説明

内燃機関の加熱可能な排気センサを診断する方法及び診断装置

本発明は、内燃機関の加熱可能な排気センサ(11)を診断する方法(71)であって、電圧源(41、51)を用いて、事前に定められた、時間的に変化する又は不変の電圧(U、U)が生成され、電圧(U、U)が、排気センサ(11)の端子(APE、RT、IPN、RE、ALE、IPE、37)に印加され、電圧(U、U)が印加された際に電圧源を通って流れる電流(l、l)が検出され、電流(l、l)が排気センサ(11)の診断のために評価され、又は、電圧源(41、51)を用いて、事前に定められた、時間的に変化する又は不変の電流(l、l)が生成され、電流(l、l)が、排気センサ(11)の端子(APE、RT、IPN、RE、ALE、IPE、37)に印加され、電流(l、l)が印加される際に印加される電圧(U、U)が検出され、電圧(U、U)が排気センサ(11)の診断のために評価される、上記方法(71)に関する。排気センサの確実で的確な診断を可能とし(71)、排気センサの起こり得るエラーの形態を明言することを可能とする(71)、排気センサ(11)を診断する方法(71)を提示するために、本方法(71)が、内燃機関の開ループ制御及び/又は閉ループ制御素子とは独立して実施され、排気センサ(11)の作動温度が、開ループ制御及び/又は閉ループ制御素子とは別体の調整素子(59)によって所定の温度値に調整されることが提案される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1の上位概念に記載の、内燃機関の加熱可能な排気センサを診断する方法、及び、請求項15の上位概念に記載の診断装置に関する。
【背景技術】
【0002】
内燃機関、特に車両のための内燃機関が、1つ又は複数の排気センサを具備することが一般的に知られている。排気センサは通常、内燃機関の開ループ制御及び/又は閉ループ制御素子と接続されており、従って、当該開ループ制御及び/又は閉ループ制御素子は、内燃機関の燃焼室から発生する排気に関する情報を集めることができる。排気センサとして、内燃機関内には通常、少なくとも1つのラムダセンサが設けられており、当該ラムダセンサによって、排気中の酸素濃度が検出されうる。これにより、燃焼室内の空燃比の推測が可能となり、従って、内燃機関は、例えば排気規制が遵守されるように、調整することができる。
【0003】
ラムダセンサは、所謂スプリングセンサ(Sprungsonde)と、広帯域センサと、に分けられる。広帯域センサはさらに、単セル型広帯域センサ(Einzellen−Breitbandsonde)として、又は、二セル型広帯域センサ(Zweizellen−Breitbandsonde)として構成されうる。スプリングセンサは、λ=1の範囲内にある排気の空気過剰率については、かなり高い感度を有する。ほぼλ=1の範囲内にない空気過剰率については、スプリングセンサの感度は比較的低い。従って、排気中の空気過剰率が継続的に上昇する場合には、空気過剰率がほぼλ=1の範囲内に入ると直ぐに、スプリングセンサにより生成された出力信号の上昇が起こる。これに対して、広帯域センサは、空気過剰率の値λ=1の範囲の外でも、比較的高い感度を有する。
【0004】
近代的な内燃機関は、通常では1つ又は2つのラムダセンサを有し、オット内燃機関のためには、スプリングセンサ及び/又は広帯域センサが利用される。ディーゼル内燃機関は、圧倒的に広帯域ラムダセンサを有する。
【0005】
内燃機関の稼働中に、開ループ制御及び/又は閉ループ制御ユニットは、ラムダセンサ、例えば内燃機関のラムダセンサ及び更なる別のセンサにより生成されたセンサ信号を集め、当該センサ信号に従って内燃機関を駆動する。センサのエラーを検出できるために、開ループ制御及び/又は閉ループ制御素子は、内燃機関の稼働中に個々のセンサ信号を検査する。この場合、通常では、電気的エラー(例えば、短絡、又は、導線の切断)が存在するかという程度まで信号が検査される。このために、例えば、センサ信号が許容可能な値の範囲内にあるかどうかが検査される。更に、開ループ制御及び/又は閉ループ制御素子は通常、システムエラーが存在するかどうか検査する。システムエラーは、例えば、様々なセンサによって集められた値が互いに矛盾する場合に検出される。開ループ制御及び/又は閉ループ制御素子は、電気的エラー及び/又はシステムエラーを検出すると、エラーの発生をエラーメモリに記憶させる。
【0006】
例えば修理の準備のために、又は、内燃機関、若しくは内燃機関が組み込まれた車両のメンテナンスの際に実行される公知の診断方法は、例えばエラーメモリに格納された情報を参照する。これにより、ある程度の、ラムダセンサの機能性についての帰納的推理が行われうる。しかしながら、内燃機関の稼働中に、内燃機関の様々な構成要素間の複雑な相互作用が発生するため、個々のラムダセンサの、十分に確実で信頼できる診断が可能ではない。例えば、電気的エラーが検出されると、通常では、エラーがラムダセンサの故障によるものなのか、又は、開ループ制御及び/又は閉ループ制御素子、特に、ラムダセンサのセンサ信号のための評価回路が故障しているのかについて確実に確認しえない。更に、システムエラーは、多くの場合に、例えば特定のラムダセンサのような特定のセンサに対応付けられていない可能性がある。実際には内燃機関の他の構成要素、特に内燃機関の他のセンサが正確に機能していないにもかかわらず、ラムダセンサが故障していると誤って検出される危険性が生じる。従って、内燃機関に故障が発生すると、公知の診断方法を利用した場合には、実際に故障している構成要素が最終的に確認されるまで、エラー探索が長時間行われることになる。ラムダセンサのエラーの形態の確実な帰納的推理は、公知の診断方法では事実上不可能である。
【0007】
単セル型広帯域ラムダセンサ、及び、二セル型広帯域ラムダセンサは、例えば、独国特許出願公開第102006014266号明細書で公知である。更に、独国特許出願公開第19716173号明細書には、ラムダセンサの電極と、ラムダセンサの発熱素子と、の間の漏電を検出ことが開示されている。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の根底には、排気センサの確実で的確な診断を可能とし、排気センサの起こり得るエラーの形態を明言することを可能とする、内燃機関の排気センサを診断する方法を提示するという課題がある。その装置という観点において、本課題は、本方法を実施するように構成された診断装置を提示することにある。
【課題を解決するための手段】
【0009】
これらの課題のそれぞれは、従属請求項に記載の特徴によって解決される。排気センサは、好適にラムダセンサ、特に、スプリングセンサ、単セル型広帯域センサ、又は、二セル型広帯域センサである。本発明にかかる方法により排気センサを診断する際に、排気センサの様々なパラメータが、内燃機関の他の構成要素とはほぼ完全に独立して検査されうる。特に、内燃機関の他のセンサとの相互作用が排除される。開ループ制御及び/又は閉ループ制御素子のエラーメモリへのアクセスは必要ではない。排気センサの温度、特に、排気センサのセンサ素子の温度の調整によって、排気センサは、定められた動作点に置かれ、従って、有効性及び再現可能性の高い診断結果が伝達される。
