説明

光学スプリッタ装置

光学スプリッタ装置および方法が提供される。装置は、大きな中空のコアを形成する壁(104)を有する導波管(102)を有することができる。導波管は、大きな中空のコアを介して光信号を誘導するように構成することができる。導波管(102)の少なくとも1つの壁(104)を貫く光タップ(108)を形成することができる。さらにプリズム(112)を導波管の大きな中空のコアの中に配置し、光タップ(108)と位置合わせすることができる。光タップ(108)を介して光信号の一部を導波管(102)の外に誘導するために、プリズム上にスプリッタコーティング(110)を設けることができる。

【発明の詳細な説明】
【背景技術】
【0001】
回路基板上のコンピュータチップの速度がさらに速くなってきたため、チップ間通信における通信ボトルネックがより重大な問題となりつつある。ボトルネックを回避するための可能な解決法の1つは、高速コンピュータチップを相互接続するのに光ファイバを使用することである。しかしながら、大半の回路基板は多くの層を含んでおり、要求される製造公差は1ミクロン未満であることが多い。光ファイバを物理的に配置しファイバをチップに接続することは、回路基板製造工程に広く採り入れるには余りに正確性を欠きかつ時間がかかりすぎる。
【0002】
回路基板周辺および回路基板の間に光信号を経由させると、余分な複雑さがかなり増すことになり得る。したがって市場性のあるチップ間の光学的相互接続は、広帯域データ転送に必要であるにも関わらず幻影であることが実証されている。
【図面の簡単な説明】
【0003】
【図1】単一モードレーザとビームスプリッタとに結合された大きなコアの中空導波管の断面図である。
【図2】ビームスプリッタ内に生じるビームのウォークオフを示す図である。
【図3】反射性の内部と、オフセットされた大きなコアの中空導波管に対する結合装置とを有する大きなコアの中空導波管に結合されたコリメートレンズを備えたマルチモードレーザの側面図である。
【図4】一実施形態による導波管内で光学スプリッタとして使用されるドーブプリズムの側面図である。
【図5】一実施形態による導波管に挿入されたドーブプリズム光学スプリッタの側面図である。
【図6】一実施形態による導波管内で光学スプリッタとして使用される反転したドーブプリズムの側面図である。
【図7】一実施形態による導波管内で光学スプリッタとして使用される直角プリズムの側面図である。
【図8】一実施形態による導波管内でエリアベースの光学スプリッタとして使用される直角プリズムの側面図である。
【図9】一実施形態による導波管内の光学プリズムスプリッタを構築するための方法を示すフローチャートである。
【図10】一実施形態によるシリコン基板上にパターニングされ金属被覆された導波管の側面図である。
【図11】一実施形態による接着層を使用して支持基板に接着されたシリコン基板の側面図である。
【図12】一実施形態による導波管および基板内に切削されたスロットの側面図である。
【図13】一実施形態による基板上の導波管内のスロットに挿入されたプリズムと導波管の上に装着されたカバーの側面図である。
【図14】一実施形態による徐々に大きくなる配列でサイズが決められた、導波管内のスロットに挿入されたプリズムの断面図である。
【図15】一実施形態による導波管内のスロットに挿入された形状が異なるプリズムを使用する図である。
【図16】一実施形態による導波管の壁の中に射出成型または型押しされた多様なサイズのスプリッタプリズムの断面図である。
【図17】一実施形態としてプリズムスプリッタが導波管のカバーと共に形成されるエリアベースプリズムスプリッタの図である。
【図18】一実施形態においてプリズムが光タップ内に設置されるエリアベーススプリッタの断面図である。
【発明を実施するための形態】
【0004】
回路基板上のコンピュータチップ間に光学式相互接続を形成するための1つの方法は、回路基板上に形成された光導波管を使用することである。リソグラフィ、機械的または同様の工程を使用して回路基板上に導波管を形成することができることから、光導波管は電子機器を相互接続する光ファイバ通信より優れている。導波管は典型的には、ポリマーおよび/または誘電体などの実質的に光透過性の材料によって回路基板上に形成される。リソグラフィまたは同様の工程を使用して作製された光導波管は、マイクロチップを備えたシリコンウエーハなど回路基板上に搭載されない他のタイプの基板の上に形成することもできる。付加的な例として、光導波管は、1つまたは複数の光導波管を有するリボンケーブルを形成するために可撓性の基板上に形成されてもよい。本明細書に開示される光導波管は、リソグラフィまたは同様の工程を使用して基板の上に形成される。
【0005】
このようなやり方で光導波管を形成することで、最近の多層回路基板上で使用するのに必要な物理的公差を有して構築される相互接続を実現することができる。しかしながら、基板に実装される導波管を形成するためにチップおよび回路基板の製造において使用され得るポリマー、誘電体および他の材料は典型的に、光ファイバと比べて著しくロスが大きい。実際のところ、基板に実装された導波管内でのロスの大きさは、光導波管による相互接続の容認を制限する要因の1つであった。導波管を構築するのに使用されるポリマーには、1センチメートル当たり0.1dBのロスがあり得る。対照的に光ファイバのロスは、1キロメートル当たり0.1dB前後である。したがって、光ファイバのロスと比べてポリマー導波管には数桁大きなロスがある可能性がある。
【0006】
さらに典型的な導波管は通常、それらが伝達するように設計される光の波長におおよそ比例する寸法を有するように作製される。例えば1000nmの光を伝達するように構成された単一モードの導波管は、1000nmから5000nm(1μmから5μm)の最大寸法を有することができる。このサイズの導波管の接続は費用がかかりかつ困難である。導波管を形成し接続するコストのせいで、最も一般的な用途におけるその使用は従来から少なかった。マルチモードの導波管は、コア領域に関して20−60μm程のより大きな寸法を有する可能性がある。シングルおよびマルチモードの導波管はどちらも相対的に高い開口数(NA)を有する。開口数によって放出ファイバからのビームの拡散が決まる。したがってNAがより大きいと、結果としてファイバ同士を分離させる機能としてのカップリングが不十分になる。このようなタイプの導波管を使用して、誘導された光ビームの分割およびタッピングを実現するのは難しい。
【0007】
ポリマーまたは誘電体を使用して形成される従前の光導波管に対する実質的な改良は、図1に示されるように、コヒーレント光ビーム1204を誘導するように構成された大きなコアの中空導波管1200を使用することである。大きなコアの中空導波管は、導波管が誘導するように構成されたコヒーレント光ビームの波長の50から150倍またはそれ以上に匹敵する直径(または幅および/または高さ)を有することができる。大きなコアの中空導波管は、正方形、矩形、円形、楕円形、または光信号を誘導するように構成された任意の他の形状の断面形状を有することができる。さらに導波管が中空であることから、光ビームは基本的に空気中または真空内を光の速度で進む。
【0008】
図1は、導波管1206内に単一モードのビーム1204を放出するレーザ1202を示す。光ビームの一部の方向を変えるのにスプリッタ1208が使用され、この光ビームは直交する導波管1212への反射ビーム1214として表される。伝送ビーム1210として表される残りの光ビームは、元のビーム1204と同一方向に続くことができる。
【0009】
ビームスプリッタ1208内で有意な大きさのビームウォークオフが生じ得ることを図2で見ることができる。ビームウォークオフは、中空の導波管(空気または真空の屈折率を有する)とビームスプリッタ間の屈折率の変化によって起こる現象である。例えば二酸化珪素で形成されたビームスプリッタは、1.45の屈折率を有する。Si34で形成されたビームスプリッタは、2.20の屈折率を有する。
【0010】
ビームは、ビームスプリッタに進入する際に屈折する。屈折が生じる角度は、導波管とビームスプリッタの屈折率の差に左右される。ビームウォークオフは、屈折によってビームが進む距離である。この距離は典型的には光学装置(この場合はビームスプリッタ)の厚さに比例する。ビームウォークオフによって中空の金属導波管内でモードの変位が生じる可能性があり、導波管の縁付近でのより高次のモードの励起に起因してロスが生じることになる。横方向の変位によって、伝送ビーム1210がビームスプリッタの後に現れる中空の金属導波管の区間1213の外に誘導されてしまう可能性すらある。
【0011】
光タップの拡大図が図2に概略的に示される。入射角は空気中ではθ1およびタップ手段内ではθ2として表される。光タップの厚さはdとして、タップ内の光線の長さはsとして、およびウォークオフの距離はxとして示される。タップ手段に入射するビームの形状に基づいて、
【0012】
【数1】

【0013】
【数2】

【0014】
式1を2に代入すると、以下の数式が得られる。
【0015】
【数3】

【0016】
ウォークオフ距離xを得るために、
【0017】
【数4】

【0018】
式(4)を使用してかつスネルの法則に従って、
【0019】
【数5】

【0020】
ビームの入射角、タップに対する媒介手段の屈折率、タップの厚さ、およびタップによって生じるウォークオフ距離の間の関係を得ることができる。
【0021】
ビームウォークオフは、比較的小型の導波管を使用すると誇張されて現れる可能性がある。例えばおよそ250μm(1/4ミリメートル)の厚さの比較的薄いビームスプリッタ1208が50μmの導波管内で使用される際でも、ビームスプリッタを介して進む伝送ビームのビームウォークオフは、75μm程、すなわち導波管の厚さの1.5倍の横方向のずれであり得る。ビームウォークオフの横方向のずれを補償するために、図3に示されるように導波管をずらすことができる。
【0022】
ビームウォークオフを補償する目的でそれぞれの分岐点で導波管の位置をずらすことによって、作製するのが複雑になる可能性がある。ビームウォークオフを最小限にするための代替案の1つは、ビームスプリッタの厚さを最小限にすることである。これは、2007年8月1日に出願された同時係属の米国特許出願番号11/832,559号に完全に開示されている。しかしながら極端に薄いビームスプリッタを使用することは、製作上の別の複雑さをもたらすことになり得る。いくつかの実施形態において、位置がずらされた中空の金属導波管を使用することは、薄型のビームスプリッタを使用するなど他の方法に対して経済的であり得る。
【0023】
導波管を通る光の経路が実質的に直線ではない場合、導波管内に有意なロスが生じる可能性がある。導波管内に生じる屈曲部または曲がり角によって光ビームが望ましくない回数跳ね返ることになり、かなりの大きさの減衰が生じる可能性がある。異なる方向に光信号を経由させることが可能になるように、ミラー、スプリッタおよびレンズを使用することができる。
【0024】
中空コアの導波管内のロスを減少させるために、図3に示されるように、導波管1400の内部を覆うために反射コーティング1413を塗布することができる。反射コーティングは、理解することができるようにめっき、スパッタリングまたは同様の工程を使用して形成することができる。中空導波管がポリマーまたは融点が低い他の材料を有する場合、スパッタリング、電気めっきまたは熱蒸着などの低温工程を使用して反射コーティングを塗布することができる。
【0025】
反射コーティング1413は、金属、誘電体、またはコヒーレント光ビームの波長において実質的に反射性のある他の材料の1つまたは複数の層で構成されてよい。金属はその反射率によって選択することができる。チャネルを覆う高い反射率の層が望ましい。例えば反射層は銀、金、アルミニウム、あるいは反射率の高い層を形成することができる任意の他の金属または合金を使用して形成されてよい。あるいは反射層は、選択された波長で実質的に反射する誘電材料の1つまたは複数の層から形成され得る誘電スタックであってよい。反射層が形成される前に、表面のいかなる粗さも滑らかにするために、コーティングされていない中空チャネルがヒートリフローにかけられる場合がある。また反射層が、ヒートリフロー、または蒸着工程中に生じる可能性のある反射層の表面の粗さを滑らかにする同様の工程を受ける場合もある。電解研磨を使用して反射金属表面を滑らかにすることもできる。
【0026】
光誘導装置が密閉されない場合、反射コーティング1413が経時的に酸化する可能性がある。反射コーティングの酸化は、その反射率をかなり低下させる可能性がある。金属コーティングの反射率の低下を緩和させるまたはなくすために、保護カバーとして作用するように反射コーティングの上に保護層1411を形成することができる。保護層は、コヒーレント光ビームの波長においてほぼ透過性である材料を有することができる。例えば保護層は二酸化珪素、または反射コーティングの上に実質的に気密な結合を形成することができる任意の他の材料で形成することができる。またこの保護層によって、ロスの多い反射層から伝播する光ビームをさらに分離することによって伝播ロスが減少する。
【0027】
反射面を備えた中空導波管は、中実の導波管とは作用が異なる。中空導波管は、光ファイバなど中実の導波管において典型的に生じるようなより高指数のコア領域とより低指数のクラッド領域との間の全反射によってではなく、反射層からの反射によって光を誘導する減衰された全反射の原理を使用して機能する。中空導波管内の光ビームは、理解され得るように全反射に必要な角度より大きな角度で反射することができる。
【0028】
理想的には、中空導波管内にコヒーレント光を誘導するのに単一モードレーザが典型的に使用される。しかしながら単一モードレーザは比較的高価である。反射内面を有する中空導波管を使用して比較的短い距離の間を高いデータレート信号を伝達するのに、垂直キャビティ面発光レーザ(VCSEL)などより低価格のマルチモードレーザが有益であり得ることがわかっている。チップ間および回路基板間を接続するために、例えばマルチモードレーザを使用して高いデータレート信号を大きなコアの中空反射導波管の中に誘導することができる。マルチモードレーザを使用することで光学相互接続のコストを有意に下げることができ、さらに広範な種類の電子デバイスを相互接続することが可能になる。しかしながらマルチモードレーザ出力は、大きな角度で伝播するより高次のモードの複数の反射に起因して、中空の金属導波管に直接結合される際著しく大きなロスが生じる可能性がある。
【0029】
マルチモードレーザ1402から放出されるより高次のモードの減衰を克服するために、レーザから放出されるマルチモードコヒーレント光線1406の経路内にコリメータ1404を配置することができる。コリメータは、1枚のコリメートレンズまたは一連のレンズであってよい。一実施形態において、コリメータはボールレンズとして構成することができる。ボールレンズは反射防止コーティングを有することができる。
【0030】
コリメータ1404は、レーザ1402から放出される、複数の多様なモードを生むマルチモードビーム、又は光線1406を平行にし、この複数のモードが大きなコアの中空導波管1400内をほぼ平行に進むようなコリメートビーム1408を形成する。マルチモードビームの平行化を使用して、導波管にほぼ平行な光線を放つことによって低ロスモードの中空の金属導波管にマルチモードレーザを有効に結合させ、導波管内に生じる反射の回数を実質的に減少させることができる。導波管内に生じるコリメートビームの反射は典型的には導波管の壁に対して比較的浅い角度で生じ、これにより導波管内での反射の回数が最小限になり、したがって中空導波管内の光ビームの減衰が緩和される。
【0031】
図3は、マルチモードレーザ1402がマルチモードコヒーレント光ビーム1406を放出するシステムを示す。マルチモードコヒーレント光ビームは、角度が広がる複数の光線を有する。先に述べたように光線が大きなコアの中空導波管1400内でほぼ平行になることができるように、光線はコリメータ1404を介して送信される。コリメータは単一のレンズであってよい。あるいはコリメータは、マルチモードコヒーレントビームの内の光線をほぼ平行にすることができるように構成された複数のレンズで構成されてもよい。
【0032】
実質的に平行になったマルチモードコヒーレント光ビームの反射された部分1414は、第1および第2の導波管に光学的に結合された結合装置1410を使用して第1の大きなコアの中空導波管1405から第2の大きなコアの中空導波管1409へと方向を変えられてよい。結合装置は、光ビームの少なくとも一部を第1の導波管から第2の導波管へと向け直すように構成することができる一方、残りのエネルギーが第1の導波管の中に留まることを可能にする。本発明の一態様によると、結合装置の幅および反射率は所望されるビームウォークオフの大きさを実現するように選択することができる。
【0033】
図1および図3は、大きなコアの中空導波管を介して平行になったレーザビームを誘導する例示の図を提示しているが、大きなコアの中空導波管の使用は、レーザ源からのコリメートビームまたはコヒーレント光ビームのみに使用を限定されるものではない。例えば平行になっていないレーザ光を大きなコアの中空導波管の中に導入することも可能である。より高次のモードは、より高次のモードが受けるより多くの回数の反射に起因して導波管内で必然的に選別される。したがって第1の導波管1405に入力される平行になっていない光ビームでさえ、伝送ビーム1412および反射ビーム1414に分割することができる実質的に平行になった光ビームとして第1の導波管から出て来ることが可能である。大きなコアの中空導波管はまた、発光ダイオードまたは実質的なコヒーレント光の別の光源から放出された実質的なコヒーレント光と共に使用される場合もある。
【0034】
先に述べたようにビームウォークオフは、結合装置内の光ビームの屈折によって生じる導波管内のビームのオフセットの大きさである。マルチモードコヒーレント光ビームのオフセットされた伝送部分1412が結合装置1410内でずらされた後、この部分を受信するために第3の大きなコアの中空導波管1407をずらすことができる。しかしながら図3に示されるようにずらされたまたはオフセットされた導波管を製作することは、製造工程全体を複雑にしかつ全体的な製造コストを増加させる可能性がある。
【0035】
図4は、オフセットされた導波管またはより高価な薄膜ビームスプリッタを必要とせずに、光ビームを分割することができる光学スプリッタ装置の一例を示す。例示の光学スプリッタ装置は、ビームウォークオフを修正するのにプリズムを使用する。光学スプリッタは、大きな中空のコア100を形成する壁104を有する導波管102を使用する。導波管は大きな中空のコアを介して光信号を誘導するように構成される。導波管の壁は先に記載したように、光信号を反射させ誘導する目的で金属被覆106を備えるか、またはそうでなければ内部反射コーティングを備えることができる。
【0036】
このシステムによって使用される光信号130またはビームは、単一モードまたはマルチモードレーザのいずれから発生させてもよい。レーザは、赤外線、可視光線または他の有益な光スペクトルを使用することができる。単一モードレーザは典型的には、反射を最小限にする目的で中空の導波管と併せて使用される。しかしながら平行になった光線を有するマルチモードコヒーレント光源を提供するために、マルチモードレーザをコリメータと組み合わせることができることが発見された。コヒーレントマルチモードレーザを使用することで製造コストを有意に削減することができる。さらにコヒーレントマルチモード光源を使用することで、導波管を使用して高いデータレート信号を伝達することが可能になる。発光ダイオードまたは赤外線発光ダイオードなどの他の形態の実質的なコヒーレント光を使用することもできる。
【0037】
平行になったマルチモードコヒーレント光ビームは、大きなコアの中空導波管のかなりの部分を占めることができる。導波管とマルチモードビームとの接触を最小限にし、かつ反射の回数を減少させるために、ビームは導波管の中心付近に向けられてよい。
【0038】
導波管102の少なくとも1つの壁を貫く光タップ108を形成することができる。光信号の一部を主要な光信号から分割させ光タップを介してこれを経由させることができるように、光タップは導波管の頂部を切り開くことができる。光タップを介して反射された光信号を検知するために光センサ120を設けることもできる。
【0039】
導波管102の大きな中空のコア100の中にプリズム112を配置することができ、このプリズムは光タップ104と位置合わせされてよい。プリズムは、伝送ビームをプリズムの内面から離れるように反射することによって生じたウォークオフを使用して、プリズムを通過する光信号を導波管の中に戻るように向け直すように構成される。伝送された光信号134またはビームは、プリズムに進入するのと同じ向きで、またはプリズムおよびプリズム上で使用されるコーティングによって規定される別の向き(例えば異なる角度および/または偏光)で導波管内へと向け直すことができる。
【0040】
図4は、ドーブプリズム112が、同一チャネル(オフセットされていないチャネル)に戻るようにビームの方向を変えるのに使用されるタイプのプリズムであり得ることを示しているが、他のプリズム形状および多角形プリズムを使用することもできる。プリズムは、対象の波長に対して透過性の光学用材料で作製することができる。対象の光波長は例えば、1350nmから1500nmの間、または850nmから980nmの間であってよい。プリズム材料の例は、光学シリコンガラス、光学プラスチック、石英および光学目的に有益な別のタイプの結晶であってよい。
【0041】
プリズムは、光タップ108を介して光信号132の一部を導波管の外に反射させるために、プリズム上にスプリッタコーティング110を有することができる。スプリッタコーティングは、二酸化珪素、二酸化タンタル、二酸化チタン、多層誘電体、薄い金属コーティングまたは任意の他の既知のスプリッタコーティングなどの誘電コーティングであってよい。プリズム上のコーティングは、独立するビームスプリッタを偏光させる用途では偏光に影響されないことが好ましい。使用されるスプリッタコーティングのタイプおよび厚さは、コーティングの所望の分割比および偏光特性に左右される。
【0042】
受光面上のスプリッタコーティング110に加えて、ドーブプリズムは、出射面上に反射防止コーティング116を有することができる。この反射防止コーティングによって伝送ビームがプリズムから外に有効に通過することが可能になる。ドーブプリズムはまた、ドーブプリズムのベース114上に全反射を有するように構成されてよい。シリコン基板とプリズムの間にエアギャップ210を形成するまたは残すことによって全反射を形成すことができる。全反射は、現行の状況でのようにビームがより高い反射率を有する媒体からより低い反射率を有するものへと移動する際に生じ得る。あるいは所望の反射を実現するためにドーブプリズムのベースを金属被覆することもできる。分割されない入射光信号またはビームはプリズムの中へと伝送され、ドーブプリズムのベース114から離れるように反射される。その後伝送ビーム134はプリズムを通過し、プリズム媒体に対する空気および空気界面に対する媒体における対称的な屈折によってウォークオフが補償されることから、プリズムを通過した後ウォークオフが生じることなく導波管内に再び進入する。
【0043】
言及したように、伝送ビームを導波管内に戻るように向け直すことができるということは、そうでなければ恐らく必然的にウォークオフの原因となる導波管経路の複雑さを緩和させるので、有益である。ビームをずらされていない導波管の中に戻すビームスプリッタを設けることによって、導波管の経路を簡素化することができる。詳細には、オフセットされた導波管または同様の調整装置を形成せずに済むことによって、導波管システム全体を作製するのが容易になり全体的な減衰を緩和させることができる。
【0044】
図5は、ドーブプリズムが導波管の中に挿入されている装置を製作する方法の一例である。最初に大きなコアの中空の導波管チャネルが形成される。その後導波管の側壁に開口を形成することができる。開口は、鋸引き法、レーザアブレーション、エッチングまたはフォトリソグラフィ工程を使用して形成されてよい。次にドーブプリズム112を導波管チャネルの中に挿入し、所定の位置に固定することができる。その後、反射された光信号を光センサまたは検知器120に向けて外に出るように経由させることができるように、スロット開口を備えた導波管カバーを導波管チャネルに加えることができる。
【0045】
図4および図5の表示された実施形態において、光センサ120は、導波管の位置から実質的にずらされて示されている。しかしながら光センサは、導波管に直接隣接して配置されてもよい。
【0046】
図6は、導波管内での反転したドーブプリズム310の使用を示す。反転したドーブプリズムはウォークオフを使用して機能することができるが、光信号を分割するのにドーブプリズムの異なる面が使用されてよい。反転したドーブプリズムは、反転したドーブプリズムの反転したベース上にスプリッタコーティング112を有することができる。反転したドーブプリズムの入射面110と出射面116の両方に反射防止コーティングを配置することができる。この構成により入射光信号または光ビームをセンサ120に到達する反射ビーム132と、導波管内に戻される伝送ビーム134とに分割することが可能になる。
【0047】
図7に示されるように、ビームウォークオフを修正する同様の結果を達成するのに他のタイプのプリズムを使用することもできる。例えば導波管内に配置されたプリズムは三角プリズムであってよい。より具体的には、三角プリズムは直角プリズム410であってよい。直角プリズムは、入射面上にスプリッタコーティング412を、出射面416に反射防止コーティングを有することができる。入射光信号または光ビームは、センサ420に到達する反射ビーム432と、導波管内に戻される伝送または復帰ビーム434に分割される。
【0048】
直角プリズムの斜辺414は、ウォークオフによって導波管内に戻るように屈折させられたビームの方向を変えるのに全反射を使用することができる。第1の大きさのウォークオフによってビームの方向が変えられた後、ビームは入射角で斜辺に当たって跳ね返り、その後第2の大きさのウォークオフが伝送ビームを同一の導波管チャネル内に戻るように向け直す。反射ビームは、それがプリズムに進入するのと同じ角度で導波管内に戻るように送信されてよい。あるいは光線は、プリズムの実際の幾何学形状およびプリズムコーティングに応じて、元々それがプリズムに進入した角度とは異なる角度でプリズムから外へと進む場合もある。
【0049】
図8は、エリアベースビームスプリッタとしての三角プリズムまたは直角プリズムの使用を示す。誘導されたビームは伝播する間導波管をいっぱいに満たすため、光信号を90度分割させるために導波管の特定の領域が45度の角度の反射面として形成された場合、ビームの一部を反射することができる。分割比は、伝播するビームのモード形状に依存する導波管内の伝播領域と反射領域との比におおよそ依存する。
【0050】
分割比が変わる複数の分割ポートを備えた導波管構造体を構築するために、複数の三角プリズム510、518は、プリズムの斜辺512に塗布された金属被覆された反射層を有することができる。これらのプリズムは、徐々に大きくなる高さで導波管100内に挿入することができる。プリズムがその上に配置されるステップ550、558を形成するために導波管およびシリコン基板内に鋸引きまたは機械で形成され得るいくつかのクロススロットを使用して、導波管にプリズムを挿入することができる。プリズムは、それらがステップに挿入される際シリコン基板に固定されてよい、あるいは高さまたは大きさが変化するプリズムが基板上に直接形成される場合もある。
【0051】
エリアプリズムは、光ビームの所望の部分を検知器120に向けて反射させるのに十分離れて導波管に挿入される。例えば第1エリアプリズムは、光ビームの最も下の部分530を反射させることができる。その後プリズムが共に十分に近接する場合、光ビームの次の高さの部分536を第2エリアプリズムが反射させることができる。全ての光ビームが導波管の外に反射されるまで、光ビーム540の残りの部分を反射する図面に示されない追加のプリズムスプリッタまたは反射器があってもよい。導波管断面の一部をおおうプリズムの領域によっておおよその分割比が決まる。
【0052】
第1プリズムと第2プリズムが十分に離されている場合、エリアベーススプリッタによって反射されないビームの残りの部分は伝播する間導波管チャネルを完全に満たし、その結果第2プリズムが占める領域の割合によって分割比が決まる。呈示されている設計は、光信号を経由させるために一連のビームスプリッタが導波管に組み込まれる光学バス構成において特に有効であり得る。
【0053】
大きな中空のコアを有する導波管のための光学スプリッタ装置を製作するための例示の方法が次に記載されており、各過程は別々の図において断面作製図に関連して記載される。図9は、ブロック610としてシリコン基板内に中空のチャネルを形成する最初の過程を示すフローチャートである。図10は、シリコンウエーハなどのシリコン基板720の頂部での導波管710の形成を示す。導波管は、鋸引き法、型押し、レーザパターニング、フォトリソグラフィまたは他の半導体製造技法によって形成することができる。例えばシリコン基板上にフォトレジストをパターニングし、その後露光プロセスを使用してシリコン基板の不要な部分を取り除くことによって導波管を形成することができる。この工程の結果として、底部および側壁を備えた中空のチャネルを形成することができる。例えばシリコン基板のパターニングはさらにフォトレジストを塗布する、フォトリソグラフィ工程を利用する、ドライエッチング工程を利用するおよび清浄工程を使用するステップを含むことができる。
【0054】
あるいは鋸引き工程によってシリコン基板内にチャネルを鋸引きすることができる。例えば導波管のチャネルを切削するのにダイシングソーを使用することができる。ダイシングソーは、半導体ウエーハ、シリコン、ガラス、セラミック、結晶体および多くの他のタイプの物質をダイスカットする、切削するまたは溝を形成するのに薄いダイアモンドブレードまたはダイアモンドワイヤに適合した高速スピンドルを利用してよい。
【0055】
導波管チャネルが形成されると、その後ブロック620でのように中空のチャネル反射を形成するために中空のチャネル内に金属を堆積させることができる(図6)。金属の堆積は、AIN(窒化アルミニウム)保護層を塗布すること、およびその後の基板の金属層の粘着性を高めるための緩衝層としてチタンを有する反射用の銀を塗布することを含むことができる。先に記載したように、反射層を形成するのに他の金属を使用することもできる。チャネル内のこの反射面が導波管チャネルを形成する。
【0056】
図11は、第1のシリコン基板または第1のシリコンウエーハに対する別のシリコンウエーハ800の接着を含む方法の任意のステップを示す。接着層810によって第2ウエーハを接着することができる。第1のウエーハに第2のウエーハが接着され得る理由は、次の鋸引きステップのための準備のために全体の基板の深さを大きくするためである。さらに2つのウエーハ間の接着は、深い切削に関連する応力を緩和させる傾向があり、機械的完全性を与える。十分に厚みのあるシリコン基板が使用される場合、この過程が必要とされない場合もある。
【0057】
別の過程は、図9のブロック630でのように導波管を横切る深さスロットを鋸引きすることである。図12は、深さスロットの距離が光信号源から大きくなるほど、それぞれの深さスロット910、912、914の深さが徐々に小さくなることを示している。深さスロットは、導波管にほぼ直交して鋸引きされる、または特定の光学用途が選択されるとき他の角度で鋸引きすることができる。スロットの深さは、プリズムの大きさ、所与のプリズムに関して所望される分割比を達成するのに必要なエリア比、および導波管チャネル内での誘導されたビームのモード特性に左右される。
【0058】
その後、図9のブロック640でのように深さスロットに直角プリズムを挿入することができる。図13に示されるように、各プリズム950、952、954は、プリズムの斜辺に金属コーティングまたは他の反射率の高いコーティングを有することができる。したがって直角プリズムは、斜辺が入射光信号に向けられるように構成される。これらのエリアベーススプリッタはその後、各スプリッタそれぞれが占める導波管の領域に基づいて光信号またはビームを導波管の外に反射させることができる。図13に表される構成は必ずしもある縮尺で描写されているわけではなく、段差のある支持構造体と、導波管の選択された断面から導波管の外のある地点(例えばセンサ)にほぼ全ての光を反射させる斜辺を有するプリズムと、を使用するエリアベーススプリッタ構造の単なる例示である。
【0059】
最後の過程は、図9のブロック650でのように中空のチャネルの上にカバーを適用するステップである。鋸引きが行なわれる前にカバーを適用することもできるが、本開示に記載される過程の順序は任意の有効な順序で行なうことができる。図13はさらに導波管カバー960を示す。導波管カバーは、直角プリズムから導波管の外のある地点に光を誘導することができるスロットを含む。例えばこの導波管の外にある地点が、光センサ、マイクロレンズアレイまたは他の導波管チャネルを有する場合もある。可変の分割比を実現するための代替の方法は、一定の深さスロットと共に大きさが異なるプリズムを使用することである。この方法において、プリズムを挿入するためのスロットが一定の深さで切削される一方、挿入されるプリズムは所望の分割比を提供するために徐々に高さが高くなるように形成される。
【0060】
図14は、カバー1420を備えた基板1412と共に形成された導波管1410の断面図である。一実施形態によると、徐々にサイズが大きくなるプリズム1414、1416、1418がスロットに挿入される。このタイプのエリアベースプリズム分割では、他の実施形態のように基板内に形成されたステップの高さが高くなる代わりにプリズムのサイズを大きくすることができる。したがって基板内で均一のステップ高さを使用することができ、分割比を変えるために、プリズムが光ビーム源から離れて配置されるほどプリズムのサイズを大きくすることができる。典型的にはこれらのタイプのエリアスプリッタは、各スプリッタの間での導波管内の光信号の拡張を避けるために比較的共に近接して配置される。
【0061】
図15は、一実施形態による導波管内のスロットに挿入された形状が異なるプリズムの断面図である。直角プリズム1502、ドーブプリズム、正三角形1506、六角形、八角形および他の多角形1504など所望の角度で導波管から外にビームを反射するのに適した表面を有する多くのプリズム形状を使用することができる。
【0062】
図16は、射出成型プラスチックまたは同様の材料を使用して基板上に作製することができる導波管1620に使用される多様な大きさのプリズム1610の使用を示す断面図である。プリズムの表面は先に述べたように金属被覆することができる。あるいはこのようなプリズムは、スプリッタプリズムを形成するために導波管の壁から型押しされるまたは鋸引きすることができる。上記に記載されるエリアベーススプリッタは、射出成型、型押し、鋸引き法および同様の製造工程を使用して一体式の形態で基板上または基板内に直接作製することができる。
【0063】
図17は、導波管1710のカバーまたは壁と一緒に形成されるエリアベースプリズムスプリッタを示す。これらの反射プリズムスプリッタ1710、1720、1730は、型押し、機械打ち抜き加工または同様の製造法を使用して導波管の壁の中に形成することができる。
【0064】
図18は、プリズムが光タップを介して設置される導波管1800内のエリアベーススプリッタの断面図を示す。導波管カバー1810は、光タップ内に設置され光タップ領域内にある三角形または多角形プリズムを支えるプリズム取付け台1820、1830を有することができる。三角形の斜辺1840は、金属被覆法または他の技法を使用して反射を形成することができる。したがって入射ビームは、反射防止コーティングを有する面を介してプリズムに進入し、反射性の斜辺を使用して光タップから外に反射される。
【0065】
上記に記載される方法は直角スプリッタなどのエリアスプリッタに効果的である上に、同様の鋸引き法またはフォトエッチング工程を使用してドーブプリズムのための場所を形成することも可能である。導波管の形成と、ドーブプリズムを導波管内に組み入れるのに使用される金属被覆工程はほぼ同じものである。しかしながらドーブプリズム用に導波管内に鋸引きされたスロットはそれぞれ同一の深さを有し、その後ドーブプリズムが導波管のスロットに挿入される。ドーブプリズムは光信号または光の一部を伝送するように構成されており、よってドーブプリズムを導波管内の所望の場所に直接挿入することができる。
【0066】
代替の実施形態は、ドーブプリズムをエリアスプリッタとして使用することができる。これは三角プリズムに関して示してきたものと同じ方法でドーブスプリッタの大きさを変えることによって行なうことができる。この方法では、選択された光の量がドーブプリズムを越えて通過し、別のドーブスプリッタに達することができるようにドーブスプリッタを構成することができる。
【0067】
大きなコアの中空導波管を使用して1つまたは複数の回路基板またはシリコンウエーハ上に配置された電子デバイスを相互接続することができる。電子デバイスは、光導波管内を伝送するように光出力に変換された電気出力および入力を有してよい。あるいは電子デバイスは、変換する必要のない光信号を伝送および受信する光学デバイスであってよい。導波管の内部に反射コーティングを備えた大きなコアの中空導波管は、中実コアの導波管と比べて導波管を介して誘導される光信号のロスを大きく減少させることができる。中空の導波管の内部にある反射コーティングによって、導波管内の光信号の反射によって生じるロスを最小限にすることができる。プリズムスプリッタを使用することでウォークオフを修正し、かつプリズムを介して伝送されたビームがこのビームが受信されるのと同じ角度で同一の導波管に戻ることが可能になる。さらに導波管内でプリズムが占める領域に基づいて光信号の一部を誘導するために、プリズムに反射コーティングを設けることができる。
【0068】
前述の例は1つまたは複数の特定の用途における本発明の原理の例示であるが、発明的能力を行使することなくかつ本発明の原理および概念から逸脱することなく、形態、利用法および実施の詳細に多数の修正を行なうことができることは当業者には明らかである。したがって本発明は、以下に記載する特許請求の範囲による限定を除いて限定されることを意図していない。

【特許請求の範囲】
【請求項1】
大きな中空のコア(100)を形成する壁(104)を有し、前記大きな中空のコアを介して光信号(130)を誘導するように構成された導波管(102)と、
前記導波管の1つの壁を貫いて形成される光タップ(108)と、
前記導波管の前記大きな中空のコアの中にあり前記光タップと位置合わせされるプリズム(112)と、
前記光信号の一部を前記光タップを介して前記導波管の外に誘導する、前記プリズム上のスプリッタコーティング(110)と、
を備える光学スプリッタ装置。
【請求項2】
前記プリズムはドーブプリズムまたは反転したドーブプリズムであり、それぞれが前記プリズムを介して伝送された光信号をウォークオフによって前記導波管内に戻るように向け直すように構成されている、
ことを特徴とする請求項1に記載の光学スプリッタ装置。
【請求項3】
前記ドーブプリズムは、受光面にスプリッタコーティングを有し、出射面に反射防止コーティングを有し、かつ前記ドーブプリズムのベースにおいて全反射を有する、
ことを特徴とする請求項2に記載の光学スプリッタ装置。
【請求項4】
前記反転したドーブプリズムは、前記反転したドーブプリズムの反転したベース上にスプリッタコーティングを有し、前記反転したドーブプリズムの入射面と出射面に反射防止コーティングを有する、
ことを特徴とする請求項2に記載の光学スプリッタ装置。
【請求項5】
前記導波管内に配置された前記プリズムは三角プリズムである、
ことを特徴とする請求項1に記載の光学スプリッタ装置。
【請求項6】
前記三角プリズムは、前記三角プリズムの斜辺に塗布された反射性の金属被覆コーティングを有し、前記三角プリズムは、前記プリズムを介して伝送された光信号をウォークオフによって前記導波管内に戻るように向け直すように構成される、
ことを特徴とする請求項5に記載の光学スプリッタ装置。
【請求項7】
前記プリズムは、導波管カバーから形成された支持体を使用して前記光タップ内に設置される、
ことを特徴とする請求項1に記載の光学スプリッタ装置。
【請求項8】
光学信号源からの距離が大きくなるにつれてサイズが大きくなる複数のエリアベースプリズムをさらに備える、
ことを特徴とする請求項7に記載の光学スプリッタ装置。
【請求項9】
前記プリズムは、斜辺に塗布された反射性の金属被覆コーティングを有する複数の直角プリズムをさらに備え、前記直角プリズムは前記導波管内でエリアベーススプリッタとして使用される、
ことを特徴とする請求項1に記載の光学スプリッタ装置。
【請求項10】
複数のプリズムが、射出成型、型押しおよび打ち抜き加工から成る群から選択された工程を使用して導波管の1つの壁に対して形成される、
ことを特徴とする請求項1に記載の光学スプリッタ装置。
【請求項11】
大きな中空のコアを有する導波管のための光学スプリッタ装置を製作するための方法であって、
シリコン基板内に中空のチャネルを形成することと(610)、
前記中空のチャネルを反射性にして導波管を形成するために前記中空のチャネル上に金属を堆積させることと(620)、
前記導波管を横切る深さスロットを、前記深さスロットの距離が光信号源から大きくなるにつれて前記深さスロットそれぞれの深さが徐々に小さくなるように、鋸引きすることと(630)、
斜辺上に金属被覆コーティングを有する直角プリズムであって、前記直角プリズムの斜辺が入射光信号に向かって配向される直角プリズムを前記深さスロット内に挿入することと(640)、
前記中空のチャネルの上にカバーを適用することと(650)、
を含むことを特徴とする方法。
【請求項12】
前記中空のチャネルを形成することは、ダイシングソーを使用して前記シリコン基板内に前記中空のチャネルを鋸引きすることを含む、
ことを特徴する請求項11に記載の方法。
【請求項13】
第2のシリコンウエーハを第1のシリコンウエーハの底部に接着するステップをさらに含む、
ことを特徴する請求項11に記載の方法。
【請求項14】
前記シリコン基板をパターニングする前記ステップは、フォトレジストを塗布するステップ、フォトリソグラフィ工程を利用するステップ、ドライエッチング工程を利用するステップ、および清浄工程を使用するステップをさらに含む、
ことを特徴する請求項11に記載の方法。
【請求項15】
大きな中空のコアを有する導波管のための光学スプリッタ装置を製作するための方法であって、
シリコン基板内に中空のチャネルを形成することと、
前記中空のチャネルを反射性にしかつ導波管を形成するために前記中空のチャネル上に金属を堆積させることと、
前記導波管を横切る深さスロットであって、深さスロットがそれぞれ同一の深さを有する深さスロットを鋸引きすることと、
前記深さスロットにドーブプリズムを挿入することと、
前記中空のチャネルの上にカバーを適用することと、
を含むことを特徴とする方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公表番号】特表2011−523714(P2011−523714A)
【公表日】平成23年8月18日(2011.8.18)
【国際特許分類】
【出願番号】特願2011−508471(P2011−508471)
【出願日】平成20年5月9日(2008.5.9)
【国際出願番号】PCT/US2008/063325
【国際公開番号】WO2009/136948
【国際公開日】平成21年11月12日(2009.11.12)
【出願人】(511076424)ヒューレット−パッカード デベロップメント カンパニー エル.ピー. (155)
【氏名又は名称原語表記】Hewlett‐Packard Development Company, L.P.
【Fターム(参考)】