説明

基材の加工方法

【課題】支持基材上に基材を仮固定して基材を加工する際に、これら支持基材と基材との距離を一定に保持して、精度に優れた基材の加工を行い得る基材の加工方法を提供すること。
【解決手段】本発明の基材の加工方法は、半導体ウエハ(基材)3と、支持基材1と、樹脂成分を含む樹脂組成物で構成される仮固定剤とを用意する工程と、支持基材1の一方の面に、仮固定剤をスピンコート法を用いて供給したのち乾燥させて犠牲層(薄膜)21を形成するとともに、半導体ウエハ3の一方の面に、仮固定剤をスピンコート法を用いて供給したのち乾燥させて犠牲層(薄膜)22を形成する工程と、犠牲層21と犠牲層22とを接触させることで、半導体ウエハ3と支持基材1とを貼り合わせる工程と、半導体ウエハ3の他方の面を加工する工程と、犠牲層21、22を加熱して樹脂成分を熱分解させることで、半導体ウエハ3を支持基材1から脱離させる工程とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基材の加工方法、特に、仮固定剤を用いて基材を支持基材に仮固定して基材を加工する基材の加工方法に関する。
【背景技術】
【0002】
半導体ウエハに研磨やエッチング等の加工を行うためには、半導体ウエハを支持するための基材上に半導体ウエハを一時的に仮固定する必要があり、そのための様々な方法が提案されている。例えば、現在では基材としてのPETフィルムに接着層を設けた固定用のフィルム上に半導体ウエハを固定する方法が多く用いられている。
【0003】
この方法では、研削に用いられる一般的なバックグラインドマシンの研削精度(約1μm)と、半導体ウエハを固定するための一般的なバックグラインド(BG)テープの厚み精度(約5μm)とを合わせると、要求される厚み精度を超えてしまい、研削されたウエハの厚みにバラツキが生じると言う問題がある。
【0004】
また、スルー・シリコン・ビア(Through Silicon Via)に用いる半導体ウエハを加工する場合、BGテープが付いた状態でビアホールや膜の形成を行うが、そのときの温度は低くとも180℃程度に達し、BGテープの粘着力を上げてしまう。また、膜形成のためのメッキの薬液によってBGテープの接着層が侵され、剥がれが生じたりする。
【0005】
また、化合物半導体に代表される脆弱な半導体ウエハは、機械的研削によってダメージを受ける場合があるので、エッチングによって薄化を行う。このエッチングにおいては、ストレス除去を目的とする程度のエッチング量であれば特に問題はないが、数μmエッチングする場合には、エッチングの薬液によってBGテープが変質してしまうことがある。
【0006】
一方で、近年、表面が平滑な支持基材に固定材料を介して半導体ウエハを固定する方法が採用されるようになっている。
【0007】
例えば、ストレス除去の目的でエッチングを行うには、高い温度まで加熱する必要があるが、PETフィルムではこのような高温に耐えることができないため、このような場合には支持基材を用いた方法が好ましく適用される。
【0008】
基材の支持基材への固定材料には、高温で軟化して半導体ウエハの脱離が容易になるような固定材料(例えば、特許文献1参照。)が提案されている。
【0009】
ところが、このような固定材料を用いて、支持基材上に半導体ウエハを固定した状態で、半導体ウエハに研磨やエッチング等の加工を行う際に、支持基材と半導体ウエハとの間に位置する固定材料を用いて形成された薄膜の厚さが不均一であると、例えば、半導体ウエハを研磨する際に、半導体ウエハの厚さにバラツキが生じるという問題がある。
【0010】
特に、半導体ウエハが、その固定材料に接触する側の面に凹凸を有する場合、この凹凸の凹部内に薄膜(固定材料)を十分に充填できず、基材と薄膜との間に空隙が残存することがある。この場合、空隙のサイズのバラツキが原因となり、半導体ウエハが支持基材に対して傾斜した状態で支持され、やはり、半導体ウエハを研磨する際に、半導体ウエハの厚さにバラツキが生じ、半導体ウエハの加工精度が低下する。
【0011】
なお、かかる問題は、半導体ウエハの加工に限らず、固定部材を介して支持基材に固定した状態で加工を施す各種基材についても同様に生じている。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特表2010−531385号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
本発明の目的は、支持基材上に基材を仮固定して基材を加工する際に、これら支持基材と基材との距離を一定に保持して、精度に優れた基材の加工を行い得る基材の加工方法を提供することにある。
【課題を解決するための手段】
【0014】
このような目的は、下記(1)〜(14)に記載の本発明により達成される。
(1) 一方の面に凹凸を有する基材と、該基材の他方の面を加工する際に、前記基材を支持する支持基材と、加熱により熱分解することで溶融または気化する樹脂成分を含む樹脂組成物で構成される仮固定剤とを用意する第1の工程と、
前記支持基材の一方の面に、前記仮固定剤をスピンコート法を用いて供給したのち乾燥させて第1の薄膜を形成するとともに、前記基材の前記一方の面に、前記仮固定剤をスピンコート法を用いて供給したのち乾燥させて第2の薄膜を形成する第2の工程と、
前記第1の薄膜と前記第2の薄膜とを接触させることで、前記基材と前記支持基材とを貼り合わせる第3の工程と、
前記基材の前記他方の面を加工する第4の工程と、
前記第1および第2の薄膜を加熱して前記樹脂成分を熱分解させることで、前記基材を前記支持基材から脱離させる第5の工程とを有することを特徴とする基材の加工方法。
【0015】
(2) 前記基材は、前記一方の面に導電部を備え、該導電部の存在により、前記一方の面に前記凹凸が形成されている上記(1)に記載の基材の加工方法。
【0016】
(3) 前記第1の工程において、前記仮固定剤の粘度(25℃)を500〜100,000mPa・sとなるように調整する上記(1)または(2)に記載の基材の加工方法。
【0017】
(4) 前記第2の工程において、前記仮固定剤を供給する前記基材および前記支持基材の回転数を300〜4,000rpmとする上記(1)ないし(3)のいずれかに記載の基材の加工方法。
【0018】
(5) 前記第2の工程において、前記第1および第2の薄膜は、その合計の平均厚さが50〜100μmの厚さに形成される上記(1)ないし(4)のいずれかに記載の基材の加工方法。
【0019】
(6) 前記第2の工程において、TMA軟化点が200℃未満の前記第1および第2の薄膜が形成される上記(1)ないし(5)のいずれかに記載の基材の加工方法。
【0020】
(7) 前記第3の工程において、前記第1および第2の薄膜を接触させた状態で、前記基材と前記支持基材とが互いに近づく方向に、0.01〜3MPaの圧力で加圧する上記(1)ないし(5)のいずれかに記載の基材の加工方法。
【0021】
(8) 前記第3の工程において、前記第1および第2の薄膜を、100〜300℃の温度で加熱する上記(1)ないし(7)のいずれかに記載の基材の加工方法。
【0022】
(9) 前記第1および第2の薄膜を加熱する時間は、0.1〜10分である上記(8)に記載の基材の加工方法。
【0023】
(10) 前記樹脂成分は、前記仮固定剤への活性エネルギー線の照射により、前記熱分解する温度が低下するものであり、前記第5の工程に先立って、前記活性エネルギー線を前記第1および第2の薄膜に照射する上記(1)ないし(9)のいずれかに記載の基材の加工方法。
【0024】
(11) 前記樹脂成分は、酸または塩基の存在下において前記熱分解する温度が低下するものであり、前記樹脂組成物は、さらに前記活性エネルギー線の照射により酸または塩基を発生する活性剤を含有する上記(10)に記載の基材の加工方法。
【0025】
(12) 前記樹脂成分は、ポリカーボネート系樹脂である上記(10)または(11)に記載の基材の加工方法。
【0026】
(13) 前記樹脂成分は、前記仮固定剤への活性エネルギー線の照射により、前記熱分解する温度が低下しない上記(1)ないし(9)のいずれかに記載の基材の加工方法。
【0027】
(14) 前記樹脂成分は、ノルボルネン系樹脂である上記(13)に記載の基材の加工方法。
【発明の効果】
【0028】
本発明の基材の加工方法によれば、仮固定剤を用いて基材と支持基材との距離を一定に保持することができる。その結果、基材に対して精度の高い加工が可能となるという効果を奏する。
【図面の簡単な説明】
【0029】
【図1】本発明の基材の加工方法が適用された、半導体ウエハを加工する加工工程を説明するための縦断面図である。
【発明を実施するための形態】
【0030】
以下、本発明の基材の加工方法を、添付図面に示す好適実施形態に基いて詳細に説明する。
【0031】
まず、本発明の基材の加工方法を説明するのに先立って、本発明に用いられる仮固定剤について説明する。
【0032】
<仮固定剤>
仮固定剤は、基材を加工するために該基材を支持基材に仮固定し、前記基材の加工後に、加熱することで前記基材を前記支持基材から脱離させるために用いられ、前記加熱により熱分解する樹脂成分を含有する樹脂組成物からなるものである。
【0033】
このような仮固定剤を用いることにより、仮固定剤を用いて形成された第1の薄膜および第2の薄膜(以下、これらを総称して「薄膜」と言うこともある。)により基材を支持基材に仮固定した状態で基材を加工することができ、さらに、加工後における加熱により第1の薄膜および第2の薄膜を溶融または気化させることで基材を支持基材から脱離させることができる。
【0034】
以下、この樹脂成分を含有する樹脂組成物を構成する各成分について、順次、説明する。
【0035】
樹脂成分は、仮固定時(基材の加工時)には、基材を支持基材に固定する機能を有し、さらに、仮固定剤の前記加熱により、熱分解して低分子化することで溶融または気化することに起因して、その接合強度が低下することから、支持基材からの基材の脱離を許容する機能を有するものである。
【0036】
樹脂成分としては、前記機能をするものであればよく、特に限定されるものではないが、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、(メタ)アクリレート系樹脂、ノルボルネン系樹脂、ポリオレフィン系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、ノルボルネン系樹脂、ポリカーボネート系樹脂、ビニル系樹脂および(メタ)アクリル系樹脂であるのが好ましく、特に、ノルボルネン系樹脂またはポリカーボネート系樹脂であるのが好ましい。これらのものは、前記機能をより顕著に発揮するものであるため、樹脂成分としてより好適に選択される。
【0037】
ポリカーボネート系樹脂としては、特に制限されないが、ポリプロピレンカーボネート樹脂、ポリエチレンカーボネート樹脂、1,2−ポリブチレンカーボネート樹脂、1,3−ポリブチレンカーボネート樹脂、1,4−ポリブチレンカーボネート樹脂、cis−2,3−ポリブチレンカーボネート樹脂、trans−2,3−ポリブチレンカーボネート樹脂、α,β−ポリイソブチレンカーボネート樹脂、α,γ−ポリイソブチレンカーボネート樹脂、cis−1,2−ポリシクロブチレンカーボネート樹脂、trans−1,2−ポリシクロブチレンカーボネート樹脂、cis−1,3−ポリシクロブチレンカーボネート樹脂、trans−1,3−ポリシクロブチレンカーボネート樹脂、ポリヘキセンカーボネート樹脂、ポリシクロプロペンカーボネート樹脂、ポリシクロヘキセンカーボネート樹脂、1,3−ポリシクロヘキサンカーボネート樹脂、ポリ(メチルシクロヘキセンカーボネート)樹脂、ポリ(ビニルシクロヘキセンカーボネート)樹脂、ポリジヒドロナフタレンカーボネート樹脂、ポリヘキサヒドロスチレンカーボネート樹脂、ポリシクロヘキサンプロピレンカーボネート樹脂、ポリスチレンカーボネート樹脂、ポリ(3−フェニルプロピレンカーボネート)樹脂、ポリ(3−トリメチルシリロキシプロピレンカーボネート)樹脂、ポリ(3−メタクリロイロキシプロピレンカーボネート)樹脂、ポリパーフルオロプロピレンカーボネート樹脂、ポリノルボルネンカーボネート樹脂、ポリノルボルナンカーボネート樹脂、exo−ポリノルボルネンカーボネート樹脂、endo−ポリノルボルネンカーボネート樹脂、trans−ポリノルボルネンカーボネート樹脂、cis−ポリノルボルネンカーボネート樹脂が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
【0038】
また、ポリカーボネート系樹脂としては、例えば、ポリプロピレンカーボネート/ポリシクロヘキセンカーボネート共重合体、1,3−ポリシクロヘキサンカーボネート/ポリノルボルネンカーボネート共重合体、ポリ[(オキシカルボニルオキシ−1,1,4,4−テトラメチルブタン)−alt−(オキシカルボニルオキシ−5−ノルボルネン−2−endo−3−endo−ジメタン)]樹脂、ポリ[(オキシカルボニルオキシ−1,4−ジメチルブタン)−alt−(オキシカルボニルオキシ−5−ノルボルネン−2−endo−3−endo−ジメタン)]樹脂、ポリ[(オキシカルボニルオキシ−1,1,4,4−テトラメチルブタン)−alt−(オキシカルボニルオキシ−p−キシレン)]樹脂、およびポリ[(オキシカルボニルオキシ−1,4−ジメチルブタン)−alt−(オキシカルボニルオキシ−p−キシレン)]樹脂、1,3−ポリシクロヘキサンカーボネート樹脂/exo−ポリノルボルネンカーボネート樹脂、1,3−ポリシクロヘキサンカーボネート樹脂/endo−ポリノルボルネンカーボネート樹脂等の共重合体を用いることもできる。
【0039】
さらに、ポリカーボネート系樹脂としては、上記の他、カーボネート構成単位において、少なくとも2つの環状体を有するポリカーボネート樹脂を用いることもできる。
【0040】
環状体の数は、カーボネート構成単位において、2つ以上であればよいが、2〜5であるのが好ましく、2または3であるのがより好ましく、2であるのがさらに好ましい。カーボネート構成単位としてこのような数の環状体が含まれることにより、支持基材と基材との密着性が優れたものとなる。また、仮固定剤の加熱により、かかるポリカーボネート樹脂が熱分解して低分子化することにより、溶融するものとなる。
【0041】
また、複数の環状体は、それぞれの頂点同士が互いに連結している連結多環系構造をなしていてもよいが、それぞれが有する一辺同士が互いに連結している縮合多環系構造をなしているのが好ましい。これにより、仮固定剤としての耐熱性と、このものが溶融する際の熱分解時間を短縮することを両立することができる。
【0042】
さらに、複数の環状体は、それぞれ、5員環または6員環であるあるのが好ましい。これにより、カーボネート構成単位の平面性が保たれることから、溶剤に対する溶解性をより安定させることができる。
【0043】
このような複数の環状体は、脂環式化合物であるのが好ましい。各環状体が脂環式化合物である場合に、前述したような効果がより顕著に発揮されることになる。
【0044】
これらのことを考慮すると、ポリカーボネート系樹脂において、カーボネート構成単位としては、例えば、下記化学式(1X)で表わされるものが特に好ましい構造である。
【0045】
【化1】

