気タービンの冷却蒸気流量を確保する。
【解決手段】実施形態によれば、ガスタービン1、高圧蒸気タービン3a、低圧蒸気タービン3c及び発電機4を同軸に結合し、ガスタービン1の燃焼ガスの排気ガスを熱源として排熱回収ボイラ7にて高圧蒸気及び低圧蒸気を発生させ、その高圧蒸気を高圧加減弁17を介して供給して高圧蒸気タービン3aで仕事をさせ、低圧蒸気を低圧加減弁22を介して供給して低圧蒸気タービン3cで仕事をさせる。無負荷定格速度運転時に、高圧加減弁17を全閉する制御を行うとともに、可変案内翼6の開度を低圧蒸気の発生流量が増加するように制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、ガスタービン、蒸気タービン及び発電機を一軸に連結した一軸型複合サイクル発電プラント及びその運転方法に関する。
【背景技術】
【0002】
一般に、ガスタービン、そのガスタービンの排気ガスによって排熱回収ボイラ内で発生された蒸気により駆動する蒸気タービン、及び発電機を一軸に連結した一軸型複合サイクル発電プラントにおいて、二圧式の排熱回収ボイラから発生する蒸気は、高圧蒸気、低圧蒸気の二圧から構成される。
【0003】
このうち低圧ドラムから発生する低圧蒸気は、低圧加減弁を経由して低圧蒸気タービンに供給される。一方、高圧ドラムで発生した高圧蒸気は、高圧加減弁を経て高圧蒸気タービンで仕事を行った後、低圧加減弁からの低圧蒸気と合流して低圧蒸気タービンに供給される。
【0004】
これらの高圧蒸気や低圧蒸気は、蒸気タービンを駆動して発電を行うためのものである。それと同時に、これらの高圧蒸気や低圧蒸気は、低圧蒸気タービン内に通気されることで、低圧蒸気タービンの風損(蒸気タービンケーシング内の空気撹拌による動力損失)による過熱を防止するため、低圧蒸気タービンを冷却する冷却蒸気としての役割も担っている。
【0005】
一方、一軸型複合サイクル発電プラントの起動初期では、高圧蒸気や低圧蒸気は発生量が充分でないため、プラント起動開始前には、予め補助ボイラを起動して補助蒸気を発生させて、この補助蒸気を低圧蒸気タービンの冷却蒸気としている。
【0006】
すなわち、上記発電プラントの起動初期では、補助蒸気が低圧蒸気タービンに供給される。さらに、起動過程が進行することで高圧蒸気と低圧蒸気の発生量が増加し、低圧蒸気タービンの冷却蒸気としては、これらの蒸気で充分な状態となるので、以後は経済運転のため上記補助ボイラは停止され、補助蒸気の供給が遮断されて高圧蒸気と低圧蒸気のみが低圧蒸気タービンに供給される。このようにして、起動時に一軸型複合サイクル発電プラントの低圧蒸気タービンに冷却蒸気が供給され、通常運転が行われる。
【0007】
ところで、一般的に電気系の事故などで発電機の遮断器を緊急的に開放することは、負荷遮断と呼ばれる。このような発電機の負荷遮断が発生した後は、ガスタービンをFSNL(Full Speed No Load:無負荷定格速度)運転とし、電気系事故の復旧後は迅速に再負荷上昇に備える運転が行われる。通常運転状態から無負荷定格速度運転に移行する過程では、無負荷運転のためガスタービンへの燃料の供給量が急速に少なくなり、高圧蒸気タービンでは高圧加減弁は全閉し、低圧加減弁は過速を防止するために一旦全閉後、低圧蒸気タービンの冷却蒸気を確保するために開弁する。
【0008】
因みに、無負荷定格速度運転で高圧加減弁を閉止させる理由は、その高圧加減弁を閉止することにより高圧蒸気タービンの発生トルクを小さくすることで、相対的にガスタービンが発生するトルクを大きくし、ガスタービンの燃料流量も増やしてより燃焼状態を安定化させることが可能となるからである。
【0009】
しかしながら、その一方で無負荷定格速度運転では、以下の理由で低圧蒸気タービンの冷却蒸気が不足する。すなわち、
i)高圧加減弁が閉止していることから、高圧蒸気タービンへの高圧蒸気の供給がなく、低圧蒸気のみが低圧蒸気タービンに供給されている。この場合、高圧ドラムから発生する高圧蒸気は、バイパス弁を経由して復水器に送られる。
【0010】
ii)ガスタービンの燃料が少ないことから、そのガスタービンの排気ガスの熱量も低く、したがって排熱回収ボイラから発生する低圧蒸気量も少量となる。
【0011】
iii)負荷遮断は、突発的事故で発生するので、起動時とは異なり予め補助ボイラの運転を立ち上げて補助蒸気を確保しておくということが不可能である。
【0012】
したがって、上記のように無負荷定格速度運転で低圧蒸気タービンの冷却蒸気が不足すると、低圧蒸気タービンの風損により低圧蒸気タービンの排気温度が上昇して無負荷定格速度運転を継続することができなくなり、一軸型複合サイクル発電プラントは停止せざるを得なくなる。
【0013】
上記のように発電機の負荷遮断後におけるガスタービンの無負荷定格速度運転時に低圧蒸気タービンの冷却蒸気を確保する運転方法としては、例えば特許文献1に記載された技術がある。この特許文献1に記載された運転方法は、既存の複合サイクル発電プラントにおける別置きの蒸気源発生装置と一軸型複合サイクル発電プラントを予め配管で接続しておくことで、その蒸気源発生装置から発生した蒸気を低圧蒸気タービンの冷却蒸気として使用する方法である。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】特開平11−117715号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
