説明

光増幅装置,利得制御方法,光伝送装置および利得制御装置

【課題】入力光に含まれるASEに応じて影響が相違するSHBによる利得低下分についても利得一定制御の要素に組み込む。
【解決手段】目標利得に制御される光増幅を行なう光増幅部11と、光増幅部11へ入力される自然放出光に応じた、光増幅部11でのスペクトラル・ホール・バーニングが生じる帯域の利得低下分に対応する補正パワーを算出する補正パワー算出手段16と、補正パワー算出手段16で算出した補正パワーを用いて、光増幅部11での光増幅の制御にかかる利得算出を行ない、算出された利得を用いて前記目標利得とする制御を行なう利得制御手段17と、をそなえる。

【発明の詳細な説明】
【技術分野】
【0001】
本案件は、光増幅装置,利得制御方法,光伝送装置および利得制御装置に関し、例えば光通信分野に用いられる。
【背景技術】
【0002】
マルチメディアネットワークの進展に伴い、通信トラフィックの需要は飛躍的に増大している。EDF(Erbium Doped Fiber)を増幅媒体にした光増幅器を用いて光信号を多中継増幅する光伝送装置は、このような通信トラフィックの経済化を図る上で大きな役割を果たしている。
【0003】
光通信システムでは、例えば送信端では複数波長の光信号を波長多重して出力し、出力された波長多重光信号は伝送路を伝播する。伝送路においては、例えば一定間隔に光増幅器が介装されて、伝送路のロスが補償される。伝送路を伝播する光信号の信号波長数、波長配置については任意に変化することが想定されている。
【0004】
特許文献1,2には、このような光伝送システムにおける光増幅器の構成例が開示されている。EDFは信号光を増幅する際、ASE(Amplified Spontaneous Emission)を発生する。信号波長が少ない場合、特に1波の場合は、出力パワーに占めるASEパワーが光増幅を制御するにあたり無視できない量となる。
【0005】
上記特許文献1に例示されるように、従来においてはEDFで発生するASEパワーを考慮して、EDFに対する利得一定制御を行なっている。例えば、予め用意した光増幅器で発生するASEパワーの情報を利得算出の際の補正項として導入し、入力と出力のパワーのモニタ値および上記補正項から信号利得を検出し、利得一定制御をかける。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平11−112434号公報
【特許文献2】特開2001−352119号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、近年、1スパン当りの伝送距離は増加する傾向にあり、光増幅器の出力レベルも高くなってきている。光増幅器は出力が高くなると、SHB(Spectral Hole-Burning)と呼ばれる物理現象がEDF内で起こる。SHBが発生すると、信号波長付近の利得だけ低下する現象が現れる。この現象は、ASE補正が最も重要となる信号波長が少ない場合に顕著になりうる。
【0008】
そして、このSHBによる利得低下の現象は、利得一定制御下の光増幅器においては、入力される光に光信号とともにASEが混在している場合と、ASEが混在していない場合と、では、光信号波長の光増幅に与える影響が相違する。
【0009】
従来技術においては、増幅器自身で発生するASEパワー分を利得一定制御の際に差し引いて高精度化を図っているが、入力光に含まれるASEに応じて影響が相違するSHBによる利得低下分についてまでは利得一定制御に加味していなかった。
【0010】
光通信システムにおいては、送信端に近い上流側に配置される光増幅器においては、光信号に混在するASEが少なく比較的利得低下分が小さいと想定できる。しかし、下流側に配置される光増幅器となるほど、光信号に混在するASEが大きくなり利得低下分も大きくなり、光信号レベルは目標レベルに届かなくなることが想定できる。
【0011】
そこで、本願の目的の一つは、入力光に含まれるASEに応じて影響が相違するSHBによる利得低下分についても利得一定制御の要素に組み込むことにある。
尚、前記目的に限らず、後述する発明を実施するための最良の形態に示す各構成又は作用により導かれる効果であって、従来の技術によっては得られない効果を奏することも本案件の他の目的として位置づけることができる。
【課題を解決するための手段】
【0012】
(1)このため、目標利得に制御される光増幅を行なう光増幅部と、該光増幅部へ入力される自然放出光に応じた、該光増幅部でのスペクトラル・ホール・バーニングが生じる帯域の利得低下分に対応する補正パワーを算出する補正パワー算出手段と、該補正パワー算出手段で算出した補正パワーを用いて、該光増幅部での光増幅の制御にかかる利得算出を行ない、算出された利得を用いて前記目標利得とする制御を行なう利得制御手段と、をそなえた、光増幅装置を用いることができる。
(2)光増幅部での光増幅を目標利得で行なう制御を行なう光増幅装置の利得制御方法であって、前記増幅部への入力光に含まれる自然放出光のパワーと、該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量と、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーと、に基づき、補正パワーを算出し、前記算出した補正パワーの値を前記増幅部からの出力光のパワーの値から差し引き、前記差し引いた結果と、前記増幅部への入力光のパワーの値とを用いて、利得算出を行ない、前記算出した利得を用いて、前記光増幅部での光増幅を前記目標利得とする制御を行なうことを特徴とする、利得制御方法を用いることができる。
(3)また、上記(1)の光増幅装置を用いた光伝送装置を用いることもできる。
(4)さらに、光増幅部での光増幅の制御を目標利得で行なう利得制御装置であって、該光増幅部へ入力される自然放出光に応じた、該光増幅部でのスペクトラル・ホール・バーニングが生じる帯域の利得低下分に対応する補正パワーを算出する補正パワー算出手段と、該補正パワー算出手段で算出した補正パワーを用いて、該光増幅部での光増幅の制御にかかる利得算出を行ない、算出された利得を用いて前記目標利得とする制御を行なう利得制御手段と、をそなえた、利得制御装置を用いることができる。
【発明の効果】
【0013】
入力光に含まれるASEに応じて影響が相違するSHBによる利得低下分についても利得一定制御の要素に組み込むことで、信号利得の算出および利得一定制御の精度を向上させることができる。
【図面の簡単な説明】
【0014】
【図1】一実施形態における光通信システムを例示する図である。
【図2】一実施形態の光増幅装置を示す図である。
【図3】対比例としての光増幅装置を示す図である。
【図4】信号波長における短波長帯のチャンネルの1波に配置された信号光についての光パワーの波長特性例を示す図である。
【図5】制御部で利得制御された光増幅部の利得波長特性例を示す図である。
【図6】出力光パワーの波長特性例を示す図である。
【図7】EDFにおいてSHBが生じる場合の光増幅部の利得波長特性例を示す図である。
【図8】EDFにおいてSHBが生じる場合の出力光パワーの波長特性例を示す図である。
【図9】光増幅装置への入力光の光パワーの波長特性例を示す図である。
【図10】光増幅装置のEDFにおいてSHBが生じない場合の利得の波長特性例を示す図である。
【図11】光増幅装置のEDFにおいてSHBが生じない場合の出力光パワーの波長特性例を示す図である。
