説明

反射鏡、反射鏡の製造方法及びプロジェクター装置用光源装置

【課題】 第一の反射面に続いて球面状の第二の反射面が形成された反射鏡において、高輝度の点光源を集光する反射鏡の反射膜として使用する場合であっても、各反射面において高い反射特性及び反射効率が得られる反射鏡を提供すること。
【解決手段】 基体が実質的に一体で構成され、光放射口を前端に有する第一の反射面と、
この第一の反射面に連設され、入射光を焦点に戻す反射面よりなる第二の反射面とを有してなる反射鏡であり、第一の反射面は、前記基体の表面に、物理蒸着により膜厚が変位するよう誘電体多層膜が形成されて反射面が構成され、前記第二の反射面は、一面に反射面がされた反射部材が前記基体に嵌め込まれることにより当該第二の反射面が構成されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、異なる2以上の反射面を有する反射鏡に関し、特に、液晶ディスプレイ装置、DMD(登録商標)(デジタルミラーデバイス)を用いたDLP(登録商標)(デジタルライトプロセッサ)等の投射型プロジェクター装置のバックライトに好適に使用される光源装置用の反射鏡、その製造方法及び光源装置に関する。
【背景技術】
【0002】
上記技術分野に係る投射型のプロジェクター装置においては、矩形状のスクリーンに対し、均一にしかも十分な演色性をもって画像を照明させることが要求される。このような要求に対応するため、装置に内臓される光源としては、点灯時の水銀蒸気圧が150気圧以上となるショートアーク型の超高圧水銀ランプが使用され、光を効率よく前方に出射するために凹面状の反射鏡が組合わされて使用されている。
【0003】
近年、このようなプロジェクター装置においては、ユーザーから会議室等に常設するだけでなく手軽に持ち運んで様々な場所で使用したい、という要請もあり、従来にも増してプロジェクター装置が小型化してきている。そして、プロジェクター装置の小型化が進むにつれて、光源装置のうち特に反射鏡も小型化してきている。
【0004】
しかしながら単に凹面反射鏡を小型化したのでは、凹面反射鏡の有効反射面積が減少し、光源装置より出射される光束が減少する。しかも、近年、先に述べたよう光源装置の小型化に加え、プロジェクター装置のスクリーン照度は従来より高い水準が要求されていることから、反射鏡を単に小型化するのだけではこのような要求に応じることができない。
【0005】
そこで、反射鏡で集光された光束の利用効率を損なうことなく反射鏡自体をコンパクトにできる技術として、実開昭63−162320号公報や特許第3557988号公報に、光放射口を形成する第一の反射面と、第一の反射面の後方に位置され、当該第一の反射面とは異なる反射面を有する第二の反射面とを備えた凹面反射鏡を備えた光源装置が示されている。以下、上記公報に示された光源装置について図7を用いて説明する。
【0006】
図7は、特許文献1に記載の光源装置の一例を示す断面図である。
図7において、光源装置700は、放電ランプ70と反射鏡80とから構成されている。放電ランプ70は、発光管部71の内部に、一対の電極72,73が対向するよう配置され、内部に水銀が封入された超高圧水銀ランプである。反射鏡80は、その光軸Lが放電ランプ70のアークの方向(電極72,73が対向する方向)と一致するよう、放電ランプ70を取囲むよう配置されている。
【0007】
反射鏡80は、全体が凹面状であって、反射面が、前方に形成された光放射口81に続いて形成された第一の反射面82と、この第一の反射面82の後端に連続する第二の反射面83とを少なくとも備えて構成されている。
具体的には、第一の反射面82は回転楕円面からなり、第二の反射面83はほぼ球面からなる。そして、第一の反射面82の第1焦点の位置と第二の反射面83の略球面の中心位置とは一致し、かつ、反射鏡80に装着される放電ランプ70のアークのほぼ中央に一致するよう構成される。
【0008】
この光源装置においては、一対の電極72,73間に形成されるアークから放射される光のうち、第一の反射面82に入射される光はそのまま反射されて当該第一の反射面82の前縁の光投射口81から前方に投射されて第2焦点Fの位置で集光し、更に例えばスクリーンSに投射されることにより、照明スポットが形成される。
一方、アークから放射される光のうち、第一の反射面82より後方に進んだ光は、第二の反射面83から反射されて再びアークに戻り、その後、第一の反射面82を介して前方に投射されることとなる。
【0009】