しかしながら、上述した特許文献1に記載された技術は、発電機の負荷遮断後におけるガスタービンの無負荷定格速度運転時に低圧蒸気タービンの冷却蒸気を確保するため、既存の複合サイクル発電プラントにおいて別置きの蒸気源発生装置を設置し、この別置きの蒸気源発生装置と一軸型複合サイクル発電プラントを配管で接続する必要がある。そのため、一軸型複合サイクル発電プラントが大型化し、複雑化するという問題がある。
【0016】
本発明の実施形態は、別置きの蒸気源発生装置を設置することなく、無負荷定格速度運転時、必要な低圧蒸気タービンの冷却蒸気流量を確保し、低圧蒸気タービンの風損による過熱を未然に防止可能な一軸型複合サイクル発電プラント及びその運転方法を提供することを目的とする。
【課題を解決するための手段】
【0017】
上記目的を達成するために、本実施形態の一軸型複合サイクル発電プラントは、ガスタービンと同軸に配置して結合され、排熱回収ボイラの高圧ドラムからの高圧蒸気が高圧加減弁を介して供給されて駆動される高圧蒸気タービンと、前記高圧ドラムより低い圧力の低圧蒸気を発生させる低圧ドラムからの前記低圧蒸気が低圧加減弁を介して供給され、この低圧蒸気と前記高圧蒸気タービン内で仕事をした前記高圧蒸気とを合流させた蒸気を低圧タービン蒸気として供給する低圧タービン蒸気供給系統と、前記ガスタービン及び前記高圧蒸気タービンと同軸に配置して結合され、前記低圧タービン蒸気により駆動される低圧蒸気タービンと、前記ガスタービンの吸込み空気流量を調整する可変案内翼と、前記ガスタービンと同軸に配置して結合された発電機の負荷遮断後の無負荷定格速度運転時に、前記高圧加減弁を全閉する制御を行うとともに、前記可変案内翼の開度を前記低圧蒸気の発生流量が増加するように制御する制御手段と、を備えることを特徴とする。
【0018】
また、本実施形態の一軸型複合サイクル発電プラントは、ガスタービンと同軸に配置して結合され、排熱回収ボイラの高圧ドラムからの高圧蒸気が高圧加減弁を介して供給されて駆動される高圧蒸気タービンと、前記ガスタービン及び前記高圧蒸気タービンと同軸に配置して結合され、低圧蒸気により駆動される低圧蒸気タービンと、前記高圧蒸気よりも低くかつ低圧蒸気よりも高い圧力の中圧蒸気を発生させる中圧ドラムからの中圧蒸気を前記高圧蒸気タービンからの排気蒸気と合流させ、高温再熱蒸気を発生させる再熱器に供給する低温再熱系統と、前記高圧蒸気タービン及び前記低圧蒸気タービンと同軸に配置され、前記再熱器からの高温再熱蒸気が再熱加減弁を経由して供給されて駆動する中圧蒸気タービンと、前記中圧蒸気タービン内で仕事をして減圧された前記高温再熱蒸気と前記低圧蒸気とを合流させて前記低圧蒸気タービンを駆動する低圧タービン蒸気供給系統と、前記ガスタービンの吸込み空気流量を調整する可変案内翼と、前記ガスタービンと同軸に配置して結合された発電機の負荷遮断後の無負荷定格速度運転時に、前記高圧加減弁及び前記再熱加減弁を全閉する制御を行うとともに、前記可変案内翼の開度を前記低圧蒸気の発生流量が増加するように制御する制御手段と、を備えることを特徴とする。
【0019】
本実施形態の一軸型複合サイクル発電プラントの運転方法は、ガスタービン、高圧蒸気タービン、低圧蒸気タービン及び発電機を同軸に配置して結合し、前記ガスタービンに燃焼ガスを送って駆動させ、その燃焼ガスの排気ガスを熱源として排熱回収ボイラにて高圧蒸気を発生させるとともに、前記高圧蒸気より低い圧力の低圧蒸気を発生させ、その高圧蒸気を高圧加減弁を介して供給して前記高圧蒸気タービンで仕事をし、前記低圧蒸気を低圧加減弁を介して供給して前記低圧蒸気タービンで仕事をさせる一軸型複合サイクル発電プラントの運転方法において、前記発電機の負荷遮断後の無負荷定格速度運転時に、前記高圧加減弁を全閉する制御を行う全閉制御ステップと、前記ガスタービンの吸込み空気流量を調整する可変案内翼の開度を前記低圧蒸気の発生流量が増加するように制御する開度制御ステップと、を有することを特徴とする。
【0020】
また、本実施形態の一軸型複合サイクル発電プラントの運転方法は、ガスタービン、高圧蒸気タービン、中圧蒸気タービン、低圧蒸気タービン及び発電機を同軸に配置して結合し、前記ガスタービンに燃焼ガスを送って駆動させ、その燃焼ガスの排気ガスを熱源として排熱回収ボイラにて高圧蒸気を発生させるとともに、前記高圧蒸気より低い圧力の中圧蒸気、この中圧蒸気より低い圧力の低圧蒸気をそれぞれ発生させ、その中圧蒸気を前記高圧蒸気タービンからの排気蒸気と合流させ、高温再熱蒸気を発生させる再熱器に供給し、再熱加減弁を経由して前記中圧蒸気タービン内で仕事をして減圧された前記高温再熱蒸気と前記低圧蒸気とを合流させて前記低圧蒸気タービンで仕事をさせる一軸型複合サイクル発電プラントの運転方法において、前記発電機の負荷遮断後の無負荷定格速度運転時に、前記高圧加減弁及び前記再熱加減弁を全閉する制御を行う全閉制御ステップと、前記ガスタービンの吸込み空気流量を調整する可変案内翼の開度を前記低圧蒸気の発生流量が増加するように制御する開度制御ステップと、を有することを特徴とする。
