説明

導電性シートおよびその製造方法、ならびに入力デバイス

【課題】透明性に優れ、異導体に対する接触抵抗が小さい導電性シートを容易に製造できる導電性シートの製造方法を提供する。
【解決手段】本発明の導電性シートは、透明基材と、該透明基材の片面または両面に形成され、π共役系導電性高分子およびポリアニオンを含有する有機導電層と、該有機導電層の表面に形成され、金属および導電性金属酸化物の一方または両方を含有する厚さ1〜5000nmの無機導電層とを有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、入力デバイスの透明電極として好適な導電性シートおよびその製造方法に関する。さらには、タッチパネル等の入力デバイスに関する。
【背景技術】
【0002】
タッチパネルは、画像表示装置の上に設置される入力デバイスであり、少なくとも画像表示装置に重なる部分が透明になっている。
タッチパネルとしては、例えば、抵抗膜式タッチパネルが知られている。抵抗膜式タッチパネルにおいては、透明基材の片面に透明電極が形成された固定電極シートおよび可動電極シートが、透明電極同士が対向するように配置されている。電極シートの透明電極としては、インジウムドープの酸化錫の膜(以下、ITO膜という。)が広く使用されてきた。
透明基材の片面にITO膜が形成されたシート(以下、ITO膜形成シートという。)は可撓性が低く、固定しやすいため、画像表示装置側の固定電極シートとしては好適である。しかし、耐屈曲性が低いため、タッチパネルの入力者側の可動電極シートとして用いる場合には、繰り返し可撓した際の耐久性が低いという問題を有していた。また、ITO膜形成シートは耐擦傷性も低かった。
特許文献1には、ITO膜形成シートの耐屈曲性および耐擦傷性を向上させるために、透明基材のITO膜が形成された側と反対側の面に、粘着剤層を介して透明フィルムを貼り合せることが開示されている。
しかしながら、特許文献1に記載の方法でも、耐屈曲性および耐擦傷性は充分に高くなっていなかった。
【0003】
そこで、ITO膜形成シートの代替として、タッチパネルの入力者側の可動電極シートとして、透明基材の片面に、π共役系導電性高分子を含む導電性塗膜が形成された可撓性を有するシート(以下、導電性高分子膜形成シートという。)を用いることがある。
ところが、画像表示装置側の固定電極シートとしてITO膜形成シートを用い、タッチパネルの入力者側の可動電極シートとして導電性高分子膜形成シートを用いた場合、すなわち異導体同士を接続する場合には、接触抵抗が大きく、入力感度の低下や座標入力時間の遅れ等の問題が生じることがあった。
これらの問題を解決するために、特許文献2では、π共役系導電性高分子を含む導電性塗膜に金属イオンを添加することが提案されている。
また、π共役系導電性高分子を含む導電性塗膜に金属粒子を添加することが考えられる。π共役系導電性高分子を含む導電性塗膜に金属粒子を添加した電極シートとしては、例えば、特許文献3,4に開示されている。
【特許文献1】特開2002−326301号公報
【特許文献2】特開2007−172984号公報
【特許文献3】特開2005−327910号公報
【特許文献4】特開2007−080541号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献2に記載の電極シートでは、ITO膜に対する接触抵抗が充分に小さくならなかった。
また、特許文献3,4に記載の電極シートは、透明性が低くなることがあり、さらに、接触抵抗の低下が不均一になることがあるため、タッチパネル用として必ずしも適していなかった。
したがって、特許文献2〜4に記載の電極シートを抵抗膜式タッチパネルに適用した場合には、画像表示装置上に設置した際に画像表示装置の画像の視認性が低くなったり、入力感度の低下および座標入力時間の遅れが生じたりすることがあった。
【0005】
また、タッチパネルとしては、静電容量型タッチパネルも知られているが、その透明電極に特許文献2〜4に記載の電極シートを適用した場合にも、画像の視認性が低くなったり、動作不良を起こしたりすることがあった。
したがって、特許文献2〜4に記載の電極シートはタッチパネル用として適していなかった。
【0006】
本発明は、前記事情を鑑みてなされたものであり、耐擦傷性および透明性に優れ、異導体に対する接触抵抗が小さい導電性シートおよびその製造方法を提供することを目的とする。
また、画像表示装置上に設置した際に画像表示装置の画像の視認性に優れ、動作不良が防止された入力デバイスを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者が調べた結果、導電性塗膜に金属イオンが含まれても、ITO膜に対する接触抵抗が低下しないことが判明した。そして、ITO膜に対する接触抵抗を低下させつつも透明性を確保する手法について検討した結果、以下の導電性シートの製造方法および入力デバイスを発明した。