【0046】
なお、上記化学式(1X)で表わされるカーボネート構成単位を有するポリカーボネート系樹脂は、デカリンジオールと、炭酸ジフェニルのような炭酸ジエステルとの重縮合反応により得ることができる。
【0047】
また、上記化学式(1X)で表わされるカーボネート構成単位において、デカリンジオールが有する水酸基に連結する炭素原子に由来するものは、それぞれ、デカリン(すなわち、縮合多環系構造を形成する2つの環状体)を構成する炭素原子に結合し、かつ、これら水酸基に連結する炭素原子の間に3つ以上の原子が介在しているのが好ましい。これにより、ポリカーボネート系樹脂の分解性を制御でき、その結果、仮固定剤としての耐熱性と、このものが溶融する際の熱分解時間を短縮することを両立することができる。さらに、溶剤に対する溶解性をより安定させることができる。
【0048】
このようなカーボネート構成単位としては、例えば、下記化学式(1A)、(1B)で表わされるものが挙げられる。
【0049】
【化2】

【0050】
さらに、複数の環状体は、脂環式化合物である他、複素脂環式化合物であってもよい。各環状体が複素脂環式化合物である場合であっても、前述したような効果がより顕著に発揮されることになる。
【0051】
この場合、ポリカーボネート系樹脂において、カーボネート構成単位としては、例えば、下記化学式(2X)で表わされるものが特に好ましい構造である。
【0052】
【化3】

【0053】
なお、上記化学式(2X)で表わされるカーボネート構成単位を有するポリカーボネート系樹脂は、下記化学式(2a)で表わされるエーテルジオールと、炭酸ジフェニルのような炭酸ジエステルとの重縮合反応により得ることができる。
【0054】
【化4】