【発明の効果】
【0021】
本発明の実施形態によれば、別置きの蒸気源発生装置を設置することなく、またこの蒸気源発生装置に配管で接続することを不要とし、無負荷定格速度運転時、必要な低圧蒸気タービンの冷却蒸気流量を確保し、低圧蒸気タービンの風損による過熱を未然に防止することができる。
【図面の簡単な説明】
【0022】
【図1】本発明に係る一軸型複合サイクル発電プラントの第1実施形態を示す系統図である。
【図2】図1の可変案内翼の制御装置を示すブロック図である。
【図3】図2の関数発生器に設定される関数の一例を示す図である。
【図4】本発明に係る一軸型複合サイクル発電プラントの第2実施形態を示す系統図である。
【図5】図4の可変案内翼の制御装置を示すブロック図である。
【図6】本発明に係る一軸型複合サイクル発電プラントの第3実施形態を示す系統図である。
【発明を実施するための形態】
【0023】
以下に、本発明に係る一軸型複合サイクル発電プラントの各実施形態について、図面を参照して説明する。
【0024】
(第1実施形態)
(発電プラントの構成)
図1は本発明に係る一軸型複合サイクル発電プラントの第1実施形態を示す系統図である。
【0025】
図1に示すように、本実施形態の一軸型複合サイクルプラントにおいて、ガスタービン1、圧縮機2、高圧蒸気タービン3a、低圧蒸気タービン3c及び発電機4は、原動機部100を構成するとともに、それぞれの回転軸が同軸に配置されて結合されている。ガスタービン1には、燃焼器5で燃焼した燃焼ガスが供給され、この燃焼ガスにより駆動され、排気ガスを排出する。圧縮機2は、可変案内翼(Variable Guide Vanes:以下、VGVともいう。)6を通して大気を吸い込んで高圧化し、その高圧空気を燃焼ガス生成用として燃焼器5に供給する。高圧蒸気タービン3aには、高圧主蒸気管16から高圧蒸気が供給される一方、低圧蒸気タービン3cには、低圧タービン蒸気供給系統としての低圧主蒸気管21から低圧蒸気が供給される。この低圧蒸気タービン3cは、ガスタービン1、高圧蒸気タービン3aとともに発電機4を駆動して電力を発生させる。この発電機4の出力軸の回転数は、回転数検出器38により検出される。
【0026】
排熱回収ボイラ7の排気ガス側入口端は、ガスタービン1の出口端に接続されており、排熱回収ボイラ7は、ガスタービン1からの排気ガスが供給されて蒸気を発生する。具体的に、排熱回収ボイラ7は、高圧蒸気を発生させる高圧ドラム13に接続された高圧過熱器10と、低圧蒸気を発生させる低圧ドラム15に接続された低圧過熱器12とを備えている。これら高圧ドラム13及び低圧ドラム15から発生した各蒸気は、高圧蒸気タービン3a、低圧蒸気タービン3cのそれぞれに供給される構成になっている。なお、以下の説明では、高圧蒸気タービン3a及び低圧蒸気タービン3cを総称する場合、蒸気タービン3という。また、低圧ドラム15で発生した低圧蒸気圧力は、検出器39により検出される。
【0027】
高圧主蒸気管16は、高圧蒸気圧力を検出する検出器57と、高圧加減弁17を備えた管路構成になっている。低圧主蒸気管21は、低圧蒸気アイソレーション弁35、低圧蒸気圧力を検出する検出器56、低圧蒸気流量を検出する検出器40及び低圧加減弁22を備えた管路構成になっている。
【0028】
高圧主蒸気管16は、検出器57の上流側で高圧タービンバイパス系81が分岐され、この高圧タービンバイパス系81に高圧タービンバイパス弁50が介装されている。同様に、低圧主蒸気管21は、検出器56の上流側で低圧タービンバイパス系83が分岐され、この低圧タービンバイパス系83に低圧タービンバイパス弁52が介装されている。これら高圧タービンバイパス系81及び低圧タービンバイパス系83は、それぞれ復水器30に接続されている。
【0029】
低圧蒸気タービン3cの出口端は、復水器30及び給水ポンプ28を介して排熱回収ボイラ7の低圧ドラム15に接続されている。低圧蒸気タービン3cの低圧タービン排気圧力は、検出器55により検出される。復水器30には、循環水ポンプ29を駆動することにより循環水が供給される。この循環水は、高圧タービンバイパス系81及び低圧タービンバイパス系83からそれぞれ供給された高圧蒸気及び低圧蒸気を復水とする。
【0030】
起動用ボイラ27は、補助蒸気供給管24に接続され、この補助蒸気供給管24に補助蒸気系60の一端が接続され、その他端が低圧主蒸気管21に接続されている。補助蒸気系60には、調節弁34及び補助蒸気流量を検出する検出器41が介装されている。
【0031】
制御装置70には、低圧蒸気流量を検出する検出器40、及び低圧タービン排気圧力を検出する検出器55のそれぞれの検出信号が入力される一方、制御装置70からは可変案内翼6の開度制御信号が出力される。
【0032】
(発電プラントの作用)
次に、本実施形態の一軸型複合サイクル発電プラントの作用を説明する。
【0033】