【図12】光増幅装置のEDFにおいてSHBが生る場合の利得の波長特性例を示す図である。
【図13】光増幅装置のEDFにおいてSHBが生る場合の出力光パワーの波長特性例を示す図である。
【図14】信号光を配置した時のSHBによる利得低下の波長依存性の一例を示す図である。
【図15】補正パワーPaseの算出結果に対応する光パワーの波長特性を示す図である。
【図16】入力にASEがない場合に出力されるASE光の光パワーの波長特性例を示す図である。
【図17】式(4)におけるB項(10B/10)に相当する光パワーの波長特性例を示す図である。
【図18】式(4)におけるC項(10C/10)に相当する光パワーの波長特性例を示す図である。
【図19】光増幅装置の第2の実施形態を示す図である。
【図20】光増幅装置の第3の実施形態を示す図である。
【図21】光増幅装置の第4の実施形態を示す図である。
【図22】光フィルタで付与するロス特性の一例を示す図である。
【図23】割り当てられる信号波長と光検出器で検出する受信パワーとの関係例を示す図である。
【図24】信号波長配置が1波長の場合の入力にASEがない場合の信号波長配置に応じた出力ASEパワーの情報の一例を示す図である。
【図25】他の実施形態における光通信システムを例示する図である。
【図26】光増幅装置に入力される光信号のパワーの波長特性例を示す図である。
【図27】OADMシステムに適用される光増幅装置を例示する図である。
【図28】OADMシステムに適用される光増幅装置を例示する図である。
【発明を実施するための形態】
【0015】
以下、図面を参照することにより、実施形態を説明する。但し、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図は無い。即ち、本実施形態は、その趣旨を逸脱しない範囲において種々変形して実施することができる。
【0016】
図1は一実施形態における光通信システム1を例示する図である。送信端にそなえられた合波器2において複数波長の光信号を波長多重して出力し、出力された波長多重光信号は伝送路3を伝播する。例示の光通信システム1においては、最大波長数は40波で信号光波長帯域は1531.9nm〜1563nmのWDM(Wavelength Division Multiplexing)システムとすることができる。
【0017】
また、伝送路3上においては光増幅装置4(4−i;図1ではiは1,2又は3)を含めることもできる。光増幅装置4−iは、伝送路3の伝搬による光信号ロスを補償する。図2は上述の一の光増幅装置4−iの構成例を示す図である。図2に例示する光増幅装置4−iは、光増幅部11,光分岐器12a,12b,光検出器13a,13b,入力ASEパワー算出回路14,記憶部15,補正パワー算出回路16および制御部17をそなえる。
【0018】
光カプラ12aは、送信側の伝送路3から入力される光(入力光)について分岐して、分岐した一方を光増幅部11に、他方を光検出器13aに導く。光カプラ12bにおいては、光増幅部11にて光増幅され出力された出力光について分岐し、分岐した一方を出力側伝送路3に導く一方、他方を光検出器13bに導く。
【0019】
光増幅部11は、光カプラなどの光分岐器12aを介して入力される入力光について光増幅を行なう。このため、光増幅部11は、光アイソレータ11a,励起光源11b,ビームコンバイナ11c,EDF11dおよび光アイソレータ11eをそなえる。
【0020】
光アイソレータ11aは光増幅部11から光カプラ12a側への光反射を阻止し、光アイソレータ11eは出力側(光カプラ12b)からのEDF11dへの光入力を阻止する。励起光源11bは、EDF11dへの励起光を出力する。ビームコンバイナ11cは、WDM合波器などを用いることができ、励起光源11bからの励起光を入力信号光とともにEDF11dへ導く。これにより、EDF11dでは入力光が光増幅されて、光アイソレータ11eを介して出力される。
【0021】
また、光検出器13aは、光分岐器12aで分岐された入力光についての光パワーPinを検出し、検出結果を制御部17および入力ASEパワー算出回路14に出力する。光検出器13bは、光カプラなどの光分岐器12bで分岐された出力光についての光パワーPoutを検出し、検出結果を制御部17に出力する。記憶部15は、後述の入力ASEパワー算出回路14や補正パワー算出回路16での演算に用いられる情報について記憶する。
【0022】
さらに、入力ASEパワー算出回路14は、光検出器13aにて検出される入力光パワーと、記憶部15にて記憶されている内容に基づいて、入力光に含まれるASE光のパワーPin_aseを算出する。例えば、記憶部15に記憶されている入力光中の波長多重光信号の波長数情報とともに、直近の上流側伝送路3の伝送路ロス情報を用いて、後述する手法で上述のASE光パワーを算出する。
【0023】
なお、他の算出手法の例についても他の実施形態で開示する。又、直近の上流側伝送路3は、光増幅装置を介装せずに接続されている送信側伝送路であり、例えば図1に示す光増幅装置4−2においては、光増幅装置4−1,4−2間の伝送路である。
【0024】
補正パワー算出回路(補正パワー算出手段)16は、上述の入力ASEパワー算出回路14でのPin_aseの算出結果とともに、記憶部15で記憶されている情報を用いて、利得一定制御に当たっての利得算出の際に用いる補正値を算出する。この補正値は、信号利得を導出する際のASE光パワーに関連する補正値(補正パワー:Pase)であり、後述するように、EDF11dへの入力光に信号光だけでなくASE光が含まれている場合に生じる利得誤差を要素に含めた値である。
【0025】
制御部(利得制御手段)17は、補正パワー算出回路16で算出した補正パワーPaseを用いて、利得一定制御にかかる利得を計算し、励起光パワーをフィードバック制御することにより、光増幅部11での信号光の光増幅の利得一定とする制御を実現する。このため、制御部17は、利得検出部17a,誤差信号抽出部17bおよび励起光制御部17cをそなえる。
【0026】
利得検出部17aは、光検出器13a,13bにて検出した光パワーの情報Pin,Poutとともに、補正パワー算出回路16にて算出した補正値Paseを用いて、フィードバックによる利得一定制御にかかる信号利得の値を検出(算出)する。例えば、式(1)に従って信号利得の値Aを算出する。
A=(Pout-Pase)/Pin ・・・(1)
【0027】
誤差信号抽出部17bは、利得検出部17aで算出した信号利得の値Aと、目標利得の値との誤差(差分)に応じた信号(誤差信号)を抽出又は生成する。そして、励起光制御部17cは、誤差信号抽出部17bで抽出または生成した誤差信号に応じて、光増幅部11の励起光源11bからの励起光パワーを制御することを通じ、誤差信号がゼロとなる方向に向けた光増幅制御を行なう。
【0028】
したがって、上述の補正パワー算出回路16および制御部17を要素として、光増幅部11での光増幅の制御を目標利得で行なう利得制御装置を構成することができる。
【0029】
上述のごとく構成された光増幅装置4−iでは、信号光成分の光パワーに着目して利得一定制御を行なっている。具体的には、入力ASEパワー算出回路14で、光増幅部11への入力光に含まれるASE光のパワーPin_aseを算出する。そして、補正パワー算出回路16では、入力ASEパワー算出回路14での算出結果を用いて、利得一定制御のための利得算出の際の補正パワーPaseを求める。
【0030】