【0010】
本方法は、好適に、内燃機関が停止し稼動中でない場合に実施される。ここでは、排気センサは、内燃機関に組み込まれた状態であり得る。しかしながら、本発明にかかる方法に従った診断は、内燃機関から取り出された排気センサでも実施されうる。
【0011】
全体として、本発明にかかる方法によって、排気センサのエラーの迅速で確かな検査が可能となる。更に、修理又はメンテナンスの枠組みにおいてのみならず、排気センサ、内燃機関、又は、内燃機関が組み込まれる車両の製造プロセスの末端でも実施することが可能な、排気センサの比較的詳細な調査(Befundung)が行われる。今正に製造された車両が正確に機能しないことが判明した場合に、本方法を実施することも構想可能であり、従って、本発明にかかる方法によって、エラーの形態をより正確に分析することが可能である。このようなより正確な分析は、「ゼロキロメータ所見」(“Null−Kilometer−Befundung”)とも呼ばれる。更に、顧客から製造元の保証が求められている車両のラムダセンサが、本発明にかかる方法によって検査されうる。
【0012】
排気センサのセル、特にポンプセル(二セル型センサの場合)、又は、統合型ポンプ及び測定セル(kombinierte Pump‐ und Messzelle)(単セル型センサの場合)の電極と接続された端子に電圧が印加され、従って、電流として、損傷のない排気センサのセルにより流れるポンプ電流が検出されることは好ましい。検出されたポンプ電流の評価によって、排気センサが機能しうるのか、又は、排気センサがエラーを有するのかを検査することができる。
【0013】
その際、電圧が相前後して異なる電圧値を有し、これら電圧値の少なくとも2つのために、電流の対応する電流値が検出されるように、電圧が段階ごとに交互に変更されことは好ましい。対応する電圧値がそのために検出される2つの電圧値は同じであることは好ましい。
【0014】
その際、電流値の評価により、好適に電流値を互いに比較することにより、印加された電圧と検出された電流との間の依存性に関するヒステリシスが検証されることは好ましい。様々な時点に印加される2つの同じ電圧値について、正に2つの電流値が検出される場合に、ヒステリシスの尺度として上記2つの電流値の間の差分が援用されうる。この差分の値が所定の閾値よりも大きい場合には、欠陥、特に、黒色化(Schwarzfaerbung)、即ち、セルの電極のうちの1つにおける、過負荷による/高電圧が高過ぎることによるセラミックの縮小(Keramikreduzierung)が推測される。
【0015】
さらに、電圧が、排気センサのトリマー電位差計に接続された端子に印加されることは好ましい。これにより、一方では、排気センサ内のトリマー電位差計が、例えば排気センサの接続ケーブルを介して、電圧が印加される排気センサの端子と正しく接続されているかどうか検査することができる。電流が許容範囲の外にある場合には、トリマー電位差計の接触不良、又は、端子のうちの1つとトリマー電位差計との間の接続の切断、又は、トリマー電位差計と並列の分路が推測される。一般的に、分路は、所望の導電性の主経路と並列して走る、望まれない伝導路として解される。電流が許容範囲内にある場合には、当該電流を用いてトリマー電位差計の値を求めることができる。
【0016】
その際に、好適にトリマー電位差計の値に従って、ポンプ電流のための目標値が、例えば空気中で(an Luft)定められ、電圧として正のポンプ電圧が印加され、排気センサが、目標値及びポンプ電圧に従って検査されうる。ここでは、好適に、ポンプ電流と目標値との間の商が求められる。商の値が所定の閾値よりも大きい場合には、例えば、拡散隔壁における亀裂、若しくは、セルのセラミックセンサにおける亀裂、又は、セルの電極間の電気的な分路(elektrischer Nebenschluss)が検出される。商の値が更なる別の閾値よりも小さい場合には、好適に、拡散隔壁の汚染(「煤汚れ」(Versottung))が検出される。
【0017】
更なる別の検査として、電圧として負のポンプ電圧が印加され、電流として、正負反転されたポンブ電流が検出され、当該電流が所定の許容範囲内に存在するのか検査されることが構想されうる。電流が小さすぎる場合には、排気センサの保護層の汚染、又は、排気センサの不十分な加熱を示唆している。電流が大きすぎる場合には、場合によっては、電極間の電気的な分路、又は、センサの保護層の損傷又の欠陥が存在する。
【0018】
センサ素子と排気センサのハウジングとの間の領域における汚れ、明らかな煤汚れ(Verrussung)による分路を検出するために、セルの電極、好適にはポンプセルの内部電極と、排気センサの導電性のハウジングと、の間に電圧が印加され、電流として、ハウジング電流が検出され、ハウジング電流が所定の最大値より小さく、又は所定の最大値と等しいかどうか検査されうる。上記電流が最大値を超える場合には、本方法によって、センサ素子と、ハウジング、特にハウジングの保護ダクトと、の間に煤等、特に金属堆積物が堆積していることが確認される。
【0019】
上述の排気センサの検査は、多くの場合に、検出された電流又は当該検出された電流に従って形成される値と、所定の閾値又は所定の許容範囲と、の比較を含む。様々な種類の排気センサが利用されるため、閾値又は許容範囲が、排気センサの種類に従って事前に定められる必要がある。さらに、多くの場合に、排気センサの種類に対して、作動温度の調整を適合させる必要がある。このために、排気センサの種類が、利用者の手動入力に従って定められうる。しかしながら、排気センサの少なくとも1つのセルのセル抵抗、好適に、排気センサの測定セルのセル抵抗を特徴付ける少なくとも1つの測定値が検出され又は定められ、当該測定値に従って、排気センサの種類が定められることは好ましい。排気センサの個々の種類が、特にそのセル抵抗において区別され、従って、セル抵抗に対する種類の対応付けが可能である。排気センサの種類を自動的に定めることにより、利用者による操作エラーがほぼ完全に防止される。
【0020】
セル抵抗を定めるために、電圧として少なくとも1つの測定電圧がセルに印加され、各測定電圧のための測定値として、電流がセルにより検出される。これにより、抵抗が1つの電圧についてのみならず、複数の電圧について定められるため、排気センサの種類をより確実に定めることができる。
【0021】
その際に、時間的に連続して、異なる極性の2つの測定電圧がセルに印加されることは特に好ましい。例えば、これにより第1の場合に、セルセラミックのオーム抵抗についての明言、及び、第2の場合に、電極への酸素運搬の拡散抵抗についての明言が導き出される。これにより、同種の排気センサの老朽化による変更が、様々な種類の排気センサ間での区別と区別されうる。このようにして、排気センサの老朽化又は消耗による、排気センサの種類の自動検出時のエラーが、少なくともほぼ完全に防止される。
【0022】