なお、ここでは第一、第二の反射面(82,83)を有する反射鏡を挙げて説明したが、特許文献2記載のもののように、球面を構成する第二の反射面(83)の後方位に、第一、第二焦点位置が第一の反射面(82)のものと一致する回転楕円面からなる第三の反射面を具備していてもよい。その場合は、楕円面反射面よりなる第一の反射面(82)および略球面である第二の反射面(83)に入射された光に加え、従来は有効に利用できなかったアークより後方に向かう光の一部をも直接的に前方に集光させるこができるため、光の利用効率が一層高いものとなる。
【特許文献1】実開昭63−162320号公報
【特許文献2】特許第3557988号公報
【特許文献3】特許第3588339号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
しかしながら、上記の光源装置においては以下のような問題があることが判明した。
上述のような複数の反射面を有する反射鏡は、例えば耐熱性の高いガラス等を基体として用い、熱間プレス等の手段で所定の反射面を成形した後、可視光反射性の膜を形成して完成する。かかる膜は、反射鏡よりも前方に熱線となる赤外線を反射しない可視光を反射する特性の誘電体多層膜が選択されるが、その成膜法として、一般的な真空蒸着やスパッタリング法のような物理蒸着(PVD)を採用した場合、第二の反射面(83)に膜が形成されないという事態が発生することがわかった。
【0011】
この理由は、第二の反射面83はほぼ球面よりなるため、その開口側(第一の反射面側)部分においては、曲面が反射鏡の光軸線Lに対してほぼ平行に形成されることになり、真空蒸着やスパッタリング法で膜を形成させる際に蒸着源若しくはスパッタ源からの成膜物質が第一の反射面によって遮蔽されて第二の反射面83に到達することができず堆積が不均一になって、反射に十分な厚みの膜を形成することができないからである。
この結果、第一の反射面82及び第二の反射面83とは膜厚分布が著しく相違してしまい、第二の反射面83において所望の反射率を得ることができない。
【0012】
ところで、上述の物理蒸着(PVD)による反射膜形成が困難とされる複雑形状の反射鏡においても膜を形成できる成膜法として、特許第3588339号公報等に開示されるようなPICVD(Plasma Impulse Chemical Vapour Deposition)がある。これは化学蒸着方法(CVD)の一つであり、基板である反射鏡反射面近傍で成膜物質が活性化され、膜層として形成されるものであって、上述の物理蒸着(PVD)のように蒸着源から距離のある物理蒸着とは異なり、蒸着源からの距離に左右されることがないため、膜厚を一定にかつ均質の膜を形成できるとして上記反射鏡の成膜手段として検討可能と考えられる。
【0013】
しかしながら、高輝度の点光源を集光する反射鏡の反射膜として使用する場合、上記技術によった膜を用いても所期の反射特性が得られず、十分な効率を得ることができないと判明した。
これは、反射膜の膜厚を全域に亘って均一にした場合には、光が反射面に入射する角度によって、反射膜における光路長が変わるからである。すなわち、反射鏡の反射面に入射する光は、反射面に対して垂直となる部位は少なく、大半が反射面に対して斜めに入射する形となるが、反射膜の厚みが一定である場合には、光の入射角が大きくなるに従って光路が長くなるため、反射される光の波長は、所望とする波長よりも長波長側に移動してしまうからである。このため、所期の分光分布が得られず、結局、高い反射率を実現することができない。
【0014】
そこで本発明が解決しようとする課題は、第一の反射面に続いて球面状の第二の反射面が形成された反射鏡において、高輝度の点光源を集光する反射鏡の反射膜として使用する場合であっても、各反射面において高い反射特性及び反射効率が得られる反射鏡、及びその製造方法を提供することにある。
更に、所望の反射特性が得られるプロジェクター装置用の光源装置を提供することにある。
【課題を解決するための手段】
【0015】
そこで本発明に係る反射鏡は、基体が実質的に一体で構成され、光軸を中心とした回転面により構成された反射面を2以上有する反射鏡であって、
光放射口を前端に有する第一の反射面と、
この第一の反射面に連設され、入射光を焦点に戻す反射面よりなる第二の反射面とを有してなり、
前記第一の反射面は、前記基体の表面に、物理蒸着により膜厚が変位するよう誘電体多層膜が形成されて反射面が構成され、
前記第二の反射面は、一面に反射面がされた反射部材が前記基体に嵌め込まれることにより当該第二の反射面が構成されていることを特徴とする。
また、前記反射部材は基体が金属よりなり、反射面が研磨によって鏡面処理されて形成されてなることを特徴とする。
また、前記反射部材は基体がガラス、セラミックス等の絶縁性を有する耐熱性材料よりなり、反射面が誘電体多層膜により形成されることを特徴とする。