制御部17においては、補正パワー算出回路16で算出した補正パワーを用いて、利得一定制御にかかる利得算出を行ない、算出した利得Aを用いて、目標利得での光増幅とする制御を行なう。具体的には、目標利得に対する算出した利得との差分がゼロとなる方向に向けて励起光源11bへの励起光を制御(例えば励起光パワーを制御)する。
【0031】
このとき、補正パワー算出回路16で算出した補正パワーを用いて得られる利得値により、制御部17で利得一定制御を行なっているので、上述の補正パワーを用いずに得られる利得値を用いて利得一定制御を行なう場合よりも制御の精度を高められる。
【0032】
ここで、光増幅装置4−iにおける補正パワー算出回路16で算出する補正パワーを用いることにより、利得一定制御の精度を高められることについて説明する。まず、上述の補正パワー算出回路16で算出される補正パワーを用いずに利得値を算出し利得一定制御を行なう光増幅装置を想定する。ここでは、例えば、最大波長数は40波で信号光波長帯域は1531.9nm〜1563nmの光増幅装置を想定する。
【0033】
この場合においては、図3に例示する光増幅装置40のように、図2に示す光増幅装置4−iにおける補正パワー算出回路16のほか、入力ASEパワー算出回路14については省略することが可能である。そして、制御部47においては、光検出器13a,13bでそれぞれ検出される入力光パワーおよび出力光パワーと、例えば入力光にASE光がない場合の出力ASE光のパワーPASEと、を用いて利得算出を行なうこともできる。
【0034】
すなわち、制御部47における利得検出部47aで、検出した出力光パワーPoutから、入力光にASE光がない場合の出力ASE光のパワーPASEを差し引き、得られた値の入力光パワーPinに対する比を信号利得として求める。これにより、EDFで生じるASE光を除いて利得を求めているので、ASE光パワーの要素を利得導出に用いない場合に比べて、入出力モニタ値を用いた信号光増幅の利得の導出を高精度化している。
【0035】
なお、誤差信号抽出部47bおよび励起光制御部47cにおいては、前述の図2に示すもの(符号17b,17c)とそれぞれ同様に動作する。即ち、誤差信号抽出部47bは、利得検出部47aで算出した信号利得の値と、目標利得の値との誤差(差分)に応じた信号(誤差信号)を抽出又は生成する。そして、励起光制御部47cは、誤差信号抽出部47bで抽出または生成した誤差信号に応じて、光増幅部11の励起光源11bからの励起光パワーを制御することを通じ、誤差信号がゼロとなる方向に向けた光増幅制御を行なう。
【0036】
ここで、この光増幅装置40の構成を有する光増幅装置4−1(図1参照)において、図4のように、信号波長における短波長帯のチャンネル♯1の1波の信号光が入力された場合を考える。この時、EDF11dにおいてSHBが生じない場合は、制御部17で利得制御された光増幅部11の利得波長特性は図5のようになり、出力光パワーの波長特性は図6のようになる。尚、入力信号光以外の波長帯の光パワーは、EDF11dで生じるASE光を要素としている。
【0037】
一方、EDF11dにおいてSHBが生じる場合は、当該SHBにより、信号波長付近の利得が低下する。このため、光増幅部11の利得波長特性は図7のようになり、出力光パワーの波長特性は図8に示すようになる。即ち、SHBにより、信号波長付近以外の波長のASE光が多く発生する。しかし、このASEパワーの値を予め、測定により入手しておけば、上述の図3に示すPASEを用いた算出利得値の補正によって目標出力に設定することが可能である。以上の理由により、EDF11dにSHBが生じていても、光増幅装置40の出力は目標出力に設定される。
【0038】
つぎに、図1に示す光増幅装置4−2が光増幅装置40の構成を有する場合について説明する。光増幅装置4−2への入力光には、図9に示すように、信号光以外にASE光の光パワーが含まれている。即ち、EDFA等を経由していない光増幅装置4−1への入力光(図4参照)と相違して、光増幅装置4−2への入力光には、前段の光増幅装置4−1で発生したASE光が含まれている。
【0039】
このASE光は、図9に示すように、運用中の信号光波長帯以外(この場合にはチャンネル♯1以外)の、EDF11dでの増幅波長帯域全体に渡る波長帯を有している。光増幅装置4−2のEDF11dにおいてSHBが生じない場合には、図10のような利得の波長特性となり、出力光の波長スペクトラムは図11のようになる。
【0040】
これに対し、光増幅装置4−2のEDF11dにおいてSHBが生じる場合には、チャンネル♯1付近の利得が低下するため、EDF11dにおける利得波長特性は図12に示すようになり、出力光の波長スペクトラムは図13に示すようになる。
【0041】
すなわち、光増幅装置4−2が図3に例示する構成の光増幅装置40である場合は、入力光にASEが無い条件で出力光に含まれるASE光のパワーPASEを予め測定してパワー情報として保持しておく。そして、検出した出力光パワーから、保持しているASE光のパワーPASEを差し引き、得られた値の入力光パワーに対する比を求めることで信号光の利得を求めている。そして、求められた利得が目標利得となるようにEDF11dへの励起光を制御するのである。
【0042】
このとき、上述したようなPASEを利得導出の際の修正項として用いる場合には、入力光に含まれるASE光が受けるSHBの影響に対応する修正項についてまでは用いていない。このため、図12に示す利得波長特性によって光増幅を行なったとしても、図13中のSに示すように、信号光の出力パワーが目標パワーに届かない場合がある。
【0043】
すなわち、上述のPASEを用いて導出された利得が目標利得となるように制御する場合には、想定する出力の波長特性は、信号付近以外の波長でのASE光のパワーが高くなるような波長特性である。例えば、図13の点線に示すような波長スペクトラムを想定する。しかし、実際の波長特性は、図13中の塗りこみ部分で示すように、図3に示す手法によるASE補正で想定するよりも、さらに信号付近の波長以外でのASEパワーが高くなる。
【0044】
これは、入力光に含まれるASE光がEDF11dで受ける利得に、SHBによる波長帯に応じた増減が生じるためである。即ち、信号波長帯(例えばチャンネル♯1)およびその付近周辺の波長帯(例えば図12のW1参照)の利得は減少する一方、これら波長帯以外の波長帯(チャンネル♯1周辺よりも長波長帯、例えば図12のW2参照)の利得は増加するためである。
【0045】
なお、図14は1波で動作における、SHBによる信号光付近の利得低下量の波長配置依存性の一例である。この図14に例示するように、短波長側に信号光波長が配置されている場合には、そうでない場合に比べて利得低下の影響が受けやすい傾向を読み取ることができる。
【0046】
図12に例示する場合においては、信号光が配置された波長帯W1では、SHBにより想定よりも低い利得で増幅される一方、波長帯W2では、想定よりも高い利得で増幅される。このため、EDF11d単体で発生する出力ASE光のパワーを見積もりながら利得一定制御を行なったとしても、SHBによる利得低下を受けやすい波長帯に信号光が配置されている場合には、当該信号光の出力パワーが目標に届かなくなる場合がある。
【0047】
換言すれば、信号付近のASEパワーと信号付近以外のASEパワーの段差は、図3に例示する構成において想定していた量(図7参照)よりも拡大してしまう。そして、信号付近以外でのASEパワーが想定よりも高いことにより、信号光波長帯における出力光は、利得一定制御を行なっているにもかかわらず目標出力よりも低下してしまうこととなる(図13のA参照)。