【0008】
[1] 透明基材と、該透明基材の片面または両面に形成され、π共役系導電性高分子およびポリアニオンを含有する有機導電層と、該有機導電層の表面に形成され、金属および導電性金属酸化物の一方または両方を含有する厚さ1〜5000nmの無機導電層とを有することを特徴とする導電性シート。
[2] 無機導電層に含まれる金属が、銀、金、白金、鉄、亜鉛、パラジウム、銅、ニッケル、アルミニウム、クロム、コバルト、チタン、マグネシウム、錫、ロジウム、ルテニウム、イリジウムよりなる群から選ばれる1種以上の金属であることを特徴とする[1]に記載の導電性シート。
[3] 無機導電層に含まれる導電性金属酸化物が、酸化錫、酸化インジウム、五酸化アンチモン、酸化亜鉛よりなる群から選ばれる1種以上の金属酸化物であることを特徴とする[1]に記載の導電性シート。
[4] 透明基材の片面または両面に、π共役系導電性高分子とポリアニオンと溶媒とを含有する導電性高分子溶液を塗布して有機導電層を形成する工程と、
該有機導電層の表面に、金属および導電性金属酸化物の一方または両方を含有する厚さ1〜5000nmの無機導電層を形成する工程とを有することを特徴とする導電性シートの製造方法。
[5] 導電性高分子溶液が(メタ)アクリルアミド化合物および多官能アクリル化合物の一方または両方をさらに含有することを特徴とする[4]に記載の導電性シートの製造方法。
[6] 前記無機導電層をスパッタリング法により形成することを特徴とする[4]または[5]に記載の導電性シートの製造方法。
[7] [1]〜[3]のいずれかに記載の導電性シートを電極シートとして備えたことを特徴とする入力デバイス。
【発明の効果】
【0009】
本発明の導電性シートは、耐擦傷性および透明性に優れ、異導体に対する接触抵抗が小さい。
本発明の導電性シートの製造方法によれば、耐擦傷性および透明性に優れ、異導体に対する接触抵抗が小さい導電性シートを容易に製造できる。
本発明の入力デバイスは、画像表示装置上に設置した際に画像表示装置の画像の視認性に優れ、動作不良が防止されている。
【発明を実施するための最良の形態】
【0010】
「導電性シート」
本発明の導電性シートは、透明基材と、該透明基材の片面または両面に形成された有機導電層と、該有機導電層の表面に形成された無機導電層とを有するシートである。
【0011】
<透明基材>
透明基材としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネートなどのフィルムまたはシートが挙げられる。また、ガラス基板、シリコン基板なども使用できる。
【0012】
<有機導電層>
有機導電層は、π共役系導電性高分子およびポリアニオンを必須成分として含有する層である。このような有機導電層は、導電性および透明性に優れる。
【0013】
(π共役系導電性高分子)
π共役系導電性高分子としては、主鎖がπ共役系で構成されている有機高分子であれば特に制限されず、例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。空気中での安定性の点からは、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましい。
π共役系導電性高分子は無置換のままでも、充分な導電性、バインダ樹脂への相溶性を得ることができるが、導電性及び相溶性をより高めるためには、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基等の官能基をπ共役系導電性高分子に導入することが好ましい。
【0014】
π共役系導電性高分子の具体例としては、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(チオフェン)、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。その中でも、導電性、耐熱性から、ポリ(3,4−エチレンジオキシチオフェン)が好ましい。
【0015】
(ポリアニオン)
ポリアニオンとしては、例えば、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステルであって、アニオン基を有する構成単位のみからなるポリマー、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるポリマーが挙げられる。
【0016】
ポリアルキレンとは、主鎖がメチレンの繰り返しで構成されているポリマーである。