また、前記反射部材は基体がガラス、セラミックス、金属等の耐熱性材料よりなり、反射面が金属の膜により形成され、当該金属膜の上に耐酸化性の保護膜が積層形成されていることを特徴とする。
【0016】
また、本発明に係る反射鏡は、基体が実質的に一体で構成され、光軸を中心とした回転面により構成された反射面を2以上有する反射鏡であって、
前端に光放射口を有する第一の反射面と、この第一の反射面に連設された第二の反射面とを有してなり、
前記第一の反射面は、基体の表面に物理蒸着により膜厚が変位するよう誘電体多層膜が形成されて構成され、
前記第二の反射面は、入射光を当該反射面の焦点に戻す反射面よりなり、ゾル−ゲル法若しくは化学蒸着により形成されてなることを特徴とする
【0017】
また、本発明の反射鏡の製造方法は、
前記第一の反射面を、物理蒸着により基体の表面に誘電体多層膜を形成する工程と、
前記第一の反射面の形成前もしくは形成前において、基体における第一の反射面に該当する部分に対してマスキングした後、前記第二の反射面をゾル−ゲル法若しくはプラズマ化学気相成長法(PCVD)により基体表面に形成する工程と
を有することを特徴とする反射鏡の製造方法。
【0018】
また、本発明に係るプロジェクター装置用光源装置は、発光管部の内部に一対の電極と0.15mg/mm以上の水銀が封入された超高圧水銀ランプと、
請求項1又は請求項5に記載の反射鏡とを具備し、
前記反射鏡の反射面の第一焦点の位置に前記光源ランプのアークが一致するよう配置されてなることを特徴とする。
【発明の効果】
【0019】
(1)本発明によれば、構成される反射面の反射膜に最適の反射特性を持たせることが可能となり、光源からの光を所望の反射光分光分布にすることができ、プロジェクター装置の光源装置として、光源からの放射光を有効に利用できる反射鏡を提供できる。
(2)本発明によれば、構成される反射面の反射膜に最適の反射特性を持たせることが可能となり、光源からの光を所望の反射光分光分布にすることができ、プロジェクター装置の光源装置として、光源からの放射光を有効に利用できる反射鏡の製造方法を提供できる。
(3)本発明によれば、構成される反射面の反射膜に最適の反射特性を持たせることが可能となり、光源からの光を所望の反射光分光分布にすることができ、光源からの放射光を有効に利用できるプロジェクター装置の光源装置を提供できる。
【発明を実施するための最良の形態】
【0020】
以下、本発明の第一の実施形態に係る反射鏡及び光源装置を、図1〜図3を参照して説明する。
<第一の実施形態>
図1は(a)本発明の光源装置を説明する光軸(L)を含む平面で切断した断面図、(b)第二の反射面部分を拡大して示す説明図である。
反射鏡20の基体20Aは例えばホウ珪酸ガラス等のガラス製であり、熱間プレスにより成形されてなる。光軸Lの前方(紙面において右側)には光放射口21が形成されており、この光放射光21に続いて、第一の反射面22が形成された第一の基体部22Aが形成されている。そして、第一の基体部22Aの後端に第二の基体部23Aが連設され、この第二の基体部23Aの後端に第三の基体部24Aが連設されている。第三の基体部24Aの後方にはホール部25が形成されており、その内部に光源ランプ10の封止管部12aが挿入されて接着剤26によって固着されている。
【0021】
光源ランプ10は、超高圧水銀ランプなどのショートアーク型放電ランプが好適する。点灯方式としては直流、交流いずれのランプでも可能であるが、ここでは交流点灯方式の超高圧水銀ランプの例で説明する。
光源ランプ10の発光管は、略球状の発光管部11と、この発光管部11の両端に連続する円柱状の封止部12とを備えた石英ガラスなどの光透過性材料より構成されており、この発光管部11の内部空間にタングステンからなる一対の電極13,14が対向するように配置されている。電極13,14の基端部には、シールに使用される金属箔15の一端部が接合され、封止部12を構成するガラスにより気密に埋設されてシールされている。金属箔15の他端部には、外部リード16の一端部が接合されており、他端部が外方に伸びて封止部12の外部に突出している。
また、発光管部11の内部空間には、発光物質としての水銀、ハロゲンガス及び希ガスが封入されている。水銀は点灯時の内部空間の水銀蒸気圧が150気圧以上(好ましくは200気圧以上)となるよう0.15mg/mm以上(好ましくは0.20mg/mm以上)封入される。ハロゲンガスは、ハロゲンサイクルにより発光管部11の内壁に黒化が生じることを防止することを目的としており、10−6μmol/mm〜10−2μmol/mm封入される。希ガスは始動補助性を改善する目的で、例えばアルゴンガスが0.0133MPa程度封入される。
【0022】