起動前、復水器30は、図示しない真空ポンプにより真空引きされ、規定真空度に達すると、図示しないスターティングモータにより原動機部100を回転駆動させ、燃焼器5を着火することによりガスタービン1及び圧縮機2は併入運転に入る。
【0034】
また、プラントの起動時には、起動用ボイラ27を起動して補助蒸気を発生させる。この補助蒸気は、補助蒸気供給管24を経て補助蒸気系60に供給され、調節弁34により流量が調節されて低圧主蒸気管21に供給される。
【0035】
すなわち、起動用ボイラ27は、排熱回収ボイラ7で蒸気が発生していない起動時において、補助蒸気を供給する目的で排熱回数ボイラ7とは別に設置されている。起動用ボイラ27で発生した補助蒸気は、上記のように補助蒸気供給管24、補助蒸気系60に介装された調節弁34を介して低圧主蒸気管21に供給され、さらに低圧加減弁22を介して蒸気タービン3に供給される。このようにプラント起動初期においては、排熱回収ボイラ7から発生する高圧蒸気や低圧蒸気の発生量が充分でないため、低圧タービン冷却蒸気として起動用ボイラ27からの補助蒸気が併用される。
【0036】
さらに、起動過程が進行すると、排熱回収ボイラ7による高圧蒸気及び低圧蒸気の発生量が増加するため、低圧蒸気タービン3cの冷却蒸気としてはこれらで充分となる。その結果、経済運転のため起動用ボイラ27の駆動は停止され、補助蒸気の供給は打ち切られて高圧蒸気と低圧蒸気のみが低圧蒸気タービン3cに供給される。
【0037】
圧縮機2は、可変案内翼6を通して大気を吸い込んで高圧化し、その高圧空気を燃焼ガス生成用として燃焼器5に供給する。この燃焼器5には、高圧空気とともに燃料が加えられ、高温の燃焼ガスを生成している。この高温の燃焼ガスがガスタービン1に供給され、ガスタービン1で膨張仕事をする。
【0038】
ガスタービン1から排出される排気ガスは、蒸気発生用の熱源として排熱回収ボイラ7に導入され、高圧過熱器10、低圧過熱器12及び図示しない各圧力の蒸発器などを流通する給水や蒸気と熱交換した後、煙突を経て大気中に放散される。
【0039】
高圧ドラム13で発生した高圧蒸気は、高圧過熱器10で過熱された後、高圧主蒸気管16から高圧加減弁17を経て高圧蒸気タービン3aで仕事を行った後は、低圧加減弁22からの低圧蒸気と合流して低圧蒸気タービン3cに導入される。なお、本実施形態は、高圧蒸気タービン3aの途中段(排気部の近傍)において低圧蒸気が合流する。
【0040】
一方、低圧ドラム15で発生した低圧蒸気は、低圧過熱器12で過熱され、温度条件、圧力条件が適切になった時点で低圧蒸気アイソレーション弁35が開弁し、低圧主蒸気管21を通じて低圧加減弁22に導かれる。この低圧加減弁22に導かれた低圧蒸気は、前述したように仕事をした高圧蒸気とともに低圧蒸気タービン3cに供給されることにより、ガスタービン1及び高圧蒸気タービン3aとともに発電機4を駆動して電力を発生させる。
【0041】
ところで、電気系の事故などで発電機4の遮断器を緊急的に開放する負荷遮断の発生後は、ガスタービン1を無負荷定格速度運転とし、電気系事故の復旧後は迅速に再負荷上昇に備える運転が行われる。通常運転から無負荷定格速度運転に移行する過程では、無負荷運転のためガスタービン1への燃料の供給量が急速に少なくなる。その燃料流量の減少に伴い可変案内翼6の開度は、閉方向に作動し、ガスタービン1への吸込み空気流量を減少させる。
【0042】
蒸気タービン3では、高圧加減弁17は全閉し、低圧加減弁22は過速防止のために一旦全閉後、低圧蒸気タービン3cの冷却蒸気を確保するために開弁する。因みに、無負荷定格速度運転で高圧加減弁17が閉止される理由は、高圧加減弁17が閉止することにより蒸気タービン3の発生トルクを小さくすることで、相対的にガスタービン1が発生するトルクを大きくし、ガスタービン1の燃料流量を増やして、より燃焼を安定させることが可能となるからである。
【0043】
したがって、負荷遮断発生時には、高圧加減弁17が閉止されるため、高圧ドラム13で発生した高圧蒸気については、高圧タービンバイパス弁50を開弁することにより、復水器30に逃がすことで、高圧蒸気圧力の上昇を防止している。同様に、低圧加減弁22が閉止されるため、低圧ドラム15で発生した低圧蒸気については、低圧タービンバイパス弁52を開弁することにより、復水器30に逃がすことで、低圧蒸気圧力の上昇を防止している。
【0044】
このように復水器30には、高圧蒸気及び低圧蒸気が供給され、この水蒸気が循環水ポンプ29から供給される循環水により復水とされ、この復水が給水ポンプ28により排熱回収ボイラ7に供給される。
【0045】
(制御装置の構成)
次に、図2及び図3を用いて本実施形態における可変案内翼6の制御について説明する。図2は図1の可変案内翼6の制御装置70を示すブロック図である。図3は図2の関数発生器に設定される関数の一例を示す図である。
【0046】
図2において、設定器101には、低圧蒸気タービン3cを冷却するために必要な蒸気エンタルピーが設定されている。関数発生器102は、設定器101からの低圧蒸気タービン3cを冷却するために必要な蒸気エンタルピー信号と、検出器55により検出された低圧タービン排気圧力信号aとにより、現運転時において必要な低圧タービン冷却蒸気流量信号bを求める。