【0055】
また、上記化学式(2X)で表わされるカーボネート構成単位において、上記化学式(2a)で表わされる環状エーテルジオールが有する水酸基由来の炭素原子は、それぞれ、上記環状エーテル(すなわち、縮合多環系構造を形成する2つの環状体)を構成する炭素原子に結合し、かつ、これら炭素原子の間に3つ以上の原子が介在しているのが好ましい。これにより、仮固定剤としての耐熱性と、このものが溶融する際の熱分解時間を短縮することを両立することができる。さらに、溶剤に対する溶解性をより安定させることができる。
【0056】
このようなカーボネート構成単位としては、例えば、下記化学式(2A)で表わされる1,4:3,6−ジアンヒドロ−D−ソルビトール(イソソルビド)型のものや、下記化学式(2B)で表わされる1,4:3,6−ジアンヒドロ−D−マンニトール(イソマンニド)型ものが挙げられる。
【0057】
【化5】

【0058】
ポリカーボネート系樹脂の重量平均分子量(Mw)は、1,000〜1,000,000であることが好ましく、5,000〜800,000であることがさらに好ましい。重量平均分子量を上記下限以上とすることにより、支持基材に対する濡れ性が向上すること、さらに、成膜性を向上するという効果を得ることができる。また、上記上限値以下とすることで、各種溶剤に対する溶解性、さらには、仮固定剤の加熱による溶融粘度の低下がより顕著に認められるという効果を得ることができる。
【0059】
なお、ポリカーボネート系樹脂の重合方法は、特に限定されるわけではないが、例えば、ホスゲン法(溶剤法)または、エステル交換法(溶融法)等の公知の重合方法を用いることができる。
【0060】
ノルボルネン系樹脂としては、特に限定されないが、例えば、下記一般式(1Y)で示される構造単位を含むものを挙げることができる。
【0061】
【化6】

【0062】
式(1Y)において、R〜Rは、それぞれ、水素、線状または分岐状の炭素数1〜20のアルキル基、芳香族基、脂環族基、グリシジルエーテル基、下記置換基(2Y)のいずれかである。また、mは0〜4の整数である。
【0063】
【化7】

【0064】
式(2Y)において、Rは、それぞれ、水素、メチル基またはエチル基であり、R、RおよびRは、線状または分岐状の炭素数1〜20のアルキル基、線状または分岐状の炭素数1〜20のアルコキシ基、線状または分岐状の炭素数1〜20のアルキルカルボニルオキシ基、線状または分岐状の炭素数1〜20のアルキルペルオキシ基、置換もしくは未置換の炭素数6〜20のアリールオキシ基のいずれかである。また、nは0〜5の整数である。
【0065】
前記線状または分岐状の炭素数1〜20のアルキル基としては、特に限定されるものではないが、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。
【0066】
これらの中でも、仮固定剤(樹脂組成物)を構成する各種成分との相溶性や各種溶剤に対する溶解性、さらに、基材と支持基材とを仮固定した際の機械物性に優れるブチル基、デシル基が好ましい。
【0067】
前記芳香族基としては、特に限定されるものではないが、フェニル基、フェネチル基、ナフチル基等が挙げられるが、これらの中でも、基材と支持基材を仮固定した際の機械物性に優れるフェネチル基、ナフチル基が好ましい。
【0068】
前記脂環族としては、特に限定されるものではないが、シクロヘキシル基、ノルボルネニル基、ジヒドロジシクロペンタジエチル基、テトラシクロドデシル基、メチルテトラシクロドデシル基、テトラシクロドデカジエチル基、ジメチルテトラシクロドデシル基、エチルテトラシクロドデシル基、エチリデニルテトラシクロドデシル基、フエニルテトラシクロドデシル基、シクロペンタジエチル基の三量体等の脂環族基等が挙げられる。
【0069】
これらの中でも、基材と支持基材を仮固定した際の機械物性、さらには、仮固定剤の加熱時における熱分解性に優れるシクロヘキシル基、ノルボルネニル基が好ましい。
【0070】
前記置換基(2Y)中のRは、水素、メチル基またはエチル基であれば、特に限定されるものではないが、仮固定剤の加熱時における熱分解性に優れる水素原子が好ましい。
【0071】
前記置換基(2Y)中のR、RおよびRは、それぞれ、線状または分岐状の炭素数1〜20のアルキル基、線状または分岐状の炭素数1〜20のアルコキシ基、線状または分岐状の炭素数1〜20のアルキルカルボニルオキシ基、線状または分岐状の炭素数1〜20のアルキルペルオキシ基、置換もしくは未置換の炭素数6〜20のアリールオキシ基のいずれかであれば、特に限定されるわけではない。
【0072】
そのような置換基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチロキシ基、アセトキシ基、プロピオキシ基、ブチロキシ基、メチルペルオキシ基、イソプロピルペルオキシ基、t−ブチルペルオキシ基、フェノキシ基、ヒドロキシフェノキシ基、ナフチロキシ基、フェノキシ基、ヒドロキシフェノキシ基、ナフチロキシ基等が挙げられ、これらの中でも、仮固定の際の支持基材に対する密着性、基材加工時の機械特性に優れるメトキシ基、エトキシ基、プロポキシ基が好ましい。
【0073】
前記一般式(1Y)中のmは、0〜4の整数であり、特に限定されるわけではないが、0または1が好ましい。mが0または1である場合、前記一般式(1Y)で示される構造単位は、下記一般式(3Y)または(4Y)で示すことができる。
【0074】
【化8】