ポリアルケニレンとは、主鎖に不飽和二重結合(ビニル基)が1個含まれる構成単位からなる高分子である。
ポリイミドとしては、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,2’−[4,4’−ジ(ジカルボキシフェニルオキシ)フェニル]プロパン二無水物等の酸無水物と、オキシジアミン、パラフェニレンジアミン、メタフェニレンジアミン、ベンゾフェノンジアミン等のジアミンとからのポリイミドを例示できる。
ポリアミドとしては、ポリアミド6、ポリアミド6,6、ポリアミド6,10等を例示できる。
ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等を例示できる。
【0017】
上記ポリアニオンが置換基を有する場合、その置換基としては、アルキル基、ヒドロキシ基、アミノ基、カルボキシ基、シアノ基、フェニル基、フェノール基、エステル基、アルコキシ基等が挙げられる。有機溶媒への溶解性、耐熱性及び樹脂への相溶性等を考慮すると、アルキル基、ヒドロキシ基、フェノール基、エステル基が好ましい。
【0018】
アルキル基としては、例えば、メチル、エチル、プロピル、ブチル、イソブチル、t−ブチル、ペンチル、へキシル、オクチル、デシル、ドデシル等のアルキル基と、シクロプロピル、シクロペンチル及びシクロヘキシル等のシクロアルキル基が挙げられる。
ヒドロキシ基としては、ポリアニオンの主鎖に直接又は他の官能基を介在して結合したヒドロキシ基が挙げられ、他の官能基としては、炭素数1〜7のアルキル基、炭素数2〜7のアルケニル基、アミド基、イミド基などが挙げられる。ヒドロキシ基は、これらの官能基の末端又は中に置換されている。
アミノ基としては、ポリアニオンの主鎖に直接又は他の官能基を介在して結合したアミノ基が挙げられ、他の官能基としては、炭素数1〜7のアルキル基、炭素数2〜7のアルケニル基、アミド基、イミド基などが挙げられる。アミノ基は、これらの官能基の末端又は中に置換されている。
フェノール基としては、ポリアニオンの主鎖に直接又は他の官能基を介在して結合したフェノール基が挙げられ、他の官能基としては、炭素数1〜7のアルキル基、炭素数2〜7のアルケニル基、アミド基、イミド基などが挙げられる。フェノール基は、これらの官能基の末端又は中に置換されている。
【0019】
置換基を有するポリアルキレンの例としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセン、ポリビニルアルコール、ポリビニルフェノール、ポリ(3,3,3−トリフルオロプロピレン)、ポリアクリロニトリル、ポリアクリレート、ポリスチレン等を例示できる。
ポリアルケニレンの具体例としては、プロペニレン、1−メチルプロペニレン、1−ブチルプロペニレン、1−デシルプロペニレン、1−シアノプロペニレン、1−フェニルプロペニレン、1−ヒドロキシプロペニレン、1−ブテニレン、1−メチル−1−ブテニレン、1−エチル−1−ブテニレン、1−オクチル−1−ブテニレン、1−ペンタデシル−1−ブテニレン、2−メチル−1−ブテニレン、2−エチル−1−ブテニレン、2−ブチル−1−ブテニレン、2−ヘキシル−1−ブテニレン、2−オクチル−1−ブテニレン、2−デシル−1−ブテニレン、2−ドデシル−1−ブテニレン、2−フェニル−1−ブテニレン、2−ブテニレン、1−メチル−2−ブテニレン、1−エチル−2−ブテニレン、1−オクチル−2−ブテニレン、1−ペンタデシル−2−ブテニレン、2−メチル−2−ブテニレン、2−エチル−2−ブテニレン、2−ブチル−2−ブテニレン、2−ヘキシル−2−ブテニレン、2−オクチル−2−ブテニレン、2−デシル−2−ブテニレン、2−ドデシル−2−ブテニレン、2−フェニル−2−ブテニレン、2−プロピレンフェニル−2−ブテニレン、3−メチル−2−ブテニレン、3−エチル−2−ブテニレン、3−ブチル−2−ブテニレン、3−ヘキシル−2−ブテニレン、3−オクチル−2−ブテニレン、3−デシル−2−ブテニレン、3−ドデシル−2−ブテニレン、3−フェニル−2−ブテニレン、3−プロピレンフェニル−2−ブテニレン、2−ペンテニレン、4−プロピル−2−ペンテニレン、4−プロピル−2−ペンテニレン、4−ブチル−2−ペンテニレン、4−ヘキシル−2−ペンテニレン、4−シアノ−2−ペンテニレン、3−メチル−2−ペンテニレン、4−エチル−2−ペンテニレン、3−フェニル−2−ペンテニレン、4−ヒドロキシ−2−ペンテニレン、ヘキセニレン等から選ばれる一種以上の構成単位を含む重合体を例示できる。
【0020】
ポリアニオンのアニオン基としては、−O−SO、−SO、−COO(各式においてXは水素イオン、アルカリ金属イオンを表す。)が挙げられる。すなわち、ポリアニオンは、スルホ基及び/又はカルボキシ基を含有する高分子酸である。これらの中でも、π共役系導電性高分子へのドーピング効果の点から、−SO、−COOが好ましい。