【0048】
光増幅装置4−2よりも伝送路3における下流側の光増幅装置(例えば図1に示す4−3)においても図3に例示する構成を適用する場合、上述のような利得一定制御を行ないながら信号光出力パワーが目標パワーまで届かない現象は、同様に生じる。特に、下流側の光増幅装置においては、入力信号光に対するASE光の光パワーの比率が大きくなる場合は、このSHBによる出力低下量も大きくなる。
【0049】
そこで、図2に示す光増幅装置4−iにおいては、上述の入力光に含まれるASE光が増幅される分を、信号光の光増幅利得の導出にあたっての修正項として導入する。即ち、入力のASEが受ける利得が、信号波長付近の波長の利得が小さくなる一方、それ以外の波長の利得で大きくなることを考慮する。
【0050】
具体的には、入力ASEパワー算出回路14において、入力光に含まれるASEパワー(Pin_ase)を算出する。一例として、光検出器13aからの入力光パワーの検出結果と、記憶部15に記憶されている運用中の信号光波長の数(n)および伝送路3のロス情報(Loss)と、を用いて、以下の式(2),(3)に従って算出する。
Pin_ase [mW] =Pin_total [mW]−10 H/10 ・・・(2)
H=(1波長あたりの光増幅器出力レベル [dBm/ch])+10・log(n)−Loss [dB]
・・・(3)
【0051】
記憶部15に記憶する情報には、上述の式(2),(3)における演算において用いられる情報である、n,Loss,ΔGおよびPase0や、制御部17での利得一定制御の目標利得情報などを含めることができる。ここで、nは、運用されている信号光の波長数の情報であり、Lossは直近上流側の伝送路3のロス情報である。更に、ΔGは、当該増幅部11のEDF11dにおける光増幅の際のSHBによる利得低下量に関する情報である。又、Pase0は、入力にASEがない場合に出力されるASE光のパワー情報であり、図3に示す利得検出部47aで用いるPASEに相当する。
【0052】
また、波長数情報nと伝送路ロス情報Lossについては、上流側装置(送信側伝送装置)からの光に含まれる監視信号から取得したものを記憶しておくことができる。又、ΔGおよびPase0については、予め測定した結果について記憶しておくことができる。
【0053】
補正パワー算出回路16においては、一例として、式(4)〜(6)に従って補正パワーPase[mW;ミリワット]を求める。尚、式(4)において、Bは、入力のASE光のパワーがSHBの影響により信号利得よりも大きな利得で光増幅された場合に出力に現れる量を10B/10(ミリワット)により求めるものである。又、Cは、入力のASE光のパワーが信号利得と同じ量の利得で光増幅された場合に出力に現れる量を10C/10(ミリワット)により求めるものである。尚、式(5),(6)中において、利得目標値は、光増幅部11において利得一定制御の目標となる値に該当する。換言すれば、補正パワー算出回路16は、光増幅部11へ入力される自然放出光に応じた、光増幅部11でのスペクトラル・ホール・バーニングが生じる帯域の利得低下分に対応する補正パワーを算出する補正パワー算出手段である。
Pase [mW]=Pase0 [mW])+10B/10 −10C/10 ・・・(4)
B=(Pin_ase [dBm])+(利得目標値 [dB]+ΔG[dB]) ・・・(5)
C=(Pin_ase [dBm])+(利得目標値[dB]) ・・・(6)
【0054】
図15〜図18は、一例として、上述の式(4)〜(6)で用いたパワー情報について波長スペクトラム(光パワーの波長特性)で表したものである。即ち、図15は、補正パワーPaseの算出結果に対応する波長スペクトラムである。Paseは、図15に例示する波長スペクトラム分布の面積の大きさに相当する。尚、Paseは、光増幅部11に入力されるASE光パワーや、光増幅部11のEDF11d自身で励起によって生じるASE光パワーを要素に含めた、光増幅部11の出力光に含まれるASE光パワーであるととらえられる。
【0055】
また、入力にASEがない場合に出力されるASE光の波長スペクトラムは図16のようになる。即ち、当該ASE光のパワーPase0は、図16に例示する波長スペクトラム分布の面積の大きさに相当する。尚、EDF11dにSHBが生じている場合にはその要素も取り込んだ値になる。
【0056】
さらに、式(4)におけるB項(10B/10)は、入力のASEパワーがSHBの影響により信号利得より大きな利得を受けて出力に出てくる量に相当する。即ち、B項は、利得目標値に更にΔGに相当する値だけ大きい利得で光増幅されたASE光パワーに相当し、図17に例示する波長スペクトラム分布の面積の大きさに相当している。換言すれば、利得一定制御の下で、信号光波長帯の利得がSHBによりΔGだけ低下しているのに対して、ASE光については目標利得よりもΔGだけ大きい利得を受けている。
【0057】
なお、式(4)に示すB項の値については式(5)に示すように導出する。尚、式(4)は、mW(ミリワット)での表記によるものであり、式(5)はdB(デシベル)での表記によるものである。
【0058】
補正パワー算出回路16では、入力ASEパワー算出回路14にて算出されたPase0の値とともに、記憶部15に記憶されているΔGの値および目標利得の値を用いて、BおよびCを算出するとともに、式(4)に示すようにPaseを算出する。もちろん、Paseの算出においてB項およびC項を展開した態様で算出するようにしてもよい。
【0059】
また、式(4)におけるC項(10C/10)は、式(6)に示すように、ASEパワーが信号利得と同じ量だけ利得を受けた場合に出力に出てくる量に相当し、図18に例示する波長スペクトラム分布の面積の大きさに相当している。
【0060】
そして、上述の式(4)に示すB項からC項を引いた値が、SHBによるASEパワーの増加量となる。この値については、前述の図3に示す補正パワーの算出の際には導入されていなかった要素である。換言すれば、出力パワー補正値Paseは、利得一定制御にかかる利得算出にあたっての(ASE光に起因した)出力パワーの補正値である。
【0061】
これにより、利得制御部17においては、補正パワー算出回路16で算出された補正パワーPaseを用いることにより、例えば前述の式(1)に従って、光増幅部11の利得制御に関連する信号利得Aを算出することができる。そして、高精度に導出された信号利得Aの情報を用いることにより、制御部17では目標利得に向けた制御を光増幅部11に対して行なうことができる。
【0062】
このように、図2に示す光増幅装置4−iでの信号利得の算出および利得一定制御の精度は、補正パワー算出回路16で算出された補正パワーを用いているので、図3に示す補正値PASE(Pase0に相当)を用いる場合に比べ高精度とすることができる。
【0063】
図19は図1に示す光増幅装置4−iの第2の実施形態を示す図である。図19に示す光増幅装置4aにおいては、光増幅部41の構成が前述の図2に示すものと異なる。光増幅部41は、2段に縦続接続されたEDF11d−1,11d−2と、EDF11d−1,11d−2を励起する励起光を発生しビームコンバイナ11c−1,11c−2を通じて供給する励起光源11b−1,11b−2と、をそなえる。更に、EDF11d−1,11d−2の間には出力信号光の利得波長特性を平坦化させるための利得等化器(GEQ:Gain EQualizer)42をそなえる。この場合においても、図2の場合と同様に信号利得の算出および利得一定制御の精度を高精度化することが可能になる。