反射鏡20は、第一の基体部22Aの内面は光軸Lを回転軸とした楕円回転面の一部により構成されており、赤外線に対して透過性を有し、可視光に対して反射性を有する誘電体多層膜が形成されて、第一焦点が反射鏡20に装着される光源ランプ10のアークの輝点位置に一致し、第二焦点がこの光源装置100の前方に位置される光学系の中心に一致する構成を有する第一の反射面が具備されている。
【0023】
第一の反射面22は、蒸着、スパッタリング等の物理蒸着(PVD)の手段によって形成されることにより、同図に示すように光放射口21に向かうに従って膜厚が徐々に小さくなるよう構成されている。これにより、光源ランプ10のアーク輝点から遠ざかるに従って光が第一の反射面への入射角が大きくなるが、反射膜の膜厚が小さくなっているため光路がほぼ一定になり、反射光の波長が変化することなく、所期の分光分布が得られるものとなっている。
【0024】
なお反射膜の一例を述べると、TiO蒸着膜とSiO蒸着膜を交互に形成した全体の膜厚が0.05μnm〜0.5μmの多層膜である。膜厚を徐々に勾配させる制御は、従来より物理蒸着において慣用されている技術、例えば、蒸着又はスパッタリング段階において、蒸着源又はスパッタ源と基体との間に遮蔽物を介在させることにより、第一の基体部22A内面に付着する蒸着源又はスパッタ源の量を制御すれば容易に実現することができる。
【0025】
第二の基体部22Aは、内面がアークの輝点をほぼ中心に有する球面に近い曲面状に形成されている。この第二の基体部23Aは、同図(a),(b)で示すように第一の基体部22Aと第二の基体部23Aとの境界、及び第二の基体部23Aと第三の基体部24Aとの境界は同図に示すよう不連続であると共に、第三の基体部24Aとの段部27を有している。
この段部27は、後段で詳述するが反射部材30を嵌入した際に、第一乃至第三の反射面が連接されるよう、反射部材30の厚みを見込んで形成されたものである。なおここで言う「反射面の連接」とは、光学的な連接を意味するものであって境界に段差が存在しないことを意味するものではない。
【0026】
以上のような反射鏡20の基体20Aは、ガラスを熱間プレス段階で使用する金型に予め第一乃至第三の基体部22A〜24Aを形成することによって実現できる。
【0027】
第二の基体部23Aの内部には、図2で示すように反射面23が形成された幅広の環状体からなる反射部材30が嵌め込まれる。本実施形態において反射部材30は、アルミニウム、ステンレス等の金属よりなる中空円状の平板をプレス成形することにより基体30Aが構成されており、この基体30Aの内面が研磨により鏡面処理が施され、更にその表面に可視光透過性を有する耐酸化性保護膜31が形成されている。このような保護膜31は、反射部材30表面が光源ランプ10の近傍において300℃以上の高温に至ることがあるため、鏡面の酸化を抑制するために施されるものであり、反射部材30材質としてアルミニウムを用いる場合にはほぼ必須の構成とされる。
なお、保護膜31として具体的にはSiOのコーティング層が好適である。
【0028】
図1に示すように、基体30A一面が鏡面処理されることにより形成された第二の反射面23は、第二の基体部22A内面と同様、光源ランプ10のアークの輝点に中心に有する球面か若しくは球面に近似した曲面を備えており、入射した光をその焦点(アークの輝点位置)に戻す反射面よりなる。従って、アークの中心から出て第二の反射面23に入射した光は、元のアークの中心位置に向けて反射され、光軸を対称として光源ランプ10の外部に放射され、結果、第一の反射面22に入射するようになる。従って、第二の反射面に入射した光は結局、第一の反射面22における第二焦点に向けて反射されることになる。
【0029】
ところで、第二の反射面23においては、アークの輝点位置からの光はほぼ同じ角度で入射することになるため、反射膜の膜厚を一定にすることで光路が同じになり、分光分布を所期の通りとすることができる。本実施形態では反射部材30を金属で構成し、金属を鏡面処理することにより反射面23を構成しているため、膜厚に関しての制御は検討不要であるが、反射膜を付加的に形成する場合には上記理由により膜厚を一定にすることで所期の分光分布が得られる。
【0030】
前記第二の基体部23Aの後方位には第三の基体部24Aが連設されている。この第三の基体部24Aは内面が光軸Lを中心とした回転楕円面の一部により構成されており、誘電体多層膜が形成されることによって、その第一焦点の位置と第二焦点の位置が上述した第一の反射面22と同じ位置にある、第三の反射面が具備されている。
この第三の反射面24もまた、蒸着、スパッタリング等の物理蒸着(PVD)の手段によって形成されており、同図に示すように第二の反射面23から後方に向かうに従って膜厚が徐々に小さくなるよう構成されている。これにより、光が第二の反射面から後方位になるに従い、光源ランプ10から第三の反射面への入射角は大きくなるが、反射膜の膜厚が小さくなっているため光路がほぼ一定になり、反射光の波長が変化することなく、所期の分光分布が得られるようになる。