【0075】
【化9】

【0076】
前記式(3Y)および(4Y)において、R〜Rは、それぞれ、水素、線状または分岐状の炭素数1〜20のアルキル基、芳香族基、脂環族基、グリシジルエーテル基、置換基(2Y)のいずれかである。
【0077】
前記置換基(2Y)中のnは、0〜5の整数であり、特に限定されるわけではないが、nは0であることが好ましい。nが0である時、シリル基はケイ素−炭素結合を介して多環式環に直接結合しており、仮固定剤の熱分解性および基材加工時の機械特性を両立することができる。
【0078】
前記一般式(1Y)で示される構造単位は、特に限定されるわけではないが、ノルボルネン、5−メチルノルボルネン、5−エチルノルボルネン、5−プロピルノルボルネン、5−ブチルノルボルネン、5−ペンチルノルボルネン、5−ヘキシルノルボルネン、5−へプチルノルボルネン、5−オクチルノルボルネン、5−ノニルノルボルネン、5−デシルノルボルネン、5−フェネチルノルボルネン、5−トリエトキシシリルノルボルネン、5−トリメチルシリルノルボルネン、5−トリメトキシシリルノルボルネン、5−メチルジメトキシシシリルノルボルネン、5−ジメチルメトキシノルボルネン、5−グリシジルオキシメチルノルボルネン等のノルボルネン系モノマーを重合することにより得ることができる。
【0079】
前記ノルボルネン系モノマーを重合する際は、単一のノルボルネン系モノマーで重合しても、複数のノルボルネン系モノマーを共重合しても良い。これらノルボルネン系モノマーの中でも、基材と支持基材とを仮固定した際の機械物性に優れる5−ブチルノルボルネン、5−デシルノルボルネン、5−フェネチルノルボルネン、5−トリエトキシシリルノルボルネン、5−グリシジルオキシメチルノルボルネンが好ましい。
【0080】
前記ノルボルネン系樹脂は、特に限定されるわけではなく、前記一般式(1Y)で示される単一の構造単位で形成されていてもよく、また、複数の構造単位で形成されていても良い。
【0081】
前記ノルボルネン系樹脂は、より具体的には、ポリノルボルネン、ポリメチルノルボルネン、ポリエチルノルボルネン、ポリプロピルノルボルネン、ポリブチルノルボルネン、ポリペンチルノルボルネン、ポリヘキシルノルボルネン、ポリへプチルノルボルネン、ポリオクチルノルボルネン、ポリノニルノルボルネン、ポリデシルノルボルネン、ポリフェネチルノルボルネン、ポリトリエトキシシリルノルボルネン、ポリトリメチルシリルノルボルネン、ポリトリメトキシシリルノルボルネン、ポリメチルジメトキシシシリルノルボルネン、ポリジメチルメトキシノルボルネン、ポリグリシジルオキシメチルノルボルネン等の単一重合体、ノルボルネン−トリエトキシシリルノルボルネン共重合体、ノルボルネン−グリシジルオキシメチルノルボルネン共重合体、ブチルノルボルネン−トリエトキシシリルノルボルネン共重合体、デシルノルボルネン−トリエトキシシリルノルボルネン共重合体、ブチルノルボルネン−グリシジルオキシメチルノルボルネン共重合体、デシルノルボルネン−グリシジルオキシメチルノルボルネン共重合体、デシルノルボルネン−ブチルノルボルネン−フェネチルノルボルネン−グリシジルオキシメチルノルボルネン共重合体等の共重合体が挙げられる。
【0082】
これらの中でも、基材と支持基材とを仮固定した際の機械物性に優れるポリブチルノルボルネン、ポリデシルノルボルネン、ポリトリエトキシシリルノルボルネン、ポリグリシジルオキシメチルノルボルネン−ブチルノルボルネン−トリエトキシシリルノルボルネン共重合体、デシルノルボルネン−トリエトキシシリルノルボルネン共重合体、ブチルノルボルネン−グリシジルオキシメチルノルボルネン共重合体、デシルノルボルネン−グリシジルオキシメチルノルボルネン共重合体、デシルノルボルネン−ブチルノルボルネン−フェネチルノルボルネン−グリシジルオキシメチルノルボルネン共重合体が好ましい。
【0083】
なお、前記一般式(1Y)で示される構造単位を有するノルボルネン系樹脂は、特に限定されるわけではないが、開環メタセシス重合(以下、ROMPとも記載する。)、ROMPと水素化反応の組み合わせ、ラジカルまたはカチオンによる重合により合成することができる。
【0084】
より具体的には、前記一般式(1Y)で示される構造単位を有するノルボルネン系樹脂は、例えば、パラジウムイオン源を含有する触媒、ニッケルと白金を含有する触媒、ラジカル開始剤等を用いることにより合成することができる。
【0085】
また、樹脂成分は、樹脂組成物を構成する全量(溶剤を含む場合には、溶剤を除いた全量)の10wt%〜100wt%の割合で配合することが好ましい。さらに好ましくは、50wt%以上、特には、80wt%〜100wt%の割合で配合することが好ましい。10wt%以上、特に80wt%以上とすることで、仮固定剤を熱分解した後の残渣を低減できるという効果がある。また、樹脂組成物中の樹脂成分を多くすることで短時間で仮固定剤を熱分解できるという効果がある。
【0086】
以上のような樹脂成分は、酸または塩基の存在下において、熱分解する温度が低下するものと、熱分解する温度が低下しないものとに分類される。
【0087】
具体的には、酸または塩基の存在下において熱分解する温度が低下する樹脂成分としては、例えば、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、(メタ)アクリレート系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、熱分解する温度の低下がより顕著に認められるという観点から、ポリカーボネート系樹脂を用いるのが好ましく、特に、ポリプロピレンカーボネート、1,4−ポリブチレンカーボネート、1,3−ポリシクロヘキサンカーボネート/ポリノルボルネンカーボネート共重合体であるのが好ましい。
【0088】
なお、酸または塩基の存在下において、熱分解する温度が低下しない樹脂成分としては、例えば、ノルボルネン系樹脂、ポリオレフィン系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
【0089】
そこで、樹脂成分として、酸または塩基の存在下において、熱分解する温度が低下するものを選択した場合、樹脂組成物中に、仮固定剤への活性エネルギー線の照射により酸または塩基を発生する活性剤が含まれる構成とすることで、樹脂成分を、仮固定剤への活性エネルギー線の照射により熱分解する温度が低下するものとすることができる。
【0090】
したがって、仮固定剤(樹脂組成物)を、熱分解する温度が低下する樹脂成分と、仮固定剤への活性エネルギー線の照射により酸または塩基を発生する活性剤とを含有するものとすることで、活性エネルギー線照射により樹脂成分の熱分解する温度が低下するため、活性エネルギー線照射の後の仮固定剤の加熱により、基材の支持基材からの脱離をより容易に行え得るという効果が得られる。
【0091】
なお、樹脂成分として、酸または塩基の存在下において、熱分解する温度が低下しないものを選択した場合には、樹脂組成物中に、仮固定剤への活性エネルギー線の照射により酸または塩基を発生する活性剤を添加したとしても、当然、樹脂成分の熱分解する温度は、仮固定剤への活性エネルギー線の照射によっても変化しない。
【0092】
以下、樹脂成分として、酸または塩基の存在下において、熱分解する温度が低下するもの選択した際に、樹脂組成物に含まれる活性剤について説明する。
【0093】
(活性剤)
活性剤は、上述したように、活性エネルギー線の照射によってエネルギーを加えられることにより、酸または塩基のような活性種を発生させるものであり、この活性種の作用により、前記樹脂成分の熱分解する温度を低下させる機能を有するものである。
【0094】
この活性剤としては、特に限定されないが、例えば、活性エネルギー線の照射により酸を発生する光酸発生剤や、活性エネルギー線の照射により塩基を発生する光塩基発生剤等が挙げられる。
【0095】
光酸発生剤としては、特に限定されないが、例えば、テトラキス(ペンタフルオロフェニル)ボレート−4−メチルフェニル[4−(1−メチルエチル)フェニル]ヨードニウム(DPI−TPFPB)、トリス(4−t−ブチルフェニル)スルホニウムテトラキス−(ペンタフルオロフェニル)ボレート(TTBPS−TPFPB)、トリス(4−t−ブチルフェニル)スルホニウムヘキサフルオロホスフェート(TTBPS−HFP)、トリフェニルスルホニウムトリフレート(TPS−Tf)、ビス(4−tert−ブチルフェニル)ヨードニウムトリフレート(DTBPI−Tf)、トリアジン(TAZ−101)、トリフェニルスルホニウムヘキサフルオロアンチモネート(TPS−103)、トリフェニルスルホニウムビス(パーフルオロメタンスルホニル)イミド(TPS−N1)、ジ−(p−t−ブチル)フェニルヨードニウム、ビス(パーフルオロメタンスルホニル)イミド(DTBPI−N1)、トリフェニルスルホニウム、トリス(パーフルオロメタンスルホニル)メチド(TPS−C1)、ジ−(p−t−ブチルフェニル)ヨードニウムトリス(パーフルオロメタンスルホニル)メチド(DTBPI−C1)等が挙げられ、これらのうち1種または2種以上を組合せて用いることができる。これらの中でも、特に、樹脂成分の溶融粘度を効率的に下げることができるという観点から、テトラキス(ペンタフルオロフェニル)ボレート−4−メチルフェニル[4−(1−メチルエチル)フェニル]ヨードニウム(DPI−TPFPB)が好ましい。
【0096】
また、光塩基発生剤としては、特に限定されないが、例えば、5−ベンジル−1,5−ジアザビシクロ(4.3.0)ノナン、1−(2−ニトロベンゾイルカルバモイル)イミダゾール等が挙げられ、これらのうち1種または2種以上を組合せて用いることができる。これらの中でも、特に、樹脂成分の溶融粘度を効率的に下げることができるという観点から、5−ベンジル−1,5−ジアザビシクロ(4.3.0)ノナンおよびこの誘導体が好ましい。
【0097】
前記活性剤は、樹脂組成物(仮固定剤)の全量の0.01〜50重量%程度であるのが好ましく、0.1〜30重量%程度であるのがより好ましい。かかる範囲内とすることにより、樹脂成分の溶融粘度を安定的に目的とする範囲内に下げることが可能となる。
【0098】
このような活性剤の添加により、活性エネルギー線を照射することで、酸または塩基のような活性種が発生し、この活性種の作用によって、樹脂成分の主鎖にその熱分解温度が低下する構造が形成され、その結果、樹脂成分の熱分解する温度が低下すると推察される。
【0099】
ここで、樹脂成分としてポリカーボネート系樹脂であるポリプロピレンカーボネート樹脂を使用し、活性剤として光酸発生剤を使用した場合の熱分解温度が低下するメカニズムについて説明する。下記式(1Z)で示すように、先ず、前記光酸発生剤由来のHが、ポリプロピレンカーボネート樹脂のカルボニル酸素をプロトン化し、さらに極性遷移状態を転移させ不安定な互変異性中間体[A]および[B]を生じる。次に、中間体[A]は、アセトンおよびCOとして断片化する熱切断が起こるため、熱分解温度が低下する。また、中間体[B]は炭酸プロピレンを生成し、炭酸プロピレンはCOおよびプロピレンオキシドとして断片化する熱閉環構造を形成するため、熱分解温度が低下する。
【0100】
【化10】