【0047】
関数発生器102に設定される関数の一例を図3に示す。図3の横軸は、低圧タービンを冷却するために必要な蒸気エンタルピーを示し、その縦軸は必要な低圧タービン冷却蒸気流量を示している。必要な低圧タービン冷却蒸気流量のカーブは、低圧タービン排気圧力条件により異なる。関数発生器102は、設定器101からの低圧蒸気タービン3cを冷却するために必要な蒸気エンタルピー信号と、低圧タービン排気圧力信号aとにより、線形補間などにより必要な低圧タービン冷却蒸気流量信号bを求めるものである。
【0048】
低圧加減弁22を通過する低圧蒸気流量は、検出器40により検出され、低圧加減弁通過蒸気流量信号cとして比較器103に入力される。比較器103は、上記低圧タービン冷却蒸気流量信号bと、検出器40により検出された低圧加減弁通過蒸気流量信号cとを比較し、低圧加減弁通過蒸気流量信号cが低圧タービン冷却蒸気流量信号bより小さい場合に出力信号をオンさせ、AND回路104に出力する。
【0049】
AND回路104には、比較器103の出力信号の他に、一般的に他のロジックで計算される低圧加減弁ローディング許可指令信号d(低圧加減弁22の開弁許可指令)と、NOT回路105を介して出力される高圧加減弁ローディング信号e(高圧加減弁17が開弁している指標)とが入力される。
【0050】
AND回路104では、比較器103の出力信号と、低圧加減弁ローディング許可指令信号dと、NOT回路105の出力信号とのAND処理を行い、その出力が切替器106に出力される。
【0051】
設定器107には、予め可変案内翼6の開度を増加させる際の変化率(正の値)が設定されている。設定器107の出力は、切替器106に正の変化率信号fとして出力される。
【0052】
一方、設定器108には、予めゼロの値(現状値)が設定されており、このゼロの値が切替器106に出力される。切替器106では、AND回路104の出力がオンの場合は、設定器107からの正の変化率信号fを信号gとして出力し、出力がオフの場合は、設定器108からゼロの値が信号gとして、加算器109に出力される。
【0053】
加算器109では、低値選択器114の出力信号である開度指令値信号mに切替器106からの信号gを加算して上限制限器110に出力される。この上限制限器110には、系統又は運用により決定される可変案内翼6の開度設定値に対する上限制限値が予め設定されている。具体的には、可変案内翼6の開度設定値に対する上限制限値は、ガスタービン1への吸込み空気流量が多くなり燃焼が停止することのない空気流量となる値である。上限制限器110は、この設定値信号と加算器109からの信号との比較を行い、小さい方が下限制限器111に出力される。
【0054】
下限制限器111には、系統又は運用により決定される可変案内翼6の開度設定値に対する下限制限値が予め設定されている。具体的には、可変案内翼6の開度設定値に対する下限制限値は、低圧蒸気を発生させる低圧蒸気系でガスタービン1の排気ガスとの熱交換が可能な空気流量となる値である。
【0055】
下限制限器111は、この設定値信号と上限制限器110からの信号との比較を行い、大きい方が変化率制限器112に出力される。この変化率制限器112には、可変案内翼6の開度設定値の変化率に対する、ガスタービン1などの機械的な制約(変化率)が予め設定されている。変化率制限器112は、下限制限器111からの信号に対して変化率の制限を行い、可変案内翼6に対する開度の設定値信号hが得られ、この設定値信号hが高値選択器113に出力される。
【0056】
高値選択器113には、上記開度の設定値信号hの他に、一般的に他のロジックで計算されるVGV温度制御開度信号iと、VGVサージ保護下限開度信号jとが入力されている。具体的には、VGV温度制御開度信号iは、ガスタービン1への吸込み空気の温度制御用の開度信号である。また、VGVサージ保護下限開度信号jは、圧縮機2にサージングを発生させない空気流量となる圧縮機2の異常振動防止用の開度信号である。
【0057】
高値選択器113は、変化率制限器112からの設定値信号hとの比較を行い、最も大きい値が出力信号kとして低値選択器114に出力される。この低値選択器114には、一般的に他のロジックで計算されるVGV修正速度スケジュール開度信号lが入力されている。低値選択器114は、高値選択器113からの設定値信号kとの比較を行い、小さい値が可変案内翼6に対して開度指令値信号mとして出力される。
【0058】
(制御装置の作用)
本実施形態の制御装置70は、負荷遮断発生後の低圧加減弁22が開弁して良い条件であって、高圧加減弁17、高圧蒸気タービン3aを介して低圧蒸気タービン3cに十分な冷却蒸気が供給されていない条件下で、低圧加減弁22を通過する低圧蒸気流量が必要とされる低圧タービン冷却蒸気流量より少ない場合は、可変案内翼6の開度設定値を上昇させて、可変案内翼6の開度を制御する。
【0059】