【0031】
上記構成に係る反射鏡による光路を図3を参照して説明する。
矢印(ア)は光源ランプ10から第一の反射面22に入射した光の経路を示している。同図に示すように第一焦点F位置(アークの輝点)から第一の反射面22に入射した光は直接第二焦点Fに向けて反射される。なお、光源ランプ10からは可視光のほかに赤外域の光が放射されているが、第一の反射面22においては可視光のみを反射して赤外域の光を透過するため、光源装置100前方に赤外域の光が放射されることがなく、前方に配置される光学系に対して悪影響を及ぼすことがない。
【0032】
矢印(イ)は光源ランプ10から第二の反射面23に入射した光の経路を示している。第一焦点Fから第二の反射面23に入射した光は、第二の反射面23が入射光を焦点に戻す反射面より構成されているため元の第一焦点Fに戻り、第一焦点Fを通過して第一の反射面22に入射する。そして、第一の反射面22において、他の第一焦点Fから第一の反射面22に入射した光と同様に、第二焦点Fに向けて反射される。
なお、本実施形態においては第二の反射面23が金属表面を研磨した鏡面より構成されているため、第二の反射面22は赤外域の光をも反射することになるが、その後、第一の反射面22に入射した際に当該反射面22において赤外域の光が透過し、上述と同様、光源装置100前方に赤外域の光が放射されることがなく、前方に配置される光学系に対して悪影響を及ぼすことがなくなる。
【0033】
矢印(ウ)は光源ランプ10から第三の反射面24に入射した光の経路を示している。第一焦点F位置(アークの輝点)から第三の反射面24に入射した光は直接第二焦点Fに向けて反射される。なおこの第三の反射面24も上記第一の反射面22と同様、可視光のみを反射して赤外域の光を透過するため、光源装置100前方に赤外域の光が放射されることがなく、前方に配置される光学系に対して悪影響を及ぼすことがない。
【0034】
以上の第一の実施形態に係る反射鏡の仕様の一例を次に示す。
反射鏡(20)における第一の反射面(22)は、長軸が34.05mm、短軸が19.29mmの楕円面を有し、光放射口(21)の開口径が37.2mmである。また光軸方向の全長は18.4mmである。
第二の反射面(23)は、半径11.4mmの球面を有する。光軸方向の全長は4.16mmである。
第三の反射面(24)は、長軸が35.05mm、短軸が22.29mmの楕円面を有し、後端の開口径がφ10mmである。また光軸方向の全長は、3.36mmである。
【0035】
以上のような本実施形態にかかる反射鏡によれば、光軸を中心とした回転面により構成された反射面を複数有する反射鏡の基体が実質的に一体で構成され、光放射口を前端に有する第一の反射面と、この第一の反射面に連設され、入射光を第二の反射面の焦点に戻す反射面より構成された第二の反射面と、この第二の反射面に連設された第三の反射面とを有し、第一及び第三の反射面においては誘電体多層膜により形成し、第二の反射面においては内側の面に研磨によって鏡面処理された反射部材を反射鏡の基体に嵌め込んで構成しているため、各反射面において反射鏡の焦点位置からの光に対し、反射光分光分布が一定になるよう反射膜特性を具備することが可能となり、所期の反射効率を得ることができるようになる。
【0036】
従って、本発明によれば、従来技術のように反射面を蒸着やスパッタリングなどの物理蒸着(PVD)のみの手段によって反射膜を形成した場合に生じる第二の反射面に均一に膜を形成することができないといった不具合と、PICVD法などの化学蒸着のみの手段によって反射膜を形成した場合に生じる反射光分光分布が長波長側に移動するといった不具合とを同時に解決することができ、所定の光学系の焦点位置に所期の分光分布の光を高い効率で反射する反射鏡が得られ、プロジェクター装置に組み込まれる光源装置の用途として好適な反射鏡を提供することができる。
なお、本明細書において「化学蒸着」及び「物理蒸着」とはそれぞれ、次の事項を簡潔に表現したものである。化学蒸着(化学気相成長ともいう、CVD)は、基板表面(本発明においては基体の反射面)上に、目的とする薄膜の成分を含む原料ガスを供給し、基板表面あるいは気相での化学反応により膜を堆積させて薄膜を形成する方法であって、膜厚分布が均一になる成膜方法である。物理蒸着(物理気相成長ともいう、PVD)は、基板表面(本発明においては基体の反射面)から離れた場所で反応した反応物若しくは薄膜の成分そのものを物理的手法により堆積させて薄膜を形成する方法であり、膜厚に分布を持たせることが可能な成膜方法である。