【0101】
(増感剤)
また、仮固定剤は、活性剤を含む場合、この活性剤とともに、特定の波長の活性エネルギー線に対する活性剤の反応性を発現あるいは増大させる機能を有する成分である増感剤を含んでいても良い。
【0102】
増感剤としては、特に限定されるものではないが、例えば、アントラセン、フェナントレン、クリセン、ベンツピレン、フルオランテン、ルブレン、ピレン、キサントン、インダンスレン、チオキサンテン−9−オン、2‐イソプロピル−9H−チオキサンテン−9−オン、4−イソプロピル−9H−チオキサンテン−9−オン、1−クロロ−4‐プロポキシチオキサントン、およびこれらの混合物等が挙げられる。
【0103】
このような増感剤の含有量は、前述した光酸発生剤等の活性剤および光ラジカル開始剤の総量100重量部に対して、100重量部以下であるのが好ましく、20重量部以下であるのがより好ましい。
【0104】
以上のような樹脂組成物には、樹脂成分が、酸または塩基の存在下において、熱分解する温度が低下するもの、および熱分解する温度が低下しないもののうちの何れであっても、以下に示すような他の成分が含まれていてもよい。
【0105】
(酸化防止剤)
すなわち、樹脂組成物(仮固定剤)は、酸化防止剤を含んでいてもよい。
【0106】
この酸化防止剤は、樹脂組成物(仮固定剤)中における酸の発生や、自然酸化を防止する機能を有している。
【0107】
酸化防止剤としては、特に限定されないが、例えば、Ciba Fine Chemicals社製、「Ciba IRGANOX(登録商標) 1076」および「Ciba IRGAFOS(登録商標) 168」が好適に用いられる。
【0108】
また、他の酸化防止剤としては、例えば、「Ciba Irganox 129」、「Ciba Irganox 1330」、「Ciba Irganox 1010」、「Ciba Cyanox(登録商標) 1790」、「Ciba Irganox 3114、Ciba Irganox 3125」等を用いることもできる。
【0109】
酸化防止剤の含有量は、上述した樹脂成分100重量部に対して、0.1〜10重量部であるのが好ましく、0.5〜5重量部であるのがより好ましい。
【0110】
(添加剤)
また、樹脂組成物(仮固定剤)は、必要により酸捕捉剤、アクリル系、シリコーン系、フッ素系、ビニル系等のレベリング剤、シランカップリング剤、希釈剤等の添加剤等を含んでも良い。
【0111】
シランカップリング剤としては、特に限定されるものではないが、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン等が挙げられ、これらのうち、1種または2種以上を組み合わせて用いることができる。
【0112】
樹脂組成物(仮固定剤)がシランカップリング剤を含むことにより、基材と支持基材との密着性の向上を図ることができる。
【0113】
また、希釈剤としては、特に限定されないが、例えば、シクロヘキセンオキサイドやα−ピネンオキサイド等のシクロエーテル化合物、[メチレンビス(4,1−フェニレンオキシメチレン)]ビスオキシランなどの芳香族シクロエーテル、1,4−シクロヘキサンジメタノールジビニルエーテルなどのシクロアリファティックビニルエーテル化合物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
【0114】
樹脂組成物(仮固定剤)が希釈剤を含むことにより、仮固定剤の流動性を向上させることができ、後述する犠牲層形成工程において、仮固定剤の支持基材に対する濡れ性を向上させることが可能となる。
【0115】
(溶剤)
また、樹脂組成物(仮固定剤)は、溶媒を含有していても良い。
【0116】
樹脂組成物を、溶媒を含む構成とすることで、樹脂組成物の粘度等の調整を容易に行うことができる。
【0117】
溶剤としては、特に限定されるものではないが、例えば、メシチレン、デカリン、ミネラルスピリット類等の炭化水素類、トルエン、キシレン、トリメチルベンゼン等の芳香族炭化水素類、アニソール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジグライム等のアルコール/エーテル類、炭酸エチレン、酢酸エチル、酢酸N−ブチル、乳酸エチル、3−エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、炭酸プロピレン、γ−ブチロラクトン等のエステル/ラクトン類、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、2−ヘプタノン等のケトン類、N−メチル−2−ピロリドン等のアミド/ラクタム類が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これにより、仮固定剤の粘度を調整することが容易となり、支持基材に仮固定剤で構成される犠牲層(薄膜)の形成が容易となる。
【0118】
前記溶剤の含有量は、特に限定されるものではないが、樹脂組成物(仮固定剤)の全量の5〜98重量%であることが好ましく、10〜95重量%であることがより好ましい。
【0119】
<半導体装置の製造方法>
上述したような仮固定剤が、例えば、半導体装置の製造方法に適用される。
【0120】
すなわち、半導体装置の製造方法における、半導体ウエハの加工に、仮固定剤を用いた本発明の基材の加工方法が適用される。
【0121】
以下、この本発明の基材の加工方法の実施形態の一例について説明する。
この半導体ウエハ(基材)の加工方法は、一方の面に凹凸を有する半導体ウエハと、半導体ウエハの他方の面を加工する際に、半導体ウエハを支持する支持基材と、上述した仮固定剤とを用意する第1の工程と、支持基材の一方の面に、仮固定剤をスピンコート法を用いて供給したのち乾燥させて第1の犠牲層(第1の薄膜)を形成するとともに、半導体ウエハの一方の面に、仮固定剤をスピンコート法を用いて供給したのち乾燥させて第2の犠牲層(第2の薄膜)を形成する第2の工程と、第1の犠牲層と第2の犠牲層とを接触させることで、半導体ウエハと支持基材とを貼り合わせる第3の工程と、半導体ウエハの他方の面を加工する第4の工程と、第1および第2の犠牲層を加熱して樹脂成分を熱分解させることで、半導体ウエハを支持基材から脱離させる第5の工程とを有する。
【0122】
図1は、本発明の基材の加工方法が適用された、半導体ウエハを加工する加工工程を説明するための縦断面図である。なお、以下の説明では、図1中、上側を「上」、下側を「下」とする。
【0123】
以下、これら各工程について順次説明する。
(準備工程)
まず、支持基材1、半導体ウエハ(基材)3および仮固定剤を用意する(第1の工程)。
【0124】
支持基材1としては、基材3を支持し得る程度の強度を有するものであれば、特に限定されないが、光透過性を有するものであるのが好ましい。これにより、樹脂成分として、活性エネルギー線の照射により、熱分解する温度が低下するものを用いた際に、支持基材1側から活性エネルギー線を透過させて、第1の犠牲層21および第2の犠牲層22に活性エネルギー線を確実に照射することができるようになる。
【0125】
光透過性を有する支持基材1としては、例えば、石英ガラス、ソーダガラスのようなガラス材料や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリカーボネートのような樹脂材料等を主材料として構成される基板が挙げられる。
【0126】
また、半導体ウエハ3の下面(一方の面)には、導電材料で構成される配線や端子およびバンプのような導電部が形成されている。すなわち、半導体ウエハ3の下面は、機能面31を構成している。この導電部の存在により、半導体ウエハ3は、その下面側に凹凸を有する。
【0127】
仮固定剤としては、本工程において、その粘度(25℃)を500〜100,000mPa・s程度となるように調整するのが好ましく、1,000〜50,000mPa・s程度となるように調整するのがより好ましく、2,000〜40,000mPa・s程度となるように調整するのがさらに好ましい。かかる仮固定剤は、適度な粘度を有するので、取り扱いが容易であるとともに、塗布性に優れる。このため、第1の犠牲層21および第2の犠牲層22を容易かつ確実に形成することが可能となる。
【0128】
なお、粘度(25℃)は、E型粘度計(東機産業製、粘度計TVE−22型)で、コーン温度25℃、3分後の値を測定値とすることができる。
【0129】
(犠牲層形成工程)
次に、図1(a)に示すように、支持基材1の上面(一方の面)に、スピンコート法を用いて仮固定剤を供給したのち加熱することで乾燥させて第1の犠牲層21を形成するとともに、半導体ウエハ3の機能面(下面)31に、スピンコート法を用いて仮固定剤を供給したのち加熱することで乾燥させて第2の犠牲層22を形成する(第2の工程;図1(b)参照。)。
【0130】
ここで、かかる仮固定剤を供給する支持基材1および半導体ウエハ3の回転数は、300〜4,000rpm程度に設定するのが好ましく、500〜3,500rpm程度に設定するのがより好ましく、600〜3,000rpm程度に設定するのがさらに好ましい。支持基材1および半導体ウエハ3の回転数に設定することにより、均一な厚さの第1の犠牲層21および第2の犠牲層22を比較的容易に形成することができる。特に、仮固定剤を前述のような粘度に調整しておけば、第1の犠牲層21および第2の犠牲層22の厚さの均一性(平坦性)を向上させることができる。
【0131】
また、仮固定剤の粘度(25℃)をA[mPa・s]とし、支持基材1および半導体ウエハ3の回転数をB[rpm]としたとき、A/Bは、0.13〜330であるのが好ましく、0.5〜100であるのがより好ましい。これにより、第1の犠牲層21および第2の犠牲層22を特に均一な厚さで成膜することができる。
【0132】
さらに、成膜された第1の犠牲層21および第2の犠牲層22のTMA(Thermomechanical Analysis)軟化点は、特に限定されないが、200℃未満であるのが好ましく、50〜180℃程度であるのがより好ましい。これにより、次工程(貼り合わせ工程)において、加熱した際にその少なくとも表面を溶融状態とすることができる。
【0133】