【0064】
図20は図1に示す光増幅装置4−iの第3の実施形態を示す図である。図20に示す光増幅装置4bは、入力のASEパワーPin_aseを算出する入力ASEパワー算出回路14aが前述の図2と異なる。尚、図2と同一の符号はほぼ同様の部分を示している。
【0065】
ここで、入力ASEパワー算出回路14aは、式(7)に示すように、上流の光増幅装置の出力でのASE光のパワー情報から上流伝送路のロス情報を差し引くことにより、Pin_aseを求める。
Pin_ase [dBm] =(上流の光増幅器出力ASE[dBm])−(Loss [dB])・・・(7)
【0066】
なお、上流の光増幅装置の出力でのASEパワーは、伝送路における上流に配置された装置からの監視信号に一緒に載せて送られてきたものを受信して、入力ASEパワー算出回路14aでの演算に用いることができる。又、受信したASEパワー情報を記憶部15に記憶しておくこともできる。更に、上流の伝送路のロス情報についても記憶部15で予め記憶しておくことができる。
【0067】
補正パワー算出回路16では、このように求められた入力のASEパワーを用いることにより、前述の図2の場合と同様に補正パワーPaseを求め、制御部17では、このPaseを用いて求められた信号利得Aを用いて光増幅部11を利得一定制御する。これにより、図20に示す光増幅装置4bにおいても、信号利得の導出精度を図3の場合よりも高められるようになる。
【0068】
図21は図1に示す光増幅装置4−iの第4の実施形態を示す図である。CバンドにおけるSHBに起因した利得低下量は、前述の図14に示すように、どの波長に信号を立てるかによって変わってくる。これに対し、図21に例示する光増幅装置4cは、信号波長配置に応じた補正パワーの算出を行なう。
【0069】
すなわち、図21に例示する光増幅装置4cは、図2に例示する光増幅装置4と異なり、入力光の波長配置を算出するため、光分岐器12c,光フィルタ18,光検出器13cおよび信号波長配置算出回路19がそなえられる。そして、補正パワー算出回路16aは、算出された信号波長配置に応じた補正パワーの算出を行なうことができる。尚、図21中、図2と同一の符号はほぼ同様の部分を示している。
【0070】
光分岐器12cは、光分岐器12aにて分岐された入力光を更に分岐して、図2に示すものと同様の光検出器13aおよび光フィルタ18に出力する。光フィルタ18は、光分岐器12cからの入力光について、図22に例示するようなロス特性を付与して出力する。光フィルタ18のロス特性は、EDF11dの増幅帯域(または信号波長帯域)において波長特性が1次傾斜の特性を有する。例えば、SHBによる利得低下が大きい波長(例えばCバンドの短波長帯)から小さい波長(例えばCバンドの長波長帯)に向けてロスが1次傾斜で大きくなる特性とすることができる。
【0071】
このとき、信号波長が1波に割り当てられている場合は、ASE補正(即ち、利得一定制御の際に導出している信号利得値のASE成分を加味した修正)の影響が大きい。このような1波の波長配置の場合に着目すると、割り当てられる信号波長と光検出器13cで検出する受信パワーとの関係は、図23に示すように、1対1で対応付けすることができる。換言すれば、信号波長配置算出回路19では、光検出器13cで検出する受信パワーから、信号波長配置を導出することができる。
【0072】
したがって、光フィルタ18は、入力光について波長配置に応じた光パワーを有する光に変換する光フィルタである。そして、光検出器13cは上述の光フィルタ18から出力される光の光パワーを検出する。
【0073】
信号波長配置算出回路19への入力は、一次傾斜の特性を有する光フィルタ18を通過している光であり、波長配置に応じた光パワーを有していることになる。従って、信号波長配置算出回路19では、光検出器13cからの検出結果である光パワーの値に基づいて、入力光についての信号波長配置を算出することができる。信号波長配置算出回路19での信号波長配置の算出結果は、補正パワー算出回路16aに出力する。
【0074】
なお、信号波長配置を算出するための構成としては図21の態様はあくまで一例であり、他の手法により算出することとしてもよい。例えば、波長配置情報については、光フィルタ18および光検出器13c等を用いる代わりに、伝送路における上流に配置された装置からの監視信号に信号波長配置の情報として載せて、これを入手することとしても良い。
【0075】
また、記憶部15bにおいては、前述の図2に示す場合と同様の情報である波長数情報nおよび伝送路ロスの情報Lossのほか、各波長配置におけるSHBによる利得低下量に関する情報ΔGについても記憶する。更に、入力にASEがない場合の信号波長配置に応じた出力ASEパワーの情報Pase0についても記憶する。
【0076】
各波長配置におけるPase0の情報については、予め測定して得られたものを記憶部15bで記憶しておく。前述したように、信号波長帯にSHBがあるとASEパワーは増加する。このため、Pase0は、図24に例示するように、SHBの大きい短波長側に信号波長が(例えば1波長として)配置されているときほど大きくなり、長波長側に信号波長が配置されているときほど小さくなる。
【0077】
そして、補正パワー算出回路16aにおいては、信号波長配置算出回路19にて算出された波長配置に応じた、SHBによる利得低下量に関する情報ΔGを算出する。換言すれば、補正パワー算出回路16aは、光増幅部11においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量を波長配置に応じて求めるSHB利得低下量算出手段である。
【0078】
さらには、補正パワー算出回路16aは、Pase0の情報とともに、波長数情報nおよび伝送路ロスの情報Lossを記憶部15bから抽出する。更に、入力ASEパワー算出回路14から算出結果Pin_aseを受け取る。これにより、補正パワー算出回路16aでは、前述の式(4)に従って補正パワーPaseを算出する。
【0079】
すなわち、補正パワー算出回路16aでは、算出したSHBによる利得低下量に関する情報ΔGを用いて、波長配置に応じたSHBによる利得低下量を要素として補正パワーPaseを算出することができる。
【0080】
制御部17においては、前述の図2等の場合と同様に、補正パワー算出回路16aにおいて算出されたPaseを用いて光増幅部11について利得一定制御を行なう。このとき、図21に示す光増幅装置4cでは、前述の図2に示すものに比べて、波長配置に応じたSHBによる利得低下量を要素として補正パワーPaseを用いているので、信号光についての利得一定制御の精度を高めることができる。
【0081】
図25は他の実施形態における光通信システム100を例示する図である。図25に例示する光通信システム100においては、図1に示すものと異なり、光のアッドドロップ(OADM)機能を有する光伝送装置8−1,8−2が介装されている。光通信システム100においては、図1に示すものと同様に、送信端にそなえられた合波器2において複数波長の光信号を波長多重して出力し、出力された波長多重光信号は伝送路3を伝播する。
【0082】
光伝送路3は、光増幅装置4を介して接続されている。図25中においては、光増幅装置4−1,4−2間を光伝送路3−1と、光増幅装置4−3,4−4間を光伝送路3−2と、光増幅装置4−3,4−4間を光伝送路3−3と、光増幅装置4−5,4−6間を光伝送路3−4と、それぞれ表記している。