また、このアニオン基は、隣接して又は一定間隔をあけてポリアニオンの主鎖に配置されていることが好ましい。
【0021】
上記ポリアニオンの中でも、溶媒溶解性及び導電性の点から、ポリイソプレンスルホン酸、ポリイソプレンスルホン酸を含む共重合体、ポリスルホエチルメタクリレート、ポリスルホエチルメタクリレートを含む共重合体、ポリ(4−スルホブチルメタクリレート)、ポリ(4−スルホブチルメタクリレート)を含む共重合体、ポリメタリルオキシベンゼンスルホン酸、ポリメタリルオキシベンゼンスルホン酸を含む共重合体、ポリスチレンスルホン酸、ポリスチレンスルホン酸を含む共重合体等が好ましい。
【0022】
ポリアニオンの重合度は、モノマー単位が10〜100,000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50〜10,000個の範囲がより好ましい。
【0023】
ポリアニオンの含有量は、π共役系導電性高分子1モルに対して0.1〜10モルの範囲であることが好ましく、1〜7モルの範囲であることがより好ましい。ポリアニオンの含有量が0.1モルより少なくなると、π共役系導電性高分子へのドーピング効果が弱くなる傾向にあり、導電性が不足することがある。その上、溶媒への分散性及び溶解性が低くなり、均一な分散液を得ることが困難になる。また、ポリアニオンの含有量が10モルより多くなると、π共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくい。
【0024】
ポリアニオンは、π共役系導電性高分子に配位している。そのため、π共役系導電性高分子とポリアニオンとは複合体を形成している。
有機導電層におけるπ共役系導電性高分子とポリアニオンの合計の含有量は0.05〜5.0質量%であり、0.5〜4.0質量%であることが好ましい。π共役系導電性高分子とポリアニオンの合計の含有量が0.05質量%未満であると、充分な導電性が得られないことがあり、5.0質量%を超えると、均一な有機導電層が得られないことがある。
【0025】
(アクリル化合物の重合体)
有機導電層は、塗膜の強度が向上することから、アクリル化合物の重合体を含有することが好ましい。ここで、アクリル化合物の重合体とは、アクリル化合物のポリマーおよびアクリル化合物の架橋体のことである。また、アクリル化合物は、下記(a)の化合物、(b)の化合物および多官能アクリル化合物である。
【0026】
(a)グリシジル基を有するアクリル化合物(以下、化合物(a)という。)。
(b)アリル基、ビニルエーテル基、メタクリル基、アクリル基、メタクリルアミド基、アクリルアミド基から選ばれる1種と、ヒドロキシ基とを有するアクリル化合物(以下、化合物(b)という。)。
【0027】
さらに、化合物(a)としては、下記(a−1)〜(a−3)のアクリル化合物が挙げられる。
(a−1):グリシジル基と、アリル基、ビニルエーテル基、メタクリル基、アクリル基、メタクリルアミド基、アクリルアミド基から選ばれる1種とを有するアクリル化合物(以下、化合物(a−1)という。)。
(a−2):グリシジル基を2つ以上有するアクリル化合物(以下、化合物(a−2)という。)。
(a−3):グリシジル基を1つ有するアクリル化合物であって、化合物(a−1)以外の化合物(以下、化合物(a−3)という。)。
【0028】
化合物(a−1)のうち、グリシジル基とアクリル(メタクリル)基を有する化合物として、グリシジルアクリレート、グリシジルメタクリレート等が挙げられる。
グリシジル基とアリル基を有する化合物として、アリルグリシジルエーテル、2−メチルアリルグリシジルエーテル、アリルフェノールグリシジルエーテル等が挙げられる。
グリシジル基とヒドロキシ基とを有する化合物として、1,4−ジヒドロキシメチルベンゼンジグリシジルエーテル、グリセリンジグリシジルエーテル等が挙げられる。
グリシジル基とヒドロキシ基とアリル基とを有する化合物として、3−アリル−1,4−ジヒドロキシメチルベンゼンジグリシジルエーテル等が挙げられる。
なお、グリシジル基とヒドロキシ基とを有する化合物、グリシジル基とヒドロキシ基とアリル基とを有する化合物は化合物(b)でもある。
【0029】
化合物(a−2)としては、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ダイマー酸ジグリシジルエステル、フタル酸ジグリシジル、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、ジグリシジルテトラフタレート等が挙げられ1種類または2種類以上の混合として用いることができる。