なお、TMA軟化点とは、熱機械測定装置(TMA)により測定されるものであり、測定対象物を一定の昇温速度で、一定の荷重を掛けながら昇温し、測定対象物の位相を観測することにより求められる。本明細書では、第1の犠牲層21および第2の犠牲層22の位相が変化し始める温度をもってTMA軟化点と定義することとし、具体的には、TMA軟化点は、例えば、熱機械測定装置(ティー・エイ・インスツルメント社製、「Q400EM」)を用いて、測定温度範囲25〜250℃とし、昇温速度を5℃/minとした際に、10gの荷重を1mmφの石英ガラスピン(針)にかけた時に位相が変化し始める温度を測定することで求めることができる。
【0134】
また、第1の犠牲層21および第2の犠牲層22は、その合計の平均厚さが50〜100μm程度の厚さとなるように形成するのが好ましく、70〜90μm程度の厚さとなるように形成するのがより好ましい。かかる厚さで、第1の犠牲層21および第2の犠牲層22を形成すれば、後の加工工程において、第1の犠牲層21および第2の犠牲層22が緩衝材として機能して、機能面31の導電部が損傷するのをより確実に防止することができる。
【0135】
(貼り合わせ工程)
次に、図1(c)に示すように、第1の犠牲層21と第2の犠牲層22とが接触するように、半導体ウエハ3を支持基材1上に載置し、この状態で、熱圧着することにより、支持基材1に第1の犠牲層21および第2の犠牲層22を介して半導体ウエハ3を貼り合わせる(第3の工程)。
【0136】
この熱圧着による貼り合わせは、例えば、真空プレス機、ウエハボンダー等の装置を用いて容易に行うことができる。
【0137】
ここで、仮に、支持基材1側にのみ犠牲層を形成し、この犠牲層を介して支持基材1に半導体ウエハ3を貼り合わせると、半導体ウエハ3の機能面31に存在する配線、端子およびバンプのような導電部の高さのバラツキが原因で、支持基材1と半導体ウエハ3との距離を一定に保持することができない場合がある。この場合、次工程において、半導体ウエハ3の上面全体を均一に加工することができない。すなわち、半導体ウエハ3の加工精度が低下する。
【0138】
また、この場合、半導体ウエハ3と犠牲層との間には、導電部が有する凸部同士の隙間に相当する部分に空隙が残存し、次工程の加工時に、半導体ウエハ3が加熱されると、前記空隙内の空気(ボイド)が膨張して、半導体ウエハ3が支持基材1に対して傾き、半導体ウエハ3の加工精度がさらに低下する。
【0139】
かかる問題を回避するためには、導電部の凸部同士の隙間(凹凸の凹部)内に、犠牲層を充填するようにすればよいが、凹部の深さ、犠牲層の硬度(柔軟性)等によっては、前記隙間内に十分に犠牲層を充填することができない場合がある。この場合、次工程の加工時に、半導体ウエハ3が加熱されると、前記空隙内の空気が膨張して、やはり、半導体ウエハ3の加工精度を低下させる。
【0140】
さらに、前記隙間内に犠牲層を確実に充填するためには、本工程において、犠牲層を溶融するまで加熱することが考えられるが、犠牲層中の樹脂成分の融点によっては、犠牲層を高温で加熱する必要がある。この場合、半導体ウエハ3の機能面31に形成された導電部も高温に曝されることになり、その機能が低下するおそれがある。
【0141】
一方、半導体ウエハ3にのみ犠牲層を形成する場合には、導電部の凸部の高さ(凹部の深さ)が大きいと、導電部の凸部同士の隙間(凹凸の凹部)内に、犠牲層を十分に充填することができず、前述と同様の問題を生じる。
【0142】
これに対して、本発明では、支持基材1に第1の犠牲層21を、半導体ウエハ3に第2の犠牲層22を、それぞれ形成し、半導体ウエハ3を支持基材1に貼り合わせるため、上述したような問題を回避することができる。
【0143】
例えば、導電部の凸部の高さ(凹部の深さ)が大きい場合には、第2の犠牲層22から導電部の配線の一部が露出することがあるが、この露出した凸部同士の隙間の深さは、第1の犠牲層21で十分に充填し得る程度に小さいものとなる。
【0144】
また、前記隙間を第1の犠牲層21で確実に充填する観点からは、第1の犠牲層21を加熱すればよいが、前記隙間の深さは極めて小さいため、第1の犠牲層21は、軟化する程度に加熱すればよい。すなわち、第1の犠牲層21を低温で加熱すれば十分である。このため、半導体ウエハ3の機能面31に形成された導電部は、高温に曝されることなく、その機能が低下するおそれもない。
【0145】
そして、スピンコート法により形成される第1の犠牲層21および第2の犠牲層22は、厚さの均一性(平坦性)が高いため、高い精度で、支持基材1と半導体ウエハ3との距離を一定に保持することができる。これにより、次工程において、半導体ウエハ3の上面全体を均一に加工することができる。すなわち、半導体ウエハ3を高い加工精度で加工することができる。
【0146】
さらに、支持基材1および半導体ウエハ3のいずれか一方にのみ犠牲層を形成し、支持基材1と半導体ウエハ3とを貼り合わせる場合には、犠牲層中の樹脂成分と、犠牲層に接合する支持基材1または半導体ウエハ3の構成材料とは、異種材料となるため、これらの間に強固な接合は期待できない。
【0147】
これに対して、本発明では、支持基材1に第1の犠牲層21を、半導体ウエハ3に第2の犠牲層22を、それぞれ形成し、第1の犠牲層21と第2の犠牲層22とを接合する。第1の犠牲層21中の樹脂成分と第2の犠牲層22中の樹脂成分とは、同種または同一材料となるため、これらの間の接合は、極めて強固なものとなる。かかる観点からも、半導体ウエハ3を高い加工精度で加工することができる。
【0148】
ここで、第1の犠牲層21と第2の犠牲層22とを介在させた状態で、半導体ウエハ3と支持基材1とが互いに近づく方向に加圧する際の圧力は、特に限定されないが、0.01〜3MPa程度であるのが好ましく、0.05〜2MPa程度であるのがより好ましい。
【0149】
また、この際、第1の犠牲層21および第2の犠牲層22を加熱する温度は、特に限定されないが、100〜300℃程度であるのが好ましく、120〜250℃程度であるのがより好ましい。本発明によれば、本工程を、このような比較的低温で行うことができ、半導体ウエハ3の機能面31に形成された導電部の熱による劣化、すなわち、その機能低下を防止または抑制することができる。
【0150】
さらに、加圧および加熱する時間は、特に限定されないが、0.1〜10分程度であるのが好ましく、0.5〜5分程度であるのがより好ましい。
【0151】
なお、第1の犠牲層21および第2の犠牲層22のTMA軟化点が前記犠牲層形成工程で説明した範囲内のものである場合に、上述した加圧条件および温度条件で第1の犠牲層21と第2の犠牲層22とを熱圧着することで、第1の犠牲層21および第2の犠牲層22を介した半導体ウエハ3と支持基材1との接合をより優れた精度で行うことが可能となる。
【0152】
(加工工程)
次に、犠牲層2を介して支持基材1上に固定された半導体ウエハ3の機能面31と反対側の面(裏面)を加工する(第4の工程)。
【0153】
この半導体ウエハ3の加工は、特に限定されず、例えば、図1(d)に示すような半導体ウエハ3の裏面の研削・研磨の他、半導体ウエハ3へのビアホールの形成、ストレスリリースのための半導体ウエハ3の上面(裏面)のエッチング、リソグラフィー、さらには半導体ウエハ3の裏面への薄膜のコート、蒸着等が挙げられる。
【0154】
ここで、本発明では、前記犠牲層形成工程および前記貼り合わせ工程で説明したように、均一な膜厚で第1の犠牲層21および第2の犠牲層22が形成されているため、半導体ウエハ3と支持基材1とが一定の間隔を維持した状態で、第1の犠牲層21および第2の犠牲層22を介して半導体ウエハ3が支持基材1に接合されている。そのため、半導体ウエハ3の上面(裏面)の研削・研磨を、その厚さにバラツキを生じることなく行うことができる。
【0155】
(脱離工程)
次いで、図1(e)に示すように、犠牲層形成工程における加熱の温度より高い温度で加熱することで、樹脂成分を熱分解させて低分子化させることにより、第1の犠牲層21および第2の犠牲層22を溶融または気化させた後、半導体ウエハ3を支持基材1から脱離させる(第5の工程)。
【0156】
犠牲層2を加熱する温度は、樹脂成分が熱分解する温度で、かつ、半導体ウエハ3の変質・劣化が防止される温度に設定され、具体的には、好ましくは100〜500℃程度、より好ましくは120〜450℃程度に設定される。
【0157】
ここで、本明細書中において、脱離とは、半導体ウエハ3を支持基材1から剥離する操作を意味し、第1の犠牲層21および第2の犠牲層22が溶融状態となる場合や気化する場合に関わらず、例えば、この操作は、支持基材1の表面に対して垂直方向に半導体ウエハ3を脱離させる方法や、支持基材1の表面に対して水平方向にスライドさせて半導体ウエハ3を脱離させる方法や、図1(f)に示すように、半導体ウエハ3の一端側から半導体ウエハ3を支持基材1から浮かせることで脱離させる方法等が挙げられる。
【0158】
なお、前記加熱工程を経ることで、第1の犠牲層21および第2の犠牲層22が気化している場合には、半導体ウエハ3と支持基材1との間から第1の犠牲層21および第2の犠牲層22が除去されているため、支持基材1からの半導体ウエハ3の脱離をより容易に行うことができる。
【0159】
(洗浄工程)
次に、前記脱離工程において、第1の犠牲層21および第2の犠牲層22を加熱することで第1の犠牲層21および第2の犠牲層22が溶融状態となる場合や、気化した第1の犠牲層21および第2の犠牲層22の一部が残存している場合には、必要に応じて、半導体ウエハ3の機能面31に残存する第1の犠牲層21および第2の犠牲層22を洗浄する。
【0160】
すなわち、機能面31に残留した第1の犠牲層21および第2の犠牲層22の残留物を除去する。
【0161】
この残留物の除去方法としては、特に限定されるものではないが、例えば、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理等が挙げられる。
【0162】
以上のようにして、半導体ウエハ3の上面(裏面)が加工される。
なお、第1のおよび第2の犠牲層(樹脂組成物)21、22に含まれる樹脂成分が、活性エネルギー線の照射により、熱分解する温度が低下するものである場合には、前記脱離工程における第1の犠牲層21および第2の犠牲層22の加熱に先立って、下記の活性エネルギー線照射工程を施すようにしてもよい。
【0163】
(活性エネルギー線照射工程)
本工程では、第1の犠牲層21および第2の犠牲層22に活性エネルギー線を照射する。