【0037】
なお上記実施形態において、材質や反射面など構成については上記に限定されず、適宜変更が可能であることは言うまでもない。
例えば、第一、第二の反射面に続いて第三の反射面を具備した反射鏡構成として説明したが、この第三の反射面については必須構成ではなく、反射効率の改善の程度と生産性とを勘案し、適宜設ければよい。また、反射鏡の基体においては、ガラスの例で説明したがその他にもセラミックスや金属等でも構成できる。また、第二の反射面を形成するために用いた反射部材は、高温条件下でも変質しない材質で構成されれば金属にこだわるものではない。
【0038】
<第二の実施形態>
続いて図4を参照して本発明に係る第二の実施形態を説明する。なお先に図1〜図3で説明した構成と同じ構成については同符号で示し、詳細説明を省略する。
図4は、(a)本発明の光源装置を説明する光軸(L)を含む平面で切断した断面図、(b)第二の反射面部分を拡大して示す説明図である。第二の実施形態に係る反射鏡が前記第一の実施形態のものと相違する点は反射部材32に係る構成のみでその他構成については同じであり、説明については省略する。
【0039】
本実施形態においては反射部材32の材質として光透過性を有するガラスを用いた。具体的には、反射部材32の基体32Aはホウ珪酸ガラス、石英ガラスなどの耐熱性及び光透過性に富むガラスよりなり、熱間プレスなどの手段により成形されて形成される。
この反射部材32の基体32Aの外側に赤外線に対して透過性を有し、可視光に対して反射性を有する誘電体多層膜33が形成されて第二の反射面23が構成されている。
【0040】
この誘電体多層膜33は膜厚がほぼ均一であって焦点位置(アークの輝点)からの光に対し、反射光分光分布が一定になるような反射膜特性を具備するものである。このような膜33は、蒸着やスパッタリングなどの物理蒸着(PVD)によって形成することも可能であり、またプラズマCVDなどの手段によっても良い。
このように、第二の反射面23を反射鏡20の基体20Aと別の部材に設けることにより、誘電体多層膜33を所望の膜厚で簡単かつ均一に形成することができる。
【0041】
上記構成に係る反射鏡によれば、光源ランプ10からの放射光が反射部材32に入射すると、基体32Aを透過して他面に形成された誘電体多層膜33からなる第二の反射面23に入射する。第二の反射面23は入射光をこの反射面の焦点に戻す反射面であり、従って、反射光はもとの焦点位置(アークの輝点)に戻るようになる。このようにして焦点位置(アークの輝点)に戻った反射光は光軸Lを対称にして第一の反射面22に入射して第一反射面22の第二焦点に向けて反射される。
【0042】
そして、焦点位置(アークの輝点)からの光に対し、反射光分光分布が一定になるような反射膜特性を具備することで、当該第二の反射面においても所期の分光分布の反射が得られるようになる。
【0043】
なお、本実施形態においては基体32Aの外側に第二の反射面23を形成し、基体32Aと反射鏡20の基体20Aとの間に第二の反射面23を設けたが、反射面の形態が、焦点位置からの光に対して反射光分光分布が一定になるような反射膜特性を具備するものであれば、このような例に限定されず、基体32Aの内側に誘電体多層膜を形成して反射面とすることも可能である。
なお、本例の構成においては、誘電体多層膜33に替えて金属の蒸着膜で形成することも可能である。反射面を金属蒸着膜で構成する場合、光源ランプ10からの熱によって酸化し、劣化する可能性があるが、反射部材32の基体32Aと反射鏡20の基体20Aの間に第二の反射面を形成する場合には、金属蒸着膜が基体32Aで気密に覆われるため、そのような不具合を防止できる。
【0044】
なお本実施形態において、反射部材32の基体32Aについてはガラスで説明したが光透過性及び耐熱性を具備するものであればセラミックスを採用することも可能である。
【0045】
<第三の実施形態>
続いて図5を参照して本発明に係る第三の実施形態を説明する。なお先に図1〜図4で説明した構成と同じ構成については同符号で示し、詳細説明を省略する。
図5は、(a)本発明の光源装置を説明する光軸(L)を含む平面で切断した断面図、(b)第二の反射面部分を拡大して示す説明図である。第三の実施形態に係る反射鏡が前記第二の実施形態のものと相違する点は反射部材34に係る構成であり、その他構成については同じであるので説明については省略する。
【0046】
反射部材34の材質としてはガラス、セラミックスなど耐熱性を有するものであれば適宜のものを採用でき、これらの他に金属を用いることも可能である。