本発明の好適な実施形態において、上記又は各測定値が閾値と比較され、当該比較に従って、排気センサの種類が定められる。即ち、各測定値について、当該比較の結果が定められ、排気センサの種類を定めるために比較結果が互いに論理結合される。
【0023】
セル抵抗に対する更なる別の影響要因は、排気センサが晒される排気の酸素含有量によって形成される。排気センサが組み込まれる通常の内燃機関の排気管は、通常では、酸素が乏しい排気が内燃機関の停止後に排気管内に留まり周囲環境との排気交換が比較的ゆっくりと行われるように、周囲空気に対して良好に密閉される。従って、本発明の実施の際に、酸素が乏しい排気中に(空気過剰率λ<0)排気センサが晒されるということが起こり得る。排気センサの種類の検出時に妨害する影響を、可能な限りほぼ完全に消去するために、セルに対して少なくとも1つの測定電圧を印加する前に、セルにおける排気により生成されるセル電圧を検出し、少なくとも1つの測定電圧が、上記セル電圧に従って事前に設定されることは好ましい。その際に、少なくとも1つの測定電圧が、検出されたセル電圧の分だけ上げられることが構想されうる。
【0024】
先に挙げた課題の更なる別の解決策として、請求項14の特徴を備えた診断装置が提案される。このような診断装置によって、排気センサを特に簡単に検査することができる。このために、エンジンが停止している際に、排気センサと、内燃機関の開ループ制御及び/又は閉ループ制御素子と、の間の電気的な接続が解消され、排気センサの端子と診断装置とが接続される。これにより、排気センサの独立した診断が可能となる。これにより、排気センサのエラーを明確に確認し、又は確実に推測することができる。
【0025】
診断装置は、本発明にかかる方法を実施するように構成され、従って、本発明にかかる方法の全ての効果が実現されうる。特に、診断装置は、本発明にかかる方法を実施するためにプログラムされたプログラム可能なコンピュータを有することができる。
【0026】
本発明の更なる別の特徴及び効果は、本発明の例示的な実施形態が図面を用いて詳細に解説される以下の記載から明らかとなろう。
【図面の簡単な説明】
【0027】
【図1】二室型(Zweikammer)広帯域ラムダセンサに接続された診断装置の概略図を示す。
【図2】ラムダセンサが単室型(Einkammer)広帯域ラムダセンサである図1に類似した図を示す。
【図3】図1及び図2に示されるラムダセンサを診断する方法の実施例としてフローチャートの一部を示す。
【図4】図1及び図2に示されるラムダセンサを診断する方法の実施例としてフローチャートの一部を示す。
【図5】図1及び図2に示されるラムダセンサを診断する方法の実施例としてフローチャートの一部を示す。
【図6】図1及び図2に示されるラムダセンサを診断する方法の実施例としてフローチャートの一部を示す。
【図7】図1及び図2に示されるラムダセンサを診断する方法の実施例としてフローチャートの一部を示す。
【図8】図3〜図7の方法のステップの詳細図を示す。
【発明を実施するための形態】
【0028】
図1の概略図は、プラグインコネクタ13の形態における電気的接続を介して診断装置15に接続されている、二セル型広帯域ラムダセンサ11を示す。ラムダセンサ11は、内燃機関(図示せず)の排気システムに属する。ラムダセンサ11は、例えば流れ方向において、排気システムの排気管内の排気触媒の前又は後ろに配置されうる。しかしながら、ラムダセンサ11はまた、診断の目的で、一時的に内燃機関から取り出すこともできる。ラムダセンサ11が内燃機関内への最初のはめ込みのために設けられ、最初の機能テストのために診断装置15に接続されるということも構想されうる。最初の機能テストは、既に組み込まれたラムダセンサ11でも実施することができる。
【0029】
ラムダセンサ11は、ポンプセル17を有する。ポンプセル17は、プラグインコネクタ13の「APE」と呼ばれる端子と接続された外部ポンプ電極19を含む。ポンプセル17の内部ポンプ電極21は、プラグインコネクタ13の端子IPNと接続される。外部ポンプ電極19と内部ポンプ電極21との間には、二酸化ジルコニウムから形成された第1の固体電解質23が存在する。排気システム内に組み込まれたラムダセンサ11の場合、ポンプセル17の、外部ポンプ電極19により画定される側は、内燃機関の排気管の内部空間の方を向いているのに対して、ポンプセル17の、内部ポンプ電極により画定される側は、ラムダセンサ11の内部に存在する拡散ギャップ(図示せず)の方を向いている。従って、ポンプセル17は、ラムダセンサ11の、排気管の内部空間の方を向いた側と、ラムダセンサ11の拡散ギャップと、の間に存在する。
【0030】
拡散ギャップと、通常では周囲空気と繋がった、ラムダセンサ11の基準エアチャネル(図示せず)と、の間には通常、ネルンストセル25と呼ばれる測定セルが配置される。ネルンストセル25は、第2の固体電解質27を有し、当該固体電解質27の、拡散ギャップの方に向いた側にネルンスト電極29が配置され、当該ネルンスト電極29は、プラグインコネクタ13の端子IPNと接続される。第2の固体電解質27の、基準エアチャネルの方を向いた側には、ネルンストセル25の基準電極31が配置される。基準電極31は、プラグインコネクタ13の端子REと電気的に接続される。さらに、ラムダセンサ11は、プラグインコネクタ13の2つの端子H+及びH−と接続された発熱素子33を有する。発熱素子33と、2つのセル17及び25と、は、ラムダセンサ11のセンサ素子内に組み込まれており、従って、発熱素子33はセル17、25と、特にそれらの固体電解質23、27と熱結合している。
【0031】
ラムダセンサ11は、適切な製造技術に従って構成される。例えば、ラムダセンサ11は、所謂フィンガーセンサ(Finger−Sonde)として構成され、又は、プレナ技術で製造されうる。利用される製造技術に依存せずに、ラムダセンサ11は、導電性のハウジング構成要素37を有するハウジング35を有し、導電性のハウジング構成要素37は、例えば金属から形成されうる。導電性のハウジング構成要素37は、診断装置15と接続される。
【0032】
更に、ラムダセンサ11内にはトリマー電位差計39が配置され、当該トリマー電位差計39の第1の端子は、プラグインコネクタ13の端子APEと接続され、トリマー電位差計39の第2の端子は、プラグインコネクタ13の端子RTと接続される。トリマー電位差計39は、例えば、約30オーム〜300オームの値を有しうる。トリマー電位差計39の値は、通常では、ラムダセンサの製造直後に固定される。このために、トリマー電位差計39は、制御電子回路において測定抵抗と並列に接続される。その後、トリマー電位差計は、ラムダセンサ11が空気過剰率λ=1のガスに晒された場合に、所定の電流(例えば、2.54mA)が測定抵抗により生成されるように調整される。従って、ラムダセンサ11の稼動時に、トリマー電位差計39を用いて、ラムダセンサ11の製造ばらつきを、少なくともほぼ完全に補正することができる。
【0033】