【0164】
ここで、樹脂成分が、活性エネルギー線の照射により、熱分解する温度が低下するものである場合には、樹脂組成物中には、酸または塩基の存在下において、熱分解する温度が低下する樹脂成分と、仮固定剤への活性エネルギー線の照射により酸または塩基を発生する活性剤とが含まれる。そのため、仮固定剤(樹脂組成物)中に含まれる活性剤にエネルギーが付与されると、活性剤から酸または塩基のような活性種が発生するため、この活性種の作用により、樹脂成分の熱分解する温度が低下する。
【0165】
したがって、第1の犠牲層21および第2の犠牲層22の加熱に先立って、第1の犠牲層21および第2の犠牲層22に活性エネルギー線を照射する構成とすることで、第1の犠牲層21および第2の犠牲層22を加熱する際の加熱温度や加熱時間等を低くしたり短くすることができるため、この加熱をより緩和な条件で行うことができる。その結果、半導体ウエハ3が加熱されることによる変質・劣化をより的確に抑制または防止することができる。
【0166】
また、活性エネルギー線としては、特に限定されないが、例えば、波長200〜800nm程度の光線であるのが好ましく、波長300〜500nm程度の光線であるのがより好ましい。
【0167】
さらに、活性エネルギー線の照射量は、特に限定されないが、10mj/cm〜20000mj/cmであるのが好ましく、20mj/cm〜10000mj/cmであるのがより好ましい。
【0168】
以上の実施形態では、第1の犠牲層21および第2の犠牲層22を、同一の仮固定剤を用いて形成する場合について説明したが、異なる仮固定剤を用いることもできる。
【0169】
この場合、例えば、第2の犠牲層22を形成する仮固定剤として、より粘度の低いものを用いれば、導電部の配線同士の隙間(凹凸の凹部)内に、第2の犠牲層22をより確実に充填することができる。
【0170】
また、本実施形態では、基材として半導体ウエハ3を用いた場合を一例に説明したが、かかる場合に限らず、例えば、配線基板および回路基板等を用いることもできる。
【0171】
以上、本発明の基材の加工方法を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
【0172】
たとえば、仮固定剤に含まれる各構成材料は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、任意の構成のものを付加することができる。
また、本発明の基材の加工方法には、必要に応じて任意の工程が追加されてもよい。
【実施例】
【0173】
次に、本発明の具体的実施例について説明する。
1.仮固定剤の調製
まず、以下に示すような仮固定剤A、Bを調整した。
【0174】
[仮固定剤A]
<1,3−ポリシクロヘキサンカーボネート樹脂/endo−ポリノルボルネンカーボネート樹脂の合成>
1,3−シクロヘキサンジオール30.43g(0.262モル)、2,3−ノルボルナンジメタノール23.02g(0.147モル)、炭酸ジフェニル84.63g(0.395モル)、炭酸リチウム0.0163g(0.0021モル)を反応容器に入れた。反応の第1工程として、窒素雰囲気下で、120℃に加熱した加熱槽に反応容器を浸し、攪拌し、原料を溶解させ、2時間攪拌を続けた。反応の第2工程として、反応容器内を10kPaに減圧し、120℃で1時間攪拌を続けた。反応の第3工程として、反応容器内を0.5kPa以下に減圧し、120℃で1.5時間攪拌を続けた。反応の第4工程として、反応容器内を0.5kPa以下に減圧したまま、約30分かけて加熱槽の温度を180℃に昇温した後、180℃で1時間攪拌を続けた。反応の第2〜4工程で生じたフェノールは反応容器外へ留去した。
【0175】
反応容器内の圧力を常圧に戻した後、テトラヒドロフラン600mlを加え、生成物を溶解させた。イソプロパノール/水=9/1(v/v)の混合溶液6.0Lを攪拌させた状態で、生成物を溶解した溶液を滴下した。析出した沈殿を吸引濾過で回収し、回収した沈殿をイソプロパノール/水=9/1(v/v)の混合溶液3.0Lで洗浄した後、吸引濾過で回収した。
【0176】
回収した沈殿を真空乾燥機で60℃/18時間乾燥し、ポリカーボネートの粉末49.27gを得た。
【0177】
合成した1,3−ポリシクロヘキサンカーボネート樹脂/endo−ポリノルボルネンカーボネート樹脂をGPCにより重量平均分子量を測定したところ、48,600であった。
【0178】
<仮固定剤の作製>
得られた1,3−ポリシクロヘキサンカーボネート樹脂/endo−ポリノルボルネンカーボネート樹脂100g、活性剤としてRhodorsil Photoinitiator2074(FABA)(ローディアジャパン(株)社製 Rhodorsil Photoinitiator2074)5g、増感剤として1−クロロ−4‐プロポキシチオキサントン(英Lambson社製 SPEEDCURE CPTX(商品名))1.5gをγ−ブチロラクトン(溶剤)200gに溶解し、樹脂濃度33%の仮固定剤を作製した。
【0179】
なお、γ−ブチロラクトンの沸点Xは204℃、SP値は12.6であり、1,3−ポリシクロヘキサンカーボネート樹脂/endo−ポリノルボルネンカーボネート樹脂が熱分解する温度は293℃である。
【0180】
[仮固定剤B]
<5−デシルノルボルネン重合体の合成>
反応容器に酢酸エチル(430g)、シクロヘキサン(890g)、5−デシルノルボルネン(223g、0.95モル)を導入し、この系中に乾燥窒素を40℃で30分流し、溶存酸素を除去した。ビス(トルエン)ビス(パーフルオロフェニル)ニッケル1.33g(0.275mモル)を12gの酢酸エチルに溶解したものを反応系中に添加し、上記の系を20℃から35℃に15分掛けて昇温し、その温度を保持しながら3時間系中を攪拌した。
【0181】
系を室温まで冷却後、49gの30%過酸化水素水を添加した約1500gの純水に氷酢酸26gを溶解させ、これを前記反応系中に添加し、反応系を50℃で5時間攪拌した後、攪拌を止め、分離した水層を除去した。残った有機層を220gのメタノールと220gのイソプロピルアルコールを混合したものを、添加〜攪拌〜除去することで洗浄した。さらに、510gのシクロヘキサンと290gの酢酸エチルを系に添加し、均一に溶解した後、また156gのメタノールと167gのイソプロピルアルコールを混合したものを、添加〜攪拌〜除去することで洗浄することを、2回繰り返した。
【0182】
洗浄後の有機層に180mLのシクロヘキサンを添加して系を均一に溶解し、さらに670gのメシチレンを添加した。そして、ロータリーエバポレーターで減圧下でシクロヘキサンを蒸発除去することにより、収量:543g(35%のメシチレン溶液)の樹脂組成物Cを得た。
【0183】
合成した5−デシルノルボルネン重合体を、GPCにより重量平均分子量を測定したところ、177000であった。
【0184】
<仮固定剤の作製>
得られた5−デシルノルボルネン重合体100gをトリメチルベンゼン(溶剤)200gに溶解し、樹脂濃度30%の仮固定剤を作製した。
【0185】
なお、トリメチルベンゼンの沸点Xは165℃、SP値は18.0であり、デシルノルボルネンが熱分解する温度は 425℃である。
【0186】
2.半導体ウエハの裏面加工
(実施例1)
<1> まず、スピンコータを用いて、仮固定剤Aを8インチの透明ガラスに塗布し(回転数:800rpm、時間:60秒)、次いで、ホットプレート上で、120℃、5分の条件でプリベークを行い、厚さ50μmの仮固定剤Aからなる薄膜を形成した。
【0187】
また、スピンコータを用いて、仮固定剤Aを8インチシリコンウエハ(725μm厚)の機能面に塗布し(回転数:1000rpm、時間:60秒)、次いで、ホットプレート上で、120℃、5分の条件でプリベークを行い、厚さ30μmの仮固定剤Aからなる薄膜を形成した。
【0188】
<2> 次に、サブストレート・ボンダー(型番SB−8e、ズース・マイクロテック社製)を用い、8インチシリコンウエハ(725μm厚)を2つの薄膜を介して8インチ透明ガラスに仮固定した(雰囲気:10−2mbar、温度:210℃、荷重:10kN、時間:5分)。
【0189】
<3> 次に、透明ガラスに仮固定されたシリコンウエハについて、研削装置(DISCO社製、「DFG8540」)を用いて、半導体ウエハの上面(裏面)を研削して、半導体ウエハの厚さが145μmとなるように加工した。
【0190】
<4> 次に、波長365nmの紫外線(活性エネルギー線)を、2つの薄膜に対して1,000mj/cm間照射することにより、仮固定剤Aが熱分解する温度を低下させた。
【0191】
<5> 次に、8インチ透明ガラスに8インチシリコンウエハを仮固定したサンプルをオーブンに投入し、所定の温度、時間による加熱処理を行い、仮固定剤Aの熱分解を行った。なお、この熱分解は、320℃、30分の加熱処理により行った。
【0192】
<6> 次に、熱分解を行ったサンプルをオーブンから取り出し、8インチ透明ガラスと8インチシリコンウエハの隙間にピンセットを入れ、8インチシリコンウエハの脱離を行った。
【0193】
(実施例2)
仮固定剤Bを用いたこと、前記工程<4>を省略したこと、前記工程<5>において、熱分解を、450℃、120分の加熱処理により行ったこと以外は、前記実施例1と同様にして、半導体ウエハの裏面加工を行った。
【0194】
(比較例1)
仮固定剤Aを透明ガラス側にのみ塗布して薄膜を形成したこと以外は、前記実施例1と同様にして、半導体ウエハの裏面加工を行った。
【0195】
(比較例2)
仮固定剤Aをシリコンウエハ側にのみ塗布して薄膜を形成したこと以外は、前記実施例1と同様にして、半導体ウエハの裏面加工を行った。
【0196】
(比較例3)
仮固定剤Bを透明ガラス側にのみ塗布して薄膜を形成したこと以外は、前記実施例2と同様にして、半導体ウエハの裏面加工を行った。
【0197】
(比較例4)
仮固定剤Bをシリコンウエハ側にのみ塗布して薄膜を形成したこと以外は、前記実施例2と同様にして、半導体ウエハの裏面加工を行った。
【0198】
3.結果
実施例1および2は、比較例1〜4と比較して、半導体ウエハの厚さのバラツキが少なく、裏面加工の加工精度に優れることが判った。
【符号の説明】
【0199】
1 支持基材
21 第1の犠牲層
22 第2の犠牲層
2 犠牲層
3 半導体ウエハ
31 機能面