すなわち、本実施形態は、負荷遮断後の低圧加減弁22の開弁時において、低圧タービン冷却蒸気流量が足りない場合、可変案内翼6の開度設定値を上昇させる。これにより、ガスタービン1の吸込み空気流量が増加し、燃料と空気の比率の関係からガスタービン1の排気ガス温度は低下し、排気ガス流量は増加する。
【0060】
排気ガス温度が低下することで、高圧ドラム13における飽和蒸気温度と排気ガス温度との温度差を小さくさせることにより、高圧蒸気を発生させる高圧蒸気系での排熱回収ボイラ7内でのガスタービン1の排気ガスとの熱交換量を低下させ、高圧ドラム13からの発生蒸気量を低下させる。
【0061】
また、排気ガス流量が増加することで、高圧蒸気系については、前記排気ガス温度の低下によって高圧ドラム13における飽和蒸気温度と排気ガス温度との温度差が小さくなっているため、熱交換量は増加しないものの、低圧蒸気を発生させる低圧蒸気系に送られる排気ガス流量は、可変案内翼6の開度設定値を上昇させることで増加する。
【0062】
この結果として、低圧蒸気系での熱交換量が増加するため、低圧ドラム15より発生する低圧蒸気量を増加させることが可能となり、低圧蒸気タービン3cに供給される冷却蒸気量を確保することができ、低圧蒸気タービン3cの風損による過熱を防止することが可能となる。
【0063】
(第1実施形態の効果)
このように本実施形態によれば、ガスタービン1の吸込み空気流量を調整する可変案内翼6の開度を変化させることで、二圧式の排熱回収ボイラ7の場合、使用しない高圧蒸気を減らし、低圧蒸気タービン3cの低圧蒸気を増加させるように熱平衡バランスを調整する制御を行う。そのため、別置きの蒸気源発生装置を設置することなく、またこの蒸気源発生装置に配管で接続することを不要とし、低圧タービン冷却蒸気流量を確保し、低圧蒸気タービン3cの風損による過熱を未然に防止することができる。
【0064】
(第2実施形態)
(発電プラントの構成)
図4は本発明に係る一軸型複合サイクル発電プラントの第2実施形態を示す系統図である。図5は図4の可変案内翼の制御装置を示すブロック図である。なお、図4及び図5において、図1及び図2に示す第1実施形態と同一の構成要素には、それぞれ同一の符号を付して説明を省略し、異なる構成及び作用のみを説明する。
【0065】
前記第1実施形態が高圧及び低圧の二圧の蒸気システムで構成する一軸型複合サイクル発電プラントであるのに対し、図4に示す本実施形態は、高圧、中圧及び低圧の三圧の蒸気システムで構成する一軸型複合サイクル発電プラントである。
【0066】
図4に示すように、本実施形態の一軸型複合サイクル発電プラントにおいて、排熱回収ボイラ7は、高圧蒸気よりも低くかつ低圧蒸気よりも高い圧力の中圧蒸気を発生させる中圧ドラム14と、この中圧ドラム14に接続された中圧過熱器11と、高温再熱蒸気を発生させる再熱器9をさらに備える。
【0067】
また、本実施形態は、高圧蒸気タービン3aからの排気蒸気を中圧蒸気と合流させて再熱器9に供給する低温再熱系統18と、高圧蒸気タービン3a及び低圧蒸気タービン3cと同軸に配置され、かつ再熱器9から高温再熱蒸気管61を経て供給される高温再熱蒸気により駆動される中圧蒸気タービン3bをさらに備える。そして、高温再熱蒸気管61には、再熱加減弁20と、この再熱加減弁20の入口側の低圧蒸気圧力を検出する検出器58が介装されている。
【0068】
高温再熱蒸気管61は、検出器58の上流側で中圧タービンバイパス系82が分岐され、この中圧タービンバイパス系82に中圧タービンバイパス弁51が介装されている。中圧タービンバイパス系82は、前述した高圧タービンバイパス系81及び低圧タービンバイパス系83と同様に復水器30に接続されている。
【0069】
さらに、低圧タービン蒸気供給系統62は、中圧蒸気タービン3b内で仕事をして減圧された高温再熱蒸気と低圧蒸気とを合流させて低圧蒸気タービン3cの低圧タービン蒸気とするよう構成されている。
【0070】
制御装置71には、低圧蒸気流量を検出する検出器40、及び低圧タービン排気圧力を検出する検出器55のそれぞれの検出信号が入力される一方、制御装置71からは、可変案内翼6の開度制御信号が出力される。
【0071】
(制御装置の構成)
図5に示すように、本実施形態の制御装置71は、高圧加減弁ローディング信号e(高圧加減弁17が開弁している指標)がNOT回路105を介してAND回路104に入力されることに加えて、再熱加減弁ローディング信号n(再熱加減弁20が開弁している指標)がNOT回路205を介してAND回路104に入力される。
【0072】
(制御装置の作用)
本実施形態の制御装置71は、負荷遮断発生後の低圧加減弁22が開弁して良い条件であって、再熱加減弁20、中圧蒸気タービン3bを介して低圧蒸気タービン3cに十分な冷却蒸気が供給されていない条件下で、低圧加減弁22を通過する低圧蒸気流量が必要とされる低圧タービン冷却蒸気流量より少ない場合は、可変案内翼6の開度設定値を上昇させて、可変案内翼6の開度を制御する。
【0073】
すなわち、本実施形態は、負荷遮断後の低圧加減弁22の開弁時において、低圧タービン冷却蒸気流量が足りない場合、可変案内翼6の開度設定値を上昇させる。これにより、ガスタービン1の吸込み空気流量が増加し、ガスタービン1の排気ガス温度は低下し、排気ガス流量は増加する。