【0083】
また、光伝送装置8−1は光増幅装置4−2,4−3の間に、光伝送装置8−2は光増幅装置4−6,4−7の間に、それぞれ介装される。例えば、伝送路3−1でのロスが光増幅装置4−2で補償された波長多重光信号が光伝送装置8−1に入力される。光伝送装置8−1では、入力される波長多重光信号がAWG(Arrayed Waveguide Gratings)などの分波器8aは各波長の光信号に分波し、スイッチ8bは必要に応じて波長単位の光信号のアッドドロップを行なう。そして、AWGなどの合波器8cはスイッチ8bから出力される各波長の光信号を再度合波する。
【0084】
光伝送装置8−1では合波器8cからの合波後の波長多重光信号を出力する。又、光増幅装置4−3は、光伝送装置8−1からの波長多重光信号について、光伝送装置8−1の分波器8aおよび合波器8cでの分波および合波の際のロスを補償して、後段の伝送路3−2に出力する。
【0085】
たとえば、送信端において、光信号波長帯における最短波長および最長波長の光信号を送出するとともに、光伝送装置8−1において最長波長の光信号をドロップする一方、最短波長の光信号については光伝送装置8−2側に送出する場合を想定する。この場合には、光伝送装置8−1のスイッチ8bでは、最長波長の光信号をドロップする一方、最短波長の光信号は合波器8cを通じて光増幅装置4−3側に出力する。
【0086】
このような最短波長の光信号が光伝送装置8−1から出力され、伝送路3−2〜3−4および光増幅装置4−3〜4−6並びに光伝送装置8−2を経由して、光増幅装置4−7に入力されると、そのときの光信号パワーの波長特性は、図26に例示するようになりうる。ここで、波長帯が短波長側から長波長側に移るに従い光パワーが連続的に変化せず歯抜けが生じているのは、光伝送装置8−1における分波器8a,合波器8c等をなすAWGを通過する際の損失によるものである。
【0087】
また、図26に例示するように、最短波長が他の波長帯よりも高いパワーであるのは、光信号が存在するためである。又、最長波長のパワーが他の波長帯よりも低いのは、光伝送装置8−1で光信号が一旦ドロップされているため、光増幅装置4−1、光増幅装置4−2で発生したASEが光増幅装置4−7に達しないためである。
【0088】
このように、OADMのシステムにおいては、光増幅装置4に入力されるASEパワーは複雑な態様となりうる。この場合には、前述の各実施形態における光増幅装置4の利得一定制御の際に用いる補正パワーを算出するにあたり、入力光に含まれるASE光パワーをより高精度に導出することが求められる。
【0089】
図27は、OADMシステムに適用される光増幅装置4dを例示する図である。この光増幅装置4dについての以下の説明は、例えば図25に例示するOADMシステム100における光増幅装置4−3として適用する場合を想定している。尚、この光増幅装置4dを他の光増幅装置4−iにて適用することも勿論可能である。
【0090】
光伝送装置8−1において、AWGである分波器8aで分波された各チャンネルの光方路上には、スイッチ8bとともに光検出器であるPD(Photo Detector)8dがそなえられる。それぞれのスイッチ8bは、分波器8aからの各波長単位(チャンネル単位)の出力を選択的に配下のドロップ方路に接続するとともに、分波器8aからの出力と配下のアド方路とのいずれか一方を合波器8cに接続する。又、それぞれのPD8dは、スイッチ8bから出力され合波器8cに入力される波長単位の光信号のパワーを検出する。
【0091】
PD8dに信号光が入力される場合、当該信号光パワーについてはほぼ規格化された値を想定することが可能である。光増幅装置4−2で増幅され、分波器8aおよびスイッチ8bを経由した信号光である場合も、スイッチ8bを通じてアッドされる信号光である場合も予め定められたほぼ同等の光パワーを有する信号光とすることができるからである。
【0092】
ここで、光増幅装置4dは、前述の図2に示すものに比して、入力ASEパワー算出回路14dでの算出態様が異なっている。これに伴い、入力ASEパワー算出回路14dにおいては、図2の場合において必要としていた情報である波長数情報nは伝送路ロス情報Lossについては、ASEパワーの算出に必ずしも必要としていない。従って、記憶部15dにおいてこれらの情報の記憶を省略することも可能である。尚、他の要素については図2に示すものと基本的に同様であり、図27中、図2と同一の符号はほぼ同様の部分を示している。
【0093】
また、光増幅装置4dにおいては、信号光パワー対ASE光パワーの比(S/ASE比)を波長単位に算出するS/ASE比算出回路20をそなえる。記憶部15dでは、入力信号光として有すべき信号光パワーの情報を記憶しておく。即ち、S/ASE比算出回路20においては、波長単位でのスイッチ8b出力の光パワーの検出結果をPD8dから取り込む。
【0094】
そして、S/ASE比算出回路20では、PD8dからの各検出結果から信号光を含むチャンネルについて導出するとともに、導出したチャンネルの光についてのS/ASE比を算出する。このとき、S/ASE比の算出にあたっては信号光とASE光とを識別することが行われるが、このためには、例えば特開2007−274545号公報に記載された手法を採用してもよい。
【0095】
S/ASE比算出回路20では、記憶部15dからの信号光パワーの情報をもとに、PD8dからの各検出結果から信号光を含むチャンネルについて導出する。例えば、3dB未満の光パワーであるチャンネルについては、ASE光を含むが信号光成分を含まないチャンネルであると識別する一方、3dB以上の光パワーであるチャンネルについては、信号光を含むチャンネルとして識別して上述のS/ASE比を算出する。
【0096】
入力ASEパワー算出回路14dにおいては、S/ASE比算出回路20からのS/ASE比と、光検出器13aで検出される入力光パワーPin_totalと、を用いて、以下の式(8)に従って入力ASEパワーPin_ase算出する。
Pin_ase [dBm]=Pin_total×{ASE/(S+ASE)}
=Pin_total ×{1/(S/ASE+1)} ・・・(8)
【0097】
補正パワー算出回路16では、このように算出された入力ASEパワーPin_aseを用いて、前述の図2に示すものと同様に補正パワーPaseを算出する。これにより、利得制御部17においては、補正パワー算出回路16で算出された補正パワーPaseを用いることにより、例えば前述の式(1)に従って、光増幅部11の利得制御に関連する信号利得Aを算出することができる。そして、高精度に導出された信号利得Aの情報を用いることにより、制御部17では目標利得に向けた制御を光増幅部11に対して行なうことができる。
【0098】
このように、図27に示す光増幅装置4dでの信号利得の算出精度は、補正パワー算出回路16で算出された補正パワーを用いているので、図2の場合と同様に、図3に示す補正値PASE(Pase0に相当)を用いる場合に比べ高精度とすることができる。
【0099】
なお、上述の図27に示すものにおいては、光増幅装置4dにおいてS/ASE算出回路19をそなえるとともに、記憶部15dにおいて1波あたりの信号光パワーの情報を記憶するようになっている。しかしながら、この態様に限定されず、例えばOADMノードである光伝送装置8−1その他光増幅装置の外部に上記構成をそなえることも可能である。また、上述のOADMノード8としての構成に光増幅装置としての構成も併せ持つ光伝送装置としてもよい。