【特許請求の範囲】
【請求項1】
一方の面に凹凸を有する基材と、該基材の他方の面を加工する際に、前記基材を支持する支持基材と、加熱により熱分解することで溶融または気化する樹脂成分を含む樹脂組成物で構成される仮固定剤とを用意する第1の工程と、
前記支持基材の一方の面に、前記仮固定剤をスピンコート法を用いて供給したのち乾燥させて第1の薄膜を形成するとともに、前記基材の前記一方の面に、前記仮固定剤をスピンコート法を用いて供給したのち乾燥させて第2の薄膜を形成する第2の工程と、
前記第1の薄膜と前記第2の薄膜とを接触させることで、前記基材と前記支持基材とを貼り合わせる第3の工程と、
前記基材の前記他方の面を加工する第4の工程と、
前記第1および第2の薄膜を加熱して前記樹脂成分を熱分解させることで、前記基材を前記支持基材から脱離させる第5の工程とを有することを特徴とする基材の加工方法。
【請求項2】
前記基材は、前記一方の面に導電部を備え、該導電部の存在により、前記一方の面に前記凹凸が形成されている請求項1に記載の基材の加工方法。
【請求項3】
前記第1の工程において、前記仮固定剤の粘度(25℃)を500〜100,000mPa・sとなるように調整する請求項1または2に記載の基材の加工方法。
【請求項4】
前記第2の工程において、前記仮固定剤を供給する前記基材および前記支持基材の回転数を300〜4,000rpmとする請求項1ないし3のいずれかに記載の基材の加工方法。
【請求項5】
前記第2の工程において、前記第1および第2の薄膜は、その合計の平均厚さが50〜100μmの厚さに形成される請求項1ないし4のいずれかに記載の基材の加工方法。
【請求項6】
前記第2の工程において、TMA軟化点が200℃未満の前記第1および第2の薄膜が形成される請求項1ないし5のいずれかに記載の基材の加工方法。
【請求項7】
前記第3の工程において、前記第1および第2の薄膜を接触させた状態で、前記基材と前記支持基材とが互いに近づく方向に、0.01〜3MPaの圧力で加圧する請求項1ないし5のいずれかに記載の基材の加工方法。
【請求項8】
前記第3の工程において、前記第1および第2の薄膜を、100〜300℃の温度で加熱する請求項1ないし7のいずれかに記載の基材の加工方法。
【請求項9】
前記第1および第2の薄膜を加熱する時間は、0.1〜10分である請求項8に記載の基材の加工方法。
【請求項10】
前記樹脂成分は、前記仮固定剤への活性エネルギー線の照射により、前記熱分解する温度が低下するものであり、前記第5の工程に先立って、前記活性エネルギー線を前記第1および第2の薄膜に照射する請求項1ないし9のいずれかに記載の基材の加工方法。
【請求項11】
前記樹脂成分は、酸または塩基の存在下において前記熱分解する温度が低下するものであり、前記樹脂組成物は、さらに前記活性エネルギー線の照射により酸または塩基を発生する活性剤を含有する請求項10に記載の基材の加工方法。
【請求項12】
前記樹脂成分は、ポリカーボネート系樹脂である請求項10または11に記載の基材の加工方法。
【請求項13】
前記樹脂成分は、前記仮固定剤への活性エネルギー線の照射により、前記熱分解する温度が低下しない請求項1ないし9のいずれかに記載の基材の加工方法。
【請求項14】
前記樹脂成分は、ノルボルネン系樹脂である請求項13に記載の基材の加工方法。

【図1】
image rotate


【公開番号】特開2012−129327(P2012−129327A)
【公開日】平成24年7月5日(2012.7.5)
【国際特許分類】
【出願番号】特願2010−278685(P2010−278685)
【出願日】平成22年12月14日(2010.12.14)
【出願人】(000002141)住友ベークライト株式会社 (2,927)
【Fターム(参考)】