【0074】
排気ガス温度が低下することで、高圧ドラム13及び中圧ドラム14における飽和蒸気温度と排気ガス温度との温度差を小さくさせることにより、高圧蒸気系及び中圧蒸気系での排熱回収ボイラ7内でのガスタービン1の排気ガスとの熱交換量を低下させ、高圧ドラム13及び中圧ドラム14からの発生蒸気量を低下させる。
【0075】
また、排気ガス流量が増加することで、高圧蒸気系及び中圧蒸気系については、前記排気ガス温度の低下によって高圧ドラム13及び中圧ドラム14における飽和温度と排気ガス温度の温度差が小さくなっているため、熱交換量は増加しないものの、低圧蒸気系に送られる排気ガス流量は、可変案内翼6の開度設定値を上昇させることで増加する。
【0076】
この結果として、低圧蒸気系での熱交換量を増加するため、低圧ドラム15より発生する蒸気量を増加させることが可能となり、低圧蒸気タービン3cに供給される冷却蒸気量を確保することができ、低圧蒸気タービン3cの風損による過熱を防止することが可能となる。
【0077】
(第2実施形態の効果)
このように本実施形態によれば、ガスタービン1の吸込み空気流量を調整する可変案内翼6の開度を変化させることで、三圧式の排熱回収ボイラ7の場合、使用しない高圧蒸気及び中圧蒸気を減らし、低圧蒸気タービン3cの蒸気として重要な低圧蒸気を増加させるように熱平衡バランスを調整する制御を行う。そのため、前記第1実施形態と同様に、別置きの蒸気源発生装置を設置することなく、またこの蒸気源発生装置に配管で接続することを不要とし、低圧タービン冷却蒸気流量を確保し、低圧蒸気タービン3cの風損による過熱を未然に防止することができる。
【0078】
(第3実施形態)
図6は本発明に係る一軸型複合サイクル発電プラントの第3実施形態を示す系統図である。なお、第3実施形態は、図4及び図5に示す前記第2実施形態の変更例であって、図6において図4と同一の構成要素には、同一の符号を付して説明を省略し、異なる構成及び作用のみを説明する。
【0079】
図4に示す一軸型複合サイクル発電プラントでは、ガスタービン1はその高温部の冷却媒体として空気を使用する空気冷却方式であるのに対し、本実施形態の一軸型複合サイクル発電プラントのガスタービン1は、その高温部の冷却媒体として蒸気を使用した蒸気冷却方式を採用している。
【0080】
図6に示すように、本実施形態の一軸型複合サイクル発電プラントにおいて、低温再熱系統18と再熱器9との間には、ガスタービン1の高温部を冷却するための冷却蒸気系統45が設けられている。この冷却蒸気系統45の蒸気は、図示しない蒸気往路配管によりガスタービン1に導かれ、その高温部を冷却した後、図示しない蒸気復路配管に導かれて冷却蒸気系統45に戻るように構成されている。
【0081】
また、圧縮機2の吐出空気圧力は、配管46及び逆止弁47を介して低温再熱系統18に接続されている。
【0082】
このように本実施形態によれば、低温再熱系統18と再熱器9との間にガスタービン1の高温部を冷却するための冷却蒸気系統45を設けたことにより、その高温部の冷却媒体として蒸気を使用したにもかかわらず、前記第2実施形態と同様の効果が得られる。
【0083】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【0084】
例えば、第3実施形態では、前記第2実施形態に冷却蒸気系統45を設けた例について説明したが、これに限らず前記第1実施形態に冷却蒸気系統45を設けるようにしてもよい。
【符号の説明】
【0085】
1…ガスタービン、2…圧縮機、3…蒸気タービン、4…発電機、5…燃焼器、6…可変案内翼、7…排熱回収ボイラ、9…再熱器、10…高圧過熱器、11…中圧過熱器、12…低圧過熱器、13…高圧ドラム、14…中圧ドラム、15…低圧ドラム、16…高圧主蒸気管、17…高圧加減弁、18…低温再熱系統、20…再熱加減弁、21…低圧主蒸気管、22…低圧加減弁、24…補助蒸気供給管、27…起動用ボイラ、28…給水ポンプ、29…循環水ポンプ、30…復水器、34…調節弁、35…低圧蒸気アイソレーション弁、38…回転数検出器、39…検出器、40…検出器、41…検出器、45…冷却蒸気系統、46…配管、47…逆止弁、50…高圧タービンバイパス弁、51…中圧タービンバイパス弁、52…低圧タービンバイパス弁、55…検出器、56…検出器、57…検出器、58…検出器、61…高温再熱蒸気管、70…制御装置、71…制御装置、81…高圧タービンバイパス系、82…中圧タービンバイパス系、83…低圧タービンバイパス、100…原動機部、101…設定器、102…関数発生器、103…比較器、104…AND回路、105…NOT回路、106…切替器、107…設定器、108…設定器、109…加算器、110…上限制限器、111…下限制限器、112…変化率制限器、113…高値選択器、114…低値選択器、205…NOT回路

【特許請求の範囲】
【請求項1】
ガスタービンと同軸に配置して結合され、排熱回収ボイラの高圧ドラムからの高圧蒸気が高圧加減弁を介して供給されて駆動される高圧蒸気タービンと、