【0100】
図28は、図27の場合と異なる構成の光伝送装置8Aを適用した場合の例である。光増幅装置8dについては、図27に示すものと基本的に同様のものとすることができる。この光伝送装置8Aについての以下の説明は、一例として、図25に例示するOADMシステム100における光伝送装置8−1として適用した場合を想定している。尚、図28中、図27と同一の符号は、ほぼ同様の部分を示している。
【0101】
図28に例示する光伝送装置8Aは、波長選択スイッチ(WSS;Wavelength Selective Switch)を用いてOADM機能を実現している。WSSは、信号光について任意ポート間で任意波長単位で光方路を切り替える。
【0102】
ここで、光伝送装置8Aは、入力光を2分岐する光カプラ8eと、光カプラ8eで2分岐した光方路からの光をそれぞれ入力として導入する2つのWSS8f,8gと、OCM(Optical Channel Monitor)8hと、をそなえる。
【0103】
WSS8fは、光カプラ8eからの光方路の導入ポートを一の入力ポートとし、アッドされる光方路からの導入ポートを他の入力ポートとして、各入力ポートからの光を波長ごとに選択して出力ポートに導く。出力ポートから導かれた光は、OCM8hを経由して後段の光増幅装置4−3に出力される。尚、アッドされる光方路からの導入ポートの個数には特に限定はなく、一つでもよいし複数でもよい。
【0104】
WSS8gは、光カプラ8eからの光方路の導入ポートを一の入力ポートとし、ドロップ波長として選択された光が、出力ポートを通じてドロップされる光方路へ導かれる。ドロップされる光方路に導かれる出力ポートの数についても特に限定はなく、一つでもよいし複数でもよい。
【0105】
OCM8hは、WSS8fから光増幅装置4e(図25における符号4−3参照)に導かれる光について、波長ごとに(チャンネルごとに)光パワーをモニタする。そして、OCM8hにてモニタされた波長ごとのパワーの情報は、S/ASE比算出回路20に出力される。
【0106】
S/ASE比算出回路20においては、OCM8hからの情報を用いて、信号光を含むチャンネルについて導出するとともに、導出したチャンネルの光についてのS/ASE比を算出する。OCM8hからの情報を用いる点を除き、S/ASE比の算出態様は、図27の場合と同様である。
【0107】
したがって、図27の場合と同様、入力ASEパワー算出回路14dにおいては、S/ASE比算出回路20からのS/ASE比と、光検出器13aで検出される入力光パワーPin_totalと、を用いて、入力ASEパワーPin_ase算出することができる。又、補正パワー算出回路16では、このように算出された入力ASEパワーPin_aseを用いて補正パワーPaseを算出することができる。
【0108】
これにより、利得制御部17においては、補正パワー算出回路16で算出された補正パワーPaseを用いて、光増幅部11の利得制御に関連する信号利得Aを高精度に算出することができる。そして、高精度に導出された信号利得Aの情報を用いることにより、制御部17では目標利得に向けた制御を光増幅部11に対して行なうことができる。
【0109】
以上の実施形態に関し、更に下記の付記を開示する。
(付記1)
目標利得に制御される光増幅を行なう光増幅部と、
該光増幅部へ入力される自然放出光に応じた、該光増幅部でのスペクトラル・ホール・バーニングが生じる帯域の利得低下分に対応する補正パワーを算出する補正パワー算出手段と、
該補正パワー算出手段で算出した補正パワーを用いて、該光増幅部での光増幅の制御にかかる利得算出を行ない、算出された利得を用いて前記目標利得とする制御を行なう利得制御手段と、をそなえた、光増幅装置。
【0110】
(付記2)
該補正パワー算出手段は、
該光増幅部への入力光に含まれる自然放出光のパワーと、該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量と、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーと、に基づき、前記補正パワーの算出を行なう、付記1記載の光増幅装置。
【0111】
(付記3)
該利得制御手段は、
該補正パワー算出手段で算出した前記補正パワーを該光増幅部からの出力光パワーから差し引き、前記差し引いた結果と、該光増幅部への入力光のパワー情報とを用いて前記利得算出を行なう、付記1記載の光増幅装置。
【0112】
(付記4)
該光増幅部への入力光に含まれる自然放出光のパワーを算出する入力ASEパワー算出手段と、
前記補正パワー算出手段での算出処理に用いる情報を記憶する記憶手段と、をそなえ、
をそなえ、
該補正パワー算出手段は、該入力ASEパワー算出手段での算出結果および該記憶手段にて記憶している情報を、前記補正パワーの算出に用いる、付記2記載の光増幅装置。
【0113】
(付記5)
該記憶手段は、該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量の情報とともに、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーの情報を記憶し、
該補正パワー算出手段は、該記憶手段に記憶された情報を、前記補正パワーの算出に用いる、付記4記載の光増幅装置。
【0114】
(付記6)
該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量を信号波長配置に応じて求めるSHB利得低下量算出手段をそなえる一方、
該記憶手段は、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーの情報を記憶し、
該補正パワー算出手段は、該SHB利得低下量算出手段での算出結果と、該記憶手段に記憶された情報とを、前記補正パワーの算出に用いる、付記4記載の光増幅装置。
【0115】
(付記7)
該光増幅部は、他の伝送装置から送信され伝送路を通じて入力された光を前記入力光として増幅し、
該入力ASEパワー算出手段は、前記他の伝送装置から送信された光に含まれる信号光の波長多重チャンネル数の情報および前記伝送路のロスの情報とともに、前記入力光のパワーの情報又は前記波長多重チャンネルにおける単位チャンネルあたりの送信パワーの情報に基づき、前記入力光に含まれる自然放出光のパワーを算出する、付記4記載の光増幅装置。
【0116】
(付記8)
該光増幅部は、他の伝送装置から送信され伝送路を通じて入力された光を前記入力光として増幅し、
該入力ASEパワー算出手段は、前記他の伝送装置からの送信光に含まれる自然放出光パワーの情報,前記伝送路のロスの情報および前記入力光のパワーの情報に基づき、前記入力光に含まれる自然放出光のパワーを算出する、付記4記載の光増幅装置。
【0117】
(付記9)
該光増幅部は、他の伝送装置から送信され伝送路を通じて入力された光を前記入力光として増幅し、
該入力ASEパワー算出手段は、前記他の伝送装置から送信された光に含まれる、信号光の波長多重チャンネルごとの信号光パワー対自然放出光パワーの比に関する情報とともに、前記入力光のパワーの情報に基づき、前記入力光に含まれる自然放出光のパワーを算出する、付記4記載の光増幅装置。
【0118】
(付記10)
前記入力光のパワーを検出する入力光パワー検出器と、
該光増幅部で増幅され出力された出力光のパワーを検出する出力光パワー検出器と、をそなえ、