【0030】
化合物(a−3)としては、例えば、アルキルグリシジルエーテル、エチレングリコールグリシジルエーテル、メチルグリシジルエーテル、フェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、クレジルグリシジルエーテル等が挙げられる。
【0031】
化合物(b)のうち、例えば、ヒドロキシ基とビニルエーテル基とを有する化合物として、2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等が挙げられる。
ヒドロキシ基とアクリル(メタクリル)基を有する化合物として、2−ヒドロキシエチルアクリレート(メタクリレート)、2−ヒドロキシプロピルアクリレート(メタクリレート)、4−ヒドロキシブチルアクリレート(メタクリレート)、エチル−α−ヒドロキシメチルアクリレート、ジペンタエリストリトールモノヒドロキシペンタアクリレート等が挙げられる。
ヒドロキシ基とアクリルアミド(メタクリルアミド)基を有する化合物として、2−ヒドロキシエチルアクリルアミド、2−ヒドロキシエチルメタクリルアミドが挙げられる。これらヒドロキシアルキル(メタ)アクリルアミド化合物を重合させた重合体は、π共役系導電性高分子とポリアニオンの複合体との相溶性が良い上に導電性をより向上させることができる。
【0032】
上記化合物(a)では、そのグリシジル基がポリアニオンの残存アニオン基(例えば、スルホ基、カルボキシ基など)と反応して、エステル(例えば、スルホン酸エステル、カルボン酸エステルなど)を形成する。その反応の際には、塩基性触媒、加圧、加熱によって反応を促進させてもよい。エステル形成の際、グリシジル基は開環してヒドロキシ基を形成する。このヒドロキシ基が、導電性高分子との塩もしくはエステルを形成しなかった残存アニオン基と脱水反応を起して、新たにエステル(例えば、スルホン酸エステル、カルボン酸エステルなど)を形成する。このようなエステルの形成によって、ポリアニオンと導電性高分子との複合体同士が架橋する。
さらに、化合物(a−1)においては、ポリアニオンの残存アニオン基と、化合物(a−1)のグリシジル基とが結合した後、化合物(a−1)のアリル基、ビニルエーテル基、メタクリル基、アクリル基、メタクリルアミド基、アクリルアミド基同士が重合して複合体同士がさらに架橋する。
【0033】
また、上記化合物(b)では、そのヒドロキシ基がポリアニオンの残存アニオン基と脱水反応して、エステルを形成する。その脱水反応の際には、酸性触媒によって反応を促進させてもよい。その後、化合物(b)のアリル基、ビニルエーテル基、メタクリル基、アクリル基、メタクリルアミド基、アクリルアミド基同士が重合する。この重合によって、ポリアニオンと導電性高分子との複合体同士が架橋する。
【0034】
多官能アクリル化合物は、不飽和二重結合を2つ以上有するアクリル化合物である。多官能アクリル化合物は、有機導電層形成時にπ共役系導電性高分子とポリアニオンとの複合体を架橋させやすく、導電性および塗膜強度が向上する。
多官能アクリル化合物の具体例としては、ジプロピレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、ジメチロールジシクロペンタジ(メタ)アクリレート、ポリエチレングリコール(以下、PEGと表記する。)400ジ(メタ)アクリレート、PEG300ジ(メタ)アクリレート、PEG600ジ(メタ)アクリレート、N,N’−メチレンビスアクリルアミド等の2官能アクリルモノマー、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート等の3官能アクリルモノマー、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(ペンタ)(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート等の4官能以上のアクリルモノマー、ソルビトールペンタアクリレート、ジペンタエリスリトールペンタアクリレート等の5官能以上のアクリルモノマー、ジペンタエリスリトールヘキサアクリレート、ソルビトールヘキサアクリレート、アルキレンオキサイド変性ヘキサアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート等の6官能以上のアクリルモノマー、2官能以上のウレタンアクリレートが挙げられる。
【0035】
多官能アクリル化合物のうち、多官能アクリルモノマーは、分子量が3000以下であることが好ましい。分子量が3000を超える多官能アクリルモノマーでは、溶媒溶解性が低くなる。また、不飽和二重結合当量が少なくなるため、複合体を