前記高圧ドラムより低い圧力の低圧蒸気を発生させる低圧ドラムからの前記低圧蒸気が低圧加減弁を介して供給され、この低圧蒸気と前記高圧蒸気タービン内で仕事をした前記高圧蒸気とを合流させた蒸気を低圧タービン蒸気として供給する低圧タービン蒸気供給系統と、
前記ガスタービン及び前記高圧蒸気タービンと同軸に配置して結合され、前記低圧タービン蒸気により駆動される低圧蒸気タービンと、
前記ガスタービンの吸込み空気流量を調整する可変案内翼と、
前記ガスタービンと同軸に配置して結合された発電機の負荷遮断後の無負荷定格速度運転時に、前記高圧加減弁を全閉する制御を行うとともに、前記可変案内翼の開度を前記低圧蒸気の発生流量が増加するように制御する制御手段と、
を備えることを特徴とする一軸型複合サイクル発電プラント。
【請求項2】
ガスタービンと同軸に配置して結合され、排熱回収ボイラの高圧ドラムからの高圧蒸気が高圧加減弁を介して供給されて駆動される高圧蒸気タービンと、
前記ガスタービン及び前記高圧蒸気タービンと同軸に配置して結合され、低圧蒸気により駆動される低圧蒸気タービンと、
前記高圧蒸気よりも低くかつ低圧蒸気よりも高い圧力の中圧蒸気を発生させる中圧ドラムからの中圧蒸気を前記高圧蒸気タービンからの排気蒸気と合流させ、高温再熱蒸気を発生させる再熱器に供給する低温再熱系統と、
前記高圧蒸気タービン及び前記低圧蒸気タービンと同軸に配置され、前記再熱器からの高温再熱蒸気が再熱加減弁を経由して供給されて駆動する中圧蒸気タービンと、
前記中圧蒸気タービン内で仕事をして減圧された前記高温再熱蒸気と前記低圧蒸気とを合流させて前記低圧蒸気タービンを駆動する低圧タービン蒸気供給系統と、
前記ガスタービンの吸込み空気流量を調整する可変案内翼と、
前記ガスタービンと同軸に配置して結合された発電機の負荷遮断後の無負荷定格速度運転時に、前記高圧加減弁及び前記再熱加減弁を全閉する制御を行うとともに、前記可変案内翼の開度を前記低圧蒸気の発生流量が増加するように制御する制御手段と、
を備えることを特徴とする一軸型複合サイクル発電プラント。
【請求項3】
前記可変案内翼の開度の上限制限値は、前記ガスタービンへの吸込み空気流量が多くなり前記ガスタービンの燃焼が停止することのない空気流量となる値であって、前記開度の下限制限値は、前記低圧蒸気を発生させる低圧蒸気系でガスタービンの排気ガスとの熱交換が可能な空気流量となる値であることを特徴とする請求項1又は2に記載の一軸型複合サイクル発電プラント。
【請求項4】
前記低温再熱系統には、前記ガスタービンの高温部を冷却する冷却蒸気系統が設けられていることを特徴とする請求項2に記載の一軸型複合サイクル発電プラント。
【請求項5】
ガスタービン、高圧蒸気タービン、低圧蒸気タービン及び発電機を同軸に配置して結合し、前記ガスタービンに燃焼ガスを送って駆動させ、その燃焼ガスの排気ガスを熱源として排熱回収ボイラにて高圧蒸気を発生させるとともに、前記高圧蒸気より低い圧力の低圧蒸気を発生させ、その高圧蒸気を高圧加減弁を介して供給して前記高圧蒸気タービンで仕事をし、前記低圧蒸気を低圧加減弁を介して供給して前記低圧蒸気タービンで仕事をさせる一軸型複合サイクル発電プラントの運転方法において、
前記発電機の負荷遮断後の無負荷定格速度運転時に、前記高圧加減弁を全閉する制御を行う全閉制御ステップと、
前記ガスタービンの吸込み空気流量を調整する可変案内翼の開度を前記低圧蒸気の発生流量が増加するように制御する開度制御ステップと、
を有することを特徴とする一軸型複合サイクル発電プラントの運転方法。
【請求項6】
ガスタービン、高圧蒸気タービン、中圧蒸気タービン、低圧蒸気タービン及び発電機を同軸に配置して結合し、前記ガスタービンに燃焼ガスを送って駆動させ、その燃焼ガスの排気ガスを熱源として排熱回収ボイラにて高圧蒸気を発生させるとともに、前記高圧蒸気より低い圧力の中圧蒸気、この中圧蒸気より低い圧力の低圧蒸気をそれぞれ発生させ、その中圧蒸気を前記高圧蒸気タービンからの排気蒸気と合流させ、高温再熱蒸気を発生させる再熱器に供給し、再熱加減弁を経由して前記中圧蒸気タービン内で仕事をして減圧された前記高温再熱蒸気と前記低圧蒸気とを合流させて前記低圧蒸気タービンで仕事をさせる一軸型複合サイクル発電プラントの運転方法において、
前記発電機の負荷遮断後の無負荷定格速度運転時に、前記高圧加減弁及び前記再熱加減弁を全閉する制御を行う全閉制御ステップと、
前記ガスタービンの吸込み空気流量を調整する可変案内翼の開度を前記低圧蒸気の発生流量が増加するように制御する開度制御ステップと、
を有することを特徴とする一軸型複合サイクル発電プラントの運転方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−76388(P2013−76388A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【出願番号】特願2011−217821(P2011−217821)
【出願日】平成23年9月30日(2011.9.30)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(000221096)東芝システムテクノロジー株式会社 (117)
【Fターム(参考)】