この反射部材34の基体34Aの内側に金属蒸着膜35が形成され、更に金属蒸着膜35の表面上に可視光透過性を有する耐酸化性を有する保護膜31が積層状態に形成されている。このような保護膜31は前記第一の実施形態と同様、SiOのコーティング層が好適であり、反射部材34表面が高温に至っても金属蒸着膜35の酸化を抑制して、高い反射光を安定して具備することができる。
【0047】
なお、本実施形態に係る金属蒸着膜35においても、焦点位置からの光に対して反射光分光分布が一定になるような反射膜特性を具備しており、従って第二の反射面において所期の分光分布の反射が得られるようになる。
【0048】
<第四の実施形態>
続いて、図6を参照して本発明の第四の実施形態を説明する。なお先に図1〜図5で説明した構成と同じ構成については同符号で示し、詳細説明を省略する。
図5は、(a)本発明の光源装置を説明する光軸(L)を含む平面で切断した断面図、(b)第二の反射面部分を拡大して示す説明図である。以下、同図を参照し、この反射鏡を製造方法を詳説しながら説明する。
【0049】
反射鏡20の基体20Aは、熱間プレスにより一体成形されたガラスよりなり、第一〜第三の基体部22A〜24Aを有して構成される。第一の基体部22A表面に形成された第一の反射面22及び第三の基体部24A表面に形成された第三の反射面24はいずれも光軸Lを回転軸とした回転楕円の一部で構成されている。また第二の基体部23A表面は球面か或いはそれに近似した曲面の一部で構成され、3つの反射面の第一焦点は一致している。
【0050】
上記反射鏡20の基体20Aの第一の反射面22および第三の反射面24に、真空蒸着やスパッタリングなどの物理成膜法(PBD)により、誘電体多層膜が形成される。誘電体多層膜は、TiO蒸着膜とSiO蒸着膜を交互に形成した全体の膜厚が0.5μnm〜2μmの多層膜などであり、第一の基体部22Aと第三の基体部24Aに同時に形成してもよいし、別々に形成してもよい。いずれの多層膜も膜厚が変化することにより、焦点位置からの光に対して反射光分光分布が一定になるような最適な膜分布を具備して形成される。
【0051】
続いて、第一の反射面および第三の反射面にマスキングを施した後、第二の反射面に膜厚が均一な反射膜を形成する。ここではゾルゲル法によって成膜する方法について説明する。
【0052】
ゾルゲル法によるSiO−TiO膜の形成方法の一例を示す。
先ず、脱水したエチルアルコールにエチルシリケート(テトラエトキシシラン)を溶解させる。この溶液を氷で冷やし、よく撹拌しながら0.1N塩酸(希塩酸)をゆっくり(1秒に一滴くらいのスピードで)添加する。5分程度撹拌してから、60℃のウォーターバスにつけて更に1時間撹拌する。その後、ウォーターバスから取り出して常温程度に冷却して、塗布液を調製する。
【0053】
反射鏡20の基体20A表面を洗浄した後、上記塗布液を塗布する。塗布方法は、スピンコートやディップコートによる。塗布後は空気中で乾燥して溶媒のエチルアルコールを蒸発させる。
乾燥後、電気炉に入れて500℃の温度で60分加熱することにより、SiO膜を反射鏡基板上に成膜する。なお、このようにして形成されるSiO膜の膜厚は100〜200nmである。
【0054】
以上のSiO膜の成膜方法と同様の手法により、エチルシリケート(テトラエトキシシラン)に替えてチタン酸テトライソプロポキシドを使用することで、TiO膜が形成される。なお形成されるTiO膜の膜厚は100〜200nmである。
【0055】
このようにSiO膜とTiO膜とを交互に形成することで、膜厚が一定の誘電多層膜を形成することができる。なお最終的に得られる誘電体多層膜は、SiO膜とTiO膜を合計30層積層することにより全体の膜厚を1〜2μmとしたものである。
【0056】
この反射鏡20に光源ランプ10を取り付けることにより、プロジェクター用の光源装置として提供することができる。
【0057】
以上の第四の実施形態においては、ゾルゲル法による成膜について説明したが、CVD法(化学蒸着)でも同様の膜を形成することができる。
【0058】
CVD法のなかでもプラズマCVDと呼ばれる方法が一般的に利用されている。簡単に、このプラズマCVDの概要を示す。反射鏡基板を真空中に置き、膜源となるガス例えばSiOを形成させる場合は、シランガス(SiH)と酸素(O)を流しながら(不要なガスは真空系により排出)、光周波の電磁波によりガスにプラズマを発生させ、SiOを生成させ反射鏡基板に積層させることにより膜を形成させる。
なお、他の膜を形成させるには、形成させる膜に合わせたガス若しくは蒸気を用意すればよい。
【0059】
また、上記製造方法においては、前記第一の反射面と第三の反射面を先に形成してから第二の反射面を形成したが、この順序に限らず、先にゾル−ゲル法若しくは化学蒸着(CVD)により第二の反射面を形成した後、第一、第三の反射面を形成してもよい。なおその場合は第二の反射面に対してマスキングを施してから、所定の物理蒸着(PVD)により、第一及び第三の基体部の表面に誘電体多層膜を形成する。