診断装置15は、診断装置15の制御素子43により制御可能な第1の電圧源41を有する。第1の電圧源41は、第1の電流センサ45と直列に接続される。第1の電流センサ45は、制御素子43と接続され、従って、制御素子43は、第1の電圧源41により流れる電流lを検出することができる。第1の電流センサ45の、電圧源41の方を向かない端子は、プラグインコネクタ13の端子APEと接続される。第1の電圧源41の、第1の電流センサ45の方を向かない側は、第1の切替素子47及び第2の切替素子49の端子と接続される。第1の切替素子47の更なる別の端子は、プラグインコネクタ13の端子RTと接続される。第2の切替素子49の更なる別の端子は、プラグインコネクタ13の端子IPNと接続される。
【0034】
端子APEとREとの間には電圧センサ52が配置され、当該電圧センサ52は、端子APEとREとの間に印加される電圧Uを制御素子43が検出できるように、当該制御素子43と接続される。
【0035】
さらに、診断装置15は、第2の電流センサ53と直列に接続された第2の電圧源51を有する。第2の電圧源51は制御可能であり、制御素子43が第2の電圧源51の動作時に生成される電圧Uを調整できるように、当該制御素子43に接続される。第2の電流センサ53は、第2の電圧源51を通って流れる電流lを制御素子43が検出できるように、当該制御素子43に繋がれる。第2の電流センサ53の、第2の電圧源51の方を向かない端子は、プラグインコネクタ13の端子IPNと接続される。第2の電圧源51の、第2の電流センサ53の方を向かない端子は、第3の切替素子55及び第4の切替素子57と接続される。第2の電圧源51と直接的には接続されていない、第3の切替素子55の端子は、ラムダセンサ11のハウジング構成要素37と接続され、第2の電圧源51と直接的には接続されていない、第4の切替素子57の端子は、プラグインコネクタ13の端子REと接続されている。各切替素子47、49、55、57は制御素子43と繋がれているため、制御素子43は、個々の切替素子47、49、55、57を個別に制御することができる(対応する接続は、分かり易さを優先して図1には示されない)。全体として、切替素子47、49、55、57は、電圧源41、51及び対応する電流センサ45、53をプラグインコネクタ13の個々の端子APE、RT、IPN、REと接続するため、及び、電圧源41、51及び対応する電流センサ45、53をハウジングと接続するための切替構成を形成する。診断装置15の他の実施形態において、切替構成は他の形態で構成される。切替素子は、プラグインコネクタ13の他の端子と接触して、例えば、内部の漏電を検査するために信号電極とヒーター電極との間にも配置されうる。異なる数の切替素子も設けることができる。さらに、2つの電圧源41、51の代わりに、1つ、又は、2つ以上の電圧源を設け、対応して切替素子の数を増やし又は減らすことが構想されうる。切替素子47、49、55、57は、任意の形態(例えば、半導体回路又は切替リレー)で実現されうる。
【0036】
さらに、診断装置15は、ネルンストセル25の内部抵抗を用いてラムダセンサ11の温度を調整するための調整素子59を有する。この調整素子59は、プラグインコネクタ13の2つの端子H+及びH−と接続され、当該2つの端子は、ラムダセンサ11の発熱素子33と接続される。調整素子59は制御素子43に接続されるので、当該制御素子43は、調整素子59を、例えば目標値を設定するために制御することができる。
【0037】
図2では、排気センサが、単セル型広帯域ラムダセンサ61として構成される。この単セル型広帯域ラムダセンサ61は、ポンプセル17及びネルンストセル25の代わりに、結合型ポンプ及びネルンストセル(kombinierte Pump‐ und Nernst‐Zelle)63を有する。従って、このセンサ61内には、第1の固体電解質23のみが存在する。組み込まれたセンサ61において、第1の固体電解質23の、排気管の内部空間の方を向いた側には、外部電極65が配置される。固体電解質23の、上記内部空間の方を向かない側には、内部電極67が配置される。外部電極65は、プラグインコネクタ13の端子ALEと電気的に接続され、内部電極67は、プラグインコネクタ13の端子IPEと電気的に接続される。
【0038】
単セル型広帯域ラムダセンサ61ではセル63のみが存在するということを除いて、当該広帯域ラムダセンサ61は、図1に示す二セル型広帯域ラムダセンサ11と基本的に同じ構造を有する。従って、単セル型広帯域ラムダセンサ61の対応する構成要素には同じ符号が付され、再び詳細には解説されない。単セル型広帯域ラムダセンサ61には、図2に示す簡素化された診断装置15が接続される。図2に示す診断装置15では、図1で示した第3の切替素子55及び第4の切替素子57が存在しない。図1に示す診断装置15を、単セル型広帯域ラムダセンサ61と接続して利用することも可能である。この場合に、診断装置15の端子RTは付いていなくてもよく、結合型ポンプ及びネルンストセル63は、自身の端子ALEによって診断装置15の端子APEに接続し、及び、自身の端子IPEによって診断装置15の端子IPN及びREに接続する。
【0039】
図示されない実施形態において、単セル型広帯域ラムダセンサ61は、トリマー電位差計39を有する。このトリマー電位差計39は、例えば、端子ALEと、図2で示すラムダセンサ61には存在しない端子RTと、の間に配置されうる。
【0040】
以下では、図3〜図7に示されるフローチャートを用いて、排気センサ、特に、二セル型ラムダセンサ11又は単セル型ラムダセンサ61を診断する方法71が詳細に解説される。本方法71は、図1及び図2に示された、制御素子43により制御される診断装置を用いて実施することができる。これとは異なって、本方法71は他の形態でも、特に、他の構成の診断装置によって、及び/又は、他の、例えば正弦曲線状の(sinusfoermig)、動的な電圧−時間プログラム又は電圧−時間プログラムによって実施されうる。
【0041】
診断装置15を利用する際には、ラムダセンサ11は、内燃機関の開ループ制御及び/又は閉ループ制御素子と電気的に分離され、診断装置15と電気的に接続される必要がある。このことは例えば、本方法71の実施前に、ラムダセンサ11と制御装置との間のプラグインコネクタ13を手動ではずし、ラムダセンサ11と診断装置15との間の差込式接続を手動で形成することにより行われる。本方法71は例えば、内燃機関が停止している際に、又は、内燃機関が安定的な作動点にある際に実施される。その際、ラムダセンサ11は、内燃機関内に組み込まれた状態であり得る。しかしながら、本方法71の実施前に、ラムダセンサ11を内燃機関から取り出すことも可能である。本方法71を実施する際には、診断装置15もラムダセンサ11も、内燃機関の制御装置と接続されていないため、本方法71によって、ラムダセンサ11の単独の診断を実施することができる。これにより、内燃機関の開ループ制御及び/又は閉ループ制御素子との、又は、他の構成要素、特に、内燃機関のセンサ及びアクチュエータとの相互作用が、少なくともほぼ完全に解消されうる。なぜならば、本方法は、内燃機関の開ループ制御及び/又は閉ループ制御素子からは完全に独立して実施されるからである。
【0042】