該利得制御手段での前記利得算出には、該入力光パワー検出器および出力光パワー検出器での各検出結果を用いることを特徴とする、付記1〜9のいずれか1項記載の光増幅装置。
【0119】
(付記11)
前記補正パワーは、該光増幅部に入力された自然放出光が増幅される分を除くとともに、該光増幅部への入力光に含まれる自然放出光に応じて該光増幅部で生じるスペクトラル・ホール・バーニングに起因した利得低下分を加味した、当該光増幅部で発生する自然放出光のパワーであることを特徴とする、付記1記載の光増幅装置。
【0120】
(付記12)
光増幅部での光増幅を目標利得で行なう制御を行なう光増幅装置の利得制御方法であって、
前記増幅部への入力光に含まれる自然放出光のパワーと、該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量と、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーと、に基づき、補正パワーを算出し、
前記算出した補正パワーの値を前記増幅部からの出力光のパワーの値から差し引き、前記差し引いた結果と、前記増幅部への入力光のパワーの値とを用いて、利得算出を行ない、
前記算出した利得を用いて、前記光増幅部での光増幅を前記目標利得とする制御を行なうことを特徴とする、利得制御方法。
【0121】
(付記13)
付記1記載の光増幅装置を用いた光伝送装置。
【0122】
(付記14)
光増幅部での光増幅の制御を目標利得で行なう利得制御装置であって、
該光増幅部へ入力される自然放出光に応じた、該光増幅部でのスペクトラル・ホール・バーニングが生じる帯域の利得低下分に対応する補正パワーを算出する補正パワー算出手段と、
該補正パワー算出手段で算出した補正パワーを用いて、該光増幅部での光増幅の制御にかかる利得算出を行ない、算出された利得を用いて前記目標利得とする制御を行なう利得制御手段と、をそなえた、利得制御装置。
【符号の説明】
【0123】
1,100 光通信システム
2 合波器
3 光伝送路
4,40,4−i,4a〜4d 光増幅装置
8,8−1,8−2,8A 光伝送装置
8a 分波器
8b スイッチ
8c 合波器
8d PD
8e 光カプラ
8f,8g WSS
8h OCM
11,41 光増幅部
11a 光アイソレータ
11b 励起光源
11c ビームコンバイナ
11d EDF
11e 光アイソレータ
12a,12b,12c 光分岐器
13a〜13c 光検出器
14,14a 入力ASEパワー算出回路
15,15a,15b,15d 記憶部
16,16a 補正パワー算出回路
17,47 制御部
17a,47a 利得検出部
17b,47b 誤差信号抽出部
17c,47c 励起光制御部
18 光フィルタ
19 信号波長配置算出回路
20 S/ASE比算出回路
42 利得等化器

【特許請求の範囲】
【請求項1】
目標利得に制御される光増幅を行なう光増幅部と、
該光増幅部へ入力される自然放出光に応じた、該光増幅部でのスペクトラル・ホール・バーニングが生じる帯域の利得低下分に対応する補正パワーを算出する補正パワー算出手段と、
該補正パワー算出手段で算出した補正パワーを用いて、該光増幅部での光増幅の制御にかかる利得算出を行ない、算出された利得を用いて前記目標利得とする制御を行なう利得制御手段と、をそなえた、光増幅装置。
【請求項2】
該補正パワー算出手段は、
該光増幅部への入力光に含まれる自然放出光のパワーと、該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量と、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーと、に基づき、前記補正パワーの算出を行なう、請求項1記載の光増幅装置。
【請求項3】
該利得制御手段は、
該補正パワー算出手段で算出した前記補正パワーを該光増幅部からの出力光パワーから差し引き、前記差し引いた結果と、該光増幅部への入力光のパワー情報とを用いて前記利得算出を行なう、請求項1記載の光増幅装置。
【請求項4】
該光増幅部への入力光に含まれる自然放出光のパワーを算出する入力ASEパワー算出手段と、
前記補正パワー算出手段での算出処理に用いる情報を記憶する記憶手段と、をそなえ、

該補正パワー算出手段は、該入力ASEパワー算出手段での算出結果および該記憶手段にて記憶している情報を、前記補正パワーの算出に用いる、請求項2記載の光増幅装置。
【請求項5】
該記憶手段は、該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量の情報とともに、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーの情報を記憶し、
該補正パワー算出手段は、該記憶手段に記憶された情報を、前記補正パワーの算出に用いる、請求項4記載の光増幅装置。
【請求項6】
該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量を信号波長配置に応じて求めるSHB利得低下量算出手段をそなえる一方、
該記憶手段は、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーの情報を記憶し、
該補正パワー算出手段は、該SHB利得低下量算出手段での算出結果と、該記憶手段に記憶された情報とを、前記補正パワーの算出に用いる、請求項4記載の光増幅装置。
【請求項7】
前記入力光のパワーを検出する入力光パワー検出器と、
該光増幅部で増幅され出力された出力光のパワーを検出する出力光パワー検出器と、をそなえ、
該利得制御手段での前記利得算出には、該入力光パワー検出器および出力光パワー検出器での各検出結果を用いることを特徴とする、請求項1〜6のいずれか1項記載の光増幅装置。
【請求項8】
光増幅部での光増幅を目標利得で行なう制御を行なう光増幅装置の利得制御方法であって、
前記増幅部への入力光に含まれる自然放出光のパワーと、該光増幅部においてスペクトラル・ホール・バーニングが生じる帯域の利得低下量と、入力に自然放出光が含まれない場合に前記増幅部で発生する自然放出光のパワーと、に基づき、補正パワーを算出し、
前記算出した補正パワーの値を前記増幅部からの出力光のパワーの値から差し引き、前記差し引いた結果と、前記増幅部への入力光のパワーの値とを用いて、利得算出を行ない、
前記算出した利得を用いて、前記光増幅部での光増幅を前記目標利得とする制御を行なうことを特徴とする、利得制御方法。
【請求項9】
請求項1記載の光増幅装置を用いた光伝送装置。
【請求項10】
光増幅部での光増幅の制御を目標利得で行なう利得制御装置であって、
該光増幅部へ入力される自然放出光に応じた、該光増幅部でのスペクトラル・ホール・バーニングが生じる帯域の利得低下分に対応する補正パワーを算出する補正パワー算出手段と、
該補正パワー算出手段で算出した補正パワーを用いて、該光増幅部での光増幅の制御にかかる利得算出を行ない、算出された利得を用いて前記目標利得とする制御を行なう利得制御手段と、をそなえた、利得制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate


【公開番号】特開2011−198978(P2011−198978A)
【公開日】平成23年10月6日(2011.10.6)
【国際特許分類】
【出願番号】特願2010−63704(P2010−63704)
【出願日】平成22年3月19日(2010.3.19)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】