【0060】
以上本発明の実施形態について種々説明したが、本発明は上記に限定されることなく適宜変更が可能であることは言うまでもない。例えば第一の反射面については楕円球面として説明したがこれに限定されず、回転放物面であっても良い。また先にも述べたが第三の反射面は必須構成ではない。
【図面の簡単な説明】
【0061】
【図1】本発明の第一の実施形態に係る(a)光源装置を説明する光軸を含む平面で切断した断面図、(b)要部拡大図である。
【図2】本発明の第一の実施形態に係る反射部材と反射鏡基体を分解して示す構成図である。
【図3】本発明の第一の実施形態に係る光源装置の反射光の光路を説明する図である。
【図4】本発明の第二の実施形態に係る(a)光源装置を説明する光軸を含む平面で切断した断面図、(b)要部拡大図である。
【図5】本発明の第三の実施形態に係る(a)光源装置を説明する光軸を含む平面で切断した断面図、(b)要部拡大図である。
【図6】本発明の第四の実施形態に係る光源装置を説明する光軸を含む平面で切断した断面図である。
【図7】従来技術に係る光源装置を説明する図である。
【符号の説明】
【0062】
100 光源装置
10 放電ランプ
11 発光管部
12 封止部
13,14 電極
15 金属箔
16 外部リード
20 凹面反射鏡
21 光放射口
22 第一の反射面
23 第二の反射面
24 第三の反射面
22A 第一の基体部
23A 第二の基体部
24A 第三の基体部
25 ホール部
26 接着剤
27 段部
30 反射部材
30A 基体
31 保護膜
32 反射部材
32A 基体
33 誘電体多層膜
34 反射部材
34A 基体
35 金属蒸着膜

【特許請求の範囲】
【請求項1】
基体が実質的に一体で構成され、光軸を中心とした回転面により構成された反射面を2以上有する反射鏡であって、
光放射口を前端に有する第一の反射面と、
この第一の反射面に連設され、入射光を焦点に戻す反射面よりなる第二の反射面とを有してなり、
前記第一の反射面は、前記基体の表面に、物理蒸着により膜厚が変位するよう誘電体多層膜が形成されて反射面が構成され、
前記第二の反射面は、一面に反射面がされた反射部材が前記基体に嵌め込まれることにより当該第二の反射面が構成されていることを特徴とする反射鏡。
【請求項2】
前記反射部材は基体が金属よりなり、反射面が研磨によって鏡面処理されて形成されてなることを特徴とする請求項1記載の反射鏡。
【請求項3】
前記反射部材は基体がガラス、セラミックス等の絶縁性を有する耐熱性材料よりなり、反射面が誘電体多層膜により形成されることを特徴とする請求項1記載の反射鏡。
【請求項4】
前記反射部材は基体がガラス、セラミックス、金属等の耐熱性材料よりなり、反射面が金属の膜により形成され、当該金属膜の上に耐酸化性の保護膜が積層形成されていることを特徴とする請求項1記載の反射鏡。
【請求項5】
基体が実質的に一体で構成され、光軸を中心とした回転面により構成された反射面を2以上有する反射鏡であって、
前端に光放射口を有する第一の反射面と、この第一の反射面に連設された第二の反射面とを有してなり、
前記第一の反射面は、基体の表面に物理蒸着により膜厚が変位するよう誘電体多層膜が形成されて構成され、
前記第二の反射面は、入射光を当該反射面の焦点に戻す反射面よりなり、ゾル−ゲル法若しくは化学蒸着により形成されてなることを特徴とする反射鏡。
【請求項6】
請求項5記載の反射鏡の製造方法であって、
前記第一の反射面を、物理蒸着により基体の表面に誘電体多層膜を形成する工程と、
前記第一の反射面の形成前もしくは形成前において、基体における第一の反射面に該当する部分に対してマスキングした後、前記第二の反射面をゾル−ゲル法若しくはプラズマ化学気相成長法により基体表面に形成する工程と
を有することを特徴とする反射鏡の製造方法。
【請求項7】
発光管部の内部に一対の電極と0.15mg/mm以上の水銀が封入された超高圧水銀ランプと、
請求項1又は請求項5に記載の反射鏡とを具備し、
前記反射鏡の反射面の第一焦点の位置に前記光源ランプのアークが一致するよう配置されてなることを特徴とするプロジェクター装置用光源装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−40014(P2008−40014A)
【公開日】平成20年2月21日(2008.2.21)
【国際特許分類】
【出願番号】特願2006−212382(P2006−212382)
【出願日】平成18年8月3日(2006.8.3)
【出願人】(000102212)ウシオ電機株式会社 (1,414)
【Fターム(参考)】