本方法71の開始73後に、センサ検出ステップ75において、ラムダセンサ11の種類が定められる。車両のための内燃機関内で利用される個々のラムダセンサが原則的な同じ構造(単セル型センサ又は二セル型センサ)をしている場合でも、特に個々のセル17、25、63は、著しく異なるジオメトリを有している。このことから、様々な種類のラムダセンサ11の電気的特性に関して著しい相違が生じる。センサ検出75は、電気測定によってセンサの種類を定め、従って、本方法71の後続のステップが、この定められたラムダセンサ11の種類に従って実施されうる。
【0043】
ステップ76では、制御素子43は、調整素子59がラムダセンサのセンサ素子の温度を所定の閾値に対して調整するように、当該調整素子59を調整する。その際に調整変数として、ネルンストセル25又は結合型ポンプ及びネルンストセル63の内部抵抗であって、センサ素子の温度に依存する上記内部抵抗が役立つ。作動変数として、発熱素子33の熱出力が役立ち、当該熱出力は、例えばヒーター電圧Uの変更によって調整素子59に影響を与えうる。制御素子43は、温度の所定の目標値と、ステップ75で識別されたラムダセンサの種類と、から、後に自身が調整素子59に対して設定する内部抵抗のための目標値を定める。診断装置15の精密な設計に従って、センサ素子の温度の目標値が定数として定められ、又は、温度の目標値がラムダセンサの種類に従って定められうる。制御素子43が、ラムダセンサ11の種類に直接的に従って、例えば、制御素子43内に格納されたテーブルを用いて、内部抵抗の目標値を定めるということも構想されうる。
【0044】
引き続いてステップ77において、トリマー電位差計39が端子APE及びRTに正しく接続されているかどうかが検査される。このために、制御素子43は、第1の切替素子47及び第2の切替素子49を、第1の切替素子47のみが接続されるように制御する。更に、制御素子は第1の電圧源41を、当該電圧源41に、従って端子APEとRTとの間に、事前に決定された電圧URTが印加されるように制御する。引き続いて、制御素子43は、ラムダセンサ11に損傷がない場合のトリマー電圧差計39による電流に相当する電流lを、第1の電流センサ45によって検出する。
【0045】
引き続いて分岐79において、電流1RTが、最小値lRT,min及び最大値lRT,maxにより限定される範囲内にあるかどうか検査される。電流1RTが最小値lRT,min及び最大値lRT,maxにより限定される範囲内に存在しない場合には(N)、ステップ81でエラーが確認される。ステップ81において、制御素子43はエラーを確認し又は記録しうる。上記電流が最小値lRT,maxよりも小さい場合には、トリマー電位差計39の接触不良、又は、トリマー電位差計39の端子と、プラグインコネクタ13の端子APE又はRTと、の間の切断が検出される。検出された電流lRTが、最大値lRT,maxよりも大きい場合には、トリマー電位差計39と並列な分路が検出される。検出された電流が許容範囲内に存在する場合には(Y)、次の検査ステップ83に進む。示される実施形態とは異なって、最初に、所定電圧URT及び検出された電流lRTに従って、端子AREとRTとの間の抵抗が計算され、計算された抵抗が、許容される抵抗範囲と比較されてもよい。当該比較に従って、ステップ81において再び、接触不良、又は、切断、又は、分路が推測されうる。
【0046】
引き続いて、正のポンプ電圧U>0とポンプ電流lとの間の関連においてヒステリシスが検証される(図4参照)。このために、ステップ83において、電圧源41によって、一定電圧U=U>0が端子APEに対して印加され、閉鎖された第2の切替素子49を介して、ポンプセル17の端子IPNに印加される。単セル型センサ61の場合には、電圧Uが、端子ALE及びIPEに印加される。
【0047】
ポンプ電圧Uの値は段階的に変更される。最初に、ポンプセル17、又は、ポンプ及びネルンストセル63に対して電圧が全く印加されず、又は低い電圧が印加され、その後、比較的小さな、例えば800mVでありうる値Uが印加され、対応する電流Iが第1の電流センサ45によって測定される。引き続いて、より高い、例えば1200mVでありうるポンプ電圧Uが、端子APE及びIPN、又はALE及びIPEに印加され、対応する電流Iが測定される。一定時間の後に、再び、より小さなポンプ電圧Uが印加され、対応する電流Iが測定される。
【0048】
引き続いて分岐85で、2つの電流値l及びlがゼロであるかどうか検査される。2つの電流値I及びIがゼロである場合(Y)には、ステップ87において、端子APE及び/又はIPNとセル17との間、又は、端子ALE及び/又はIPEとセル63との間の導線の破損が検出される。2つの電流値l及びlがゼロではない場合(N)には、分岐89で、電流IとIとの間の差分値が最大値ΔlP,maxよりも大きいかどうか検査される。電流lとlとの間の差分値が最大値ΔlP,maxよりも大きい場合(Y)には、ステップ91において、セル17の電極19、21の少なくとも1つにおける、又は、セル63の電極65、67の少なくとも1つにおける破損が検出される。電流間の差分が、最大値ΔlP,maxよりも小さい場合には(分岐89の分岐線N)、ヒステリシスは十分に小さく、ステップ93に進む。
【0049】
追加的に、二セル型広帯域ラムダセンサの場合には、2つのポンプ電圧UとU及びIpが測定される一方で、IPNとREとの間の、UとUとの間のネルンスト電圧も測定される。ネルンスト電圧の絶対値、及び、当該絶対値間の差分が、診断基準として利用されうる。これにより、破損したIPNに対する感度が改善され、Ip−ヒステリシス調査の結果と組み合わせることにより、2つのポンプ電極のうちのどれが破損しているのかを明確に区別することが可能となる。
【0050】
図5に示される本方法71の以下のステップにおいて、ポンプ電流1が許容範囲内にあるかどうか検査される。このために、最初にステップ93において、第1の電圧源41、並びに、切替素子47及び49の対応する制御により、定められた一定電圧URT2が印加され、電流1が電流1RT2として検出される。検出された電流lRT2から、ポンプ電流のための目標値lP,sollが定められる(ステップ95)。引き続いてステップ97で、事前に定められた、正の、一定のポンプ電圧U>0が、端子APE及びIPNに印加される。このために、制御素子43は、切替素子47、49及び第1の電圧源41を、対応して制御する(U=U>0)。得られたポンプ電流1は、第1の電流センサ45によって検出される。
【0051】
引き続いて分岐99において、検出されたポンプ電流lと、定められた目標値lP,sollとの商の値が、値Qmin及びQmaxにより限定される範囲内にあるかどうか検査される。定められた目標値lP,sollとの商の値が値Qmin及びQmaxにより限定される範囲内にない場合(N)には、ステップ101において、ポンプセル17内のエラーが検出される。上記商が値Qmaxよりも大きい場合には、ラムダセンサ11の拡散隔壁、及び/又は、セラミックセンサ、特に第1の固体電解質23における亀裂が検出される。さらに、商の値が大き過ぎる場合には、ポンプセル17に並列の電気的な分路が示唆される。商の値が値Qminよりも小さい場合には、煤汚れ、即ち、拡散隔壁における堆積物が検出される。商が許容範囲内にある場合にはステップ103に進む。Qmin又はQmaxの厳密な値は、検査されるラムダセンサと、診断の間当該センサにおいて存在するガスと、に従って設定されうる。特定の種類のラムダセンサ11、及び、特定のガス環境、例えば空気について、商は、14%まで上方向に異なっていてもよく、即ち、例えばQmax=1.14であってもよい。これに対応して、場合によっては、14%分の下方向偏差を許容することが可能であり、即ち、例えば、Qmin=0.86が選択されうる。
【0052】
図5に示されるヒステリシスを検査するためのステップ93、95、97、99、101は、単セル型センサ、及び/又は、トリマー電位差計39の無いセンサにおいても実施されうる。単セル型センサの場合には、ステップ97において、ポンプ電圧Uが端子ALE及びIPEに印加される。トリマー電位差計39の無い排気センサの場合にはステップ93が行われず、ステップ95において、ポンプ電流の目標値lP,sollが、他の形態で、例えば、場合によってはラムダセンサの種類に依存しうる定数として固定される。
【0053】
さらに、本方法71では、順方向におけるポンプ電流lの他に、極性が反転されたポンプ電流も検査される。本発明71の対応するステップが図6に示される。ステップ103において、負の電圧−UPnが第1の電圧源41により生成され、即ちU<0である。負の電圧が、端子APE及びIPN、又は、ALE及びIPEに印加される。このために、制御素子43は、第1の切替素子47を閉鎖し、第2の切替素子49を開放する。負のポンプ電圧−UPnが印加された際に、ポンプ電流Iが検出される。
【0054】
ステップ103に続くステップ105では、検出されたポンプ電流lの値が、値lP,min及びlP,maxにより限定される範囲内にあるかどうか検査される。検出されたポンプ電流lの値が値lP,min及びlP,maxにより限定される範囲内にない場合(N)には、ステップ107において、ラムダセンサ11内のエラーが確認される。検出されたポンプ電流lの値が値lP,min及びlP,maxにより限定される範囲内にある場合(Y)には、ステップ109に進む。検出されたポンプ電圧lが最小値lp,minよりも小さい場合には、ステップ107において、外部電極19又は外部電極65上に取り付けられた保護層の煤汚れ、ラムダセンサ11の温度が低すぎること、及び/又は、第1の固体電解質23における破損が検出される。検出されたポンプ電流Iの値が最大値lP,maxよりも大きい場合には、ラムダセンサ11の温度が高すぎること、及び/又は、外部ポンプ電極19と内部ポンプ電極21との間、又は、外部電極65と内部電極67との間の電気的な分路、又は、保護層の損傷若しくは欠陥が検出される。このような分路は、例えば、電極19と21間若しくは電極65と67間の堆積物により、又は、電極19と21若しくは電極65と67の互いの不十分な絶縁により引き起こされうる。
【0055】
図7に示される更なる別の検査として、端子IPN又はIPEと、導電性のハウジング構成要素37と、の間の導電性が検査される。このために、ステップ109において、端子IPN又はIPEと、導電性のハウジング構成要素37と、の間に、電圧Ugeが印加される。電圧Ugeは好適に正であり、Uge>0である。このために、図1に示す診断装置の制御素子43は、第3の切替素子55を閉鎖し、第4の切替素子57を開放する。さらに、制御素子43は、第2の電圧源51が電圧U=Ugeを生成するように、当該第2の電圧源51を制御する。第2の電圧源51によって流れる電流lは、ハウジング電流lge=lとして検出される。引き続いて分岐111において、検出されたハウジング電流lgeが臨界値lge,kritよりも大きいかどうか検査される。検出されたハウジング電流lgeが臨界値lge,kritよりも大きい場合(Y)には、ステップ113において、ラムダセンサ11のセンサ素子と、ハウジング35と、の間の分路が検出される。このような分路は、特にセンサ素子とハウジング35の保護ダクトの内側との間の堆積物による、ラムダセンサ11の煤汚れに起因しうる。ハウジング電流lgeが、臨界値lge,kritよりも大きくない場合(N)には、ステップ115に進む。ステップ115では、以前のステップにおいて定められたテスト結果が評価される。例えば、当該テスト結果は、表示され及び/又は格納されうる。特に全ての検査が個別にエラー所見を伝達しなかった場合には、多次元の特徴スペクトル(Merkmalsspektrum)が検査されることも構想されうる。即ち、最後のテストにおいて、各個別に調査される機能変数の許容範囲が、他の機能値がそれぞれ存在するところで固定される。従って、より感度の良い全体診断が達成され、個々のパラメータ間の相互作用も考慮されうる。引き続いて、本方法がステップ117で終了する。
【0056】
本方法71の示される実施形態において、個別の検査がエラーを検出する場合、即ち、ステップ81、87、91、101、107又は113のうちの1つが実施される場合について、本方法71の後に、それぞれ後続の検査が続けられる。即ち、全ての検査が、各先行する検査の結果に依存せずに実施される。その際、制御素子43は、本方法71の経過を制御し、ラムダセンサ11、61の診断のために、検出された値を評価する。従って、制御素子43は、診断装置15の評価ユニットも形成する。
【0057】
しかしながら、これとは異なり、検査のうちの1つがエラーを検出し次第本方法71が終了することも構想されうる。この場合には、ステップ81、87、91、101又は107の実施後に、直ぐにステップ115に進む。図3〜図7のそれぞれで示される検査の順序は、任意に変更可能である。他の実施形態ではまた、上記検査の幾つかが行われなくてもよい。
【0058】
以下では、図8を用いて、ラムダセンサ11の種類を検出するためのステップ75がより詳細に解説される。ステップ75で、制御素子43は最初に、ラムダセンサ11の端子H+とH−との間にヒーター電圧Uが印加されるように、調整素子59を制御する(ステップ121)。ラムダセンサ11の温度の厳密な調整は、ラムダセンサ11の種類の検出のためには必要ではない。診断装置15がそれらにより稼動されるべき全センサ種のために、固体電解質23、27が酸素イオンを案内できるために十分に高い当該固体電解質23、27の温度を実現するのに十分なだけ、ヒーター電圧Uは高ければよい。後続のステップ123において、酸素イオンが、ラムダセンサ11の拡散ギャップへと運ばれる。ラムダセンサ11が二セル型センサである場合には、負の電圧U<0が、ネルンストセル25に印加される。このために、制御素子43は、電圧Uが負の値を有するように、即ち、U=U<0であるように、第2の電圧源51を制御する。一定の時間後、ネルンストセル25は、再び電圧Uから分離される。このために、制御素子43は、第4の切替素子57を開放することができる。
【0059】
ステップ123に続くステップ125では、電圧センサ52を用いて、端子APEと端子REとの間の電圧U、即ち基本的には外部電極19と基準電極31との間の電圧が検出される。電圧Uの高さは、ラムダセンサ11の、外部ポンプ電極19の方を向いた側において存在するガス中の酸素含有量のための尺度である。ここで、酸素が乏しいガスの場合には、典型的に450mVを上回る、電圧Uについての比較的高い値が得られる。従って、ステップ123及び125は、酸素が乏しいガスの検出(オイルガス検出)に役立つ。酸素が乏しいガスは、特に、診断中にラムダセンサ11が内燃機関の排気管内に組み込まれたままである場合に存在しうる。なぜならば、診断のために内燃機関が停止した後に、比較的小さな酸素含有量を有する残留排気が排気管内に留まっていることが多いからである。近代的な内燃機関では、排気システム、特にラムダセンサ11がその中に組み込まれる排気管が、周囲空気に対して比較的良好に密閉されるため、内燃機関が比較的長い停止した後でも、排気管内の酸素含有量が、せいぜいのところ、ほんの少しだけ上昇する。
【0060】
ラムダセンサ11がシングル型センサ61である場合には、ステップ123において、電圧Uが端子ALE及びIPEに印加される。そのために、制御素子43は、第1の電圧源41を、当該電圧源41が正の電圧U>0を生成するように、即ち、U=U>0であるように、制御する。ステップ125では、電圧Uが、端子ALEとIPEとの間の電圧センサ52によって測定される。
【0061】
引き続いて分岐127では、検出された電圧Uの値が、臨界値UM,kritよりも小さいかどうか検査される。検出された電圧Uの値が臨界値UM,kritよりも小さい場合(Y)には、酸素が乏しいガス、即ち、オイルガスが存在することが検出され、ステップ129において、補正値ΔUが、電圧Uの値に対応する値に設定される。検出された電圧Uの値が臨界値UM,kritよりも小さくない場合(N)には、ステップ131において、補正値ΔUがゼロに設定される。
【0062】
ステップ129又は131の後にステップ133が続き、このステップ133では、端子IPNと端子REとの間に負の電圧が印加される。この電圧の値は、補正値ΔU>0の分だけ補正された所定値USD1>0に相当し、即ち、第2の電圧源51は、電圧U=−USD1−ΔU<0を生成する。同時に、電流lは、ポンプ電流lSD2として検出される。引き続いてステップ135で、端子IPN及びREに対して、事前に設定された正の一定電圧USD2>0が印加され、これにより、端子IPN及びREへの電圧の極性が反転される。同時に、電流lが、更なる別のポンプ電流lSD2として検出される。最後に、ステップ137において、ラムダセンサ11の種類が、検出された2つのポンプ電流lSD1及びlSD2に従って定められる。ステップ137の終了後に、本方法71は、ステップ75の後のステップ76へと続く。
【0063】
例えば、検出されたポンプ電流lSD1及びlSD2を用いて、2種類のラムダセンサ11を区別することができ、当該2種類のラムダセンサ11は、それらのジオメトリの点で、特に基準電極31へのエア・拡散チャネル(Luft‐Diffusionskanal)の大きさ、又は、ネルンスト電極29の大きさ及び位置の点で区別される。異なるジオメトリに基づいて、即ち、これらの異なる種類のラムダセンサ11のネルンストセル25の抵抗が異なっている。従って、ネルンストセル25が小さなオーム抵抗と、開放された基準エアチャネルと、を有しているような種類のラムダセンサ11の場合には、検出された電流lSD1及びlSD2についての比較的大きな値が得られる。ネルンストセル25のオーム抵抗が比較的大きく、基準エアチャネルの拡散係数が比較的小さいような種類のラムダセンサ11の場合には、上記検出された電流lSD1及びlSD2が比較的小さい。従って、ステップ137において、検出された電流が両方とも事前に定められた特定の最小値よりも大きく、即ち、lSD1>X及びlSD2>Xである場合に、ネルンストセル25及び基準エアチャネルの抵抗が小さいような種類のラムダセンサ11が検出されることが構想されうる。これに対応して、ステップ137において、上記検出された電流が、事前に定められた最小値よりも小さく、即ち、lSD1<Y及びlSD2<Yである場合に、ネルンストセル25及び基準エアチャネルの抵抗が高いような種類のラムダセンサ11が検出されることが構想されうる。検出された電流を他に、逆方向に(gegenlaeufig)組み合わせることによっても、センサ種を特徴付けることができる。
【0064】
ラムダセンサ11の種類を区別するための上記のステップ133、135、137は、対応する形態で、単セル型ラムダセンサ61と接続しても適用されうる。
【0065】
上記の検査は、2つの異なる種類のラムダセンサを区別するために2つの検出された電流が検査されるという限りにおいて冗長的である(redundant)ことが分かる。これにより、ラムダセンサ11の種類の、特に確実な区別が可能となる。ラムダセンサ11の種類が一義的に識別できない場合には、本方法71は中断され、又は、診断装置15の利用者は、ラムダセンサ11の種類を手動で入力することが求められることもある。ステップ137では、電流lSD1及びlSD2に関する上記の2つの条件のいずれも該当しない場合には、ラムダセンサ11の種類が一義的に識別できないことが確認される。これにより、例えば、ネルンストセル25の抵抗が、ラムダセンサ11の消耗又は老朽化による影響(所謂動的な影響)のために変更された場合に、ラムダセンサ11の種類の誤った識別が防止される。
【0066】
全体として、本発明は、排気センサ、特にラムダセンサの詳細な検査が可能な方法および診断装置を提供し、当該検査は、内燃機関の他の構成要素とは独立して、特に、内燃機関が停止している際に実施されうる。これにより、内燃機関の様々な構成要素間の相互作用による、検査を誤らせる影響が、少なくともほぼ完全に排除される。ラムダセンサ11の種類の自動的な検出によって、診断装置15の簡単な利用が実現される。

【特許請求の範囲】
【請求項1】
電気化学センサ、特に内燃機関の加熱可能な排気センサ(11)を診断する方法(71)であって、電圧源(41、51)を用いて、事前に定められた、時間的に変化する又は不変の電圧(U、U)が生成され、前記電圧(U、U)が、前記排気センサ(11)の端子/電極(APE、RT、IPN、RE、ALE、IPE、37)に印加され、前記電圧(U、U)が印加された際に前記電圧源を通って流れる電流(l、l)が検出され、前記電流(l、l)が前記排気センサ(11)の診断のために評価され、又は、電圧源(41、51)を用いて、事前に定められた、時間的に変化する又は不変の電流(l、l)が生成され、前記電流(l、l)が、前記排気センサ(11)の前記端子/電極(APE、RT、IPN、RE、ALE、IPE、37)を通して流され、電流(l、l)が供給される際に前記電圧源(41、51)に印加される電圧(U、U)が検出され、前記電圧(U、U)が前記排気センサ(11)の診断のために評価される、前記方法(71)において、
前記方法(71)は、前記内燃機関の開ループ制御及び/又は閉ループ制御素子とは独立して実施され、前記排気センサ(11)の作動温度が、前記開ループ制御及び/又は閉ループ制御素子とは別体の調整素子(59)によって所定の温度値に調整されることを特徴とする方法(71)。
【請求項2】
前記電圧(U、U)が、前記排気センサ(11)のセル(17、25、63)の電極(19、21、29、31、65、67)と接続された端子(APE、RT、IPN、RE、ALE、IPE)に印加され、電流(l)として、ポンプ電流(l)が検出されることを特徴とする、請求項1に記載の方法(71)。
【請求項3】
前記電圧(U)が、相前後して異なる電圧値(U、U)を有し、及び、前記電圧値(U、U)の少なくとも2つのために、前記電流(l)の対応する電流値(l、l)が検出されるように、前記電圧(U)が段階的に及び/又は交互に変更されることを特徴とする、請求項2に記載の方法(71)。
【請求項4】
前記電流値(l、l)の評価により、特に前記電流値(l、l)を互いに比較することにより、印加された前記電圧(U)と検出された前記電流(l)との間の依存性に関するヒステリシスが検査されることを特徴とする、請求項3に記載の方法。
【請求項5】
REとIPN(U、U)との間のネルンスト電圧値Uの評価により、特に前記ネルンスト電圧値(U、U)を互いに比較することにより、印加された前記電圧(U)と検出された前記ネルンスト電圧(U)との間の依存性に関するヒステリシスが検査されることを特徴とする、請求項3に記載の方法。
【請求項6】
前記電圧(U)が、前記排気センサ(11)のトリマー電位差計(39)と接続された前記端子(ARE、RT)に印加されることを特徴とする、請求項1〜5のいずれか1項に記載の方法(71)。
【請求項7】
特に前記トリマー電位差計の値に従って、前記ポンプ電流(I)のための目標値(lP,soll)が定められ、電圧(U)として正のポンプ電圧(U)が印加され、前記排気センサ(11)が、前記目標値(lP,soll)及び前記ポンプ電圧(U)に従って検査されることを特徴とする、請求項6に記載の方法(71)。
【請求項8】
電圧(U)として負のポンプ電圧(−UPN)が印加され、電流(l)として、正負反転されたポンブ電流(l)が検出され、前記正負反転されたポンブ電流(I)が所定の許容範囲(lP,min、lP,max)内に存在するかどうかが検査されることを特徴とする、請求項7に記載の方法(71)。
【請求項9】
前記セルの電極と接続された、特にポンプセル(17、63)の内部電極(21、67)と接続された、前記排気センサ(11)の端子(IPN、IPE)と、前記排気センサ(11)の導電性のハウジング構成要素(37)と、の間に電圧(U)が印加され、電流(l)としてハウジング電流(lge)が検出され、前記ハウジング電流(lge)が所定の最大値(lge,max)より小さく、又は所定の最大値(lge,max)と等しいかどうか検査されることを特徴とする、請求項1〜8のいずれか1項に記載の方法(71)。
【請求項10】
前記排気センサ(11)の少なくとも1つの前記セル(25、63)のセル抵抗、特に前記排気センサ(11)のネルンストセル(25)の前記セル抵抗を特徴付ける少なくとも1つの測定値(lSD1、lSD2)が検出され又は定められ、前記測定値(lSD1、lSD2)に従って、前記排気センサ(11)の種類が定められることを特徴とする、請求項1〜9のいずれか1項に記載の方法。
【請求項11】
電圧として少なくとも1つの測定電圧(−USD2、USD2)が前記セル(25)に印加され、各測定電圧のための測定値として、前記電流(lSD1、lSD2)が前記セル(25)によって検出されることを特徴とする、請求項10に記載の方法。
【請求項12】
極性が異なる少なくとも2つの測定電圧(−USD2、USD2)が連続して前記セル(25)に印加されることを特徴とする、請求項11に記載の方法(71)。
【請求項13】
又は、各測定値(lSD2、lSD2)が閾値(X、X、Y、Y)と比較され、当該比較に従って、前記排気センサ(11)の種類が定められることを特徴とする、請求項10〜12のいずれか1項に記載の方法(71)。
【請求項14】
前記セル(25)への前記測定電圧(−USD1、USD2)の印加の前に、前記セル(25)により生成されるセル電圧(U)が検出され、少なくとも1つの前記測定電圧(−USD1、−ΔU)が、前記セル電圧(U)に従って事前に定められること特徴とする、請求項11〜13のいずれか1項に記載の方法(71)。
【請求項15】
内燃機関の加熱可能な排気センサ(11)を検査するための診断装置(15)であって、前記診断装置(15)は、
前記排気センサ(11)の端子(APE、RT、IPN、RE、ALE、IPE、37)に対して、事前に定められた、時間的に変化する又は不変の電圧(U、U)を印加するように構成された少なくとも1つの電圧源(41、51)と、
前記電圧(U、U)が印加された際に前記電圧源(41、51)を通って流れる電流(l、l)を検出するように構成された少なくとも1つの電圧センサ(45、53)と、
前記排気センサ(11)の診断のために前記電流(l、l)を評価する評価ユニット(43)と、
を備え、又は、
前記診断装置(15)は、
事前に定められた、時間的に変化する又は不変の電流(l、l)を生成するように構成され、及び、前記排気センサ(11)の端子を通して前記電流(l、l)を流すように構成された少なくとも1つの電圧源と、
電流(l、l)が供給される際に前記電圧源に印加される電圧を検出するよう構成された電圧センサと、
電気化学センサの診断のために電圧を評価するように構成された評価ユニットと、
を備える、前記診断装置(15)において、
前記診断装置(15)は、前記内燃機関の開ループ制御及び/又は閉ループ制御素子から独立して前記排気センサ(11)を検査しうるように、前記開ループ制御及び/又は閉ループ制御素子とは分けられており、前記診断装置(15)は、前記排気センサ(11)の作動温度を所定値に調整するための調整素子(59)を有することを特徴とする、診断装置(15)。
【請求項16】
前記診断装置(15)は、請求項1〜14のいずれか1項に記載の方法(71)を実施するように構成され特にプログラムされることを特徴とする、請求項15に記載の診断装置(15)。
【請求項17】
前記電圧が事前に定められる代わりに電流が事前に定められ、前記電流が評価される代わりに、対応する電圧が評価されることを特徴とする、請求項15〜16のいずれか1項に記載の診断装置(15)。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2012−531603(P2012−531603A)
【公表日】平成24年12月10日(2012.12.10)
【国際特許分類】
【出願番号】特願2012−518081(P2012−518081)
【出願日】平成22年6月30日(2010.6.30)
【国際出願番号】PCT/EP2010/059251
【国際公開番号】WO2011/000853
【国際公開日】平成23年1月6日(2011.1.6)
【出願人】(501125231)ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング (329)
【Fターム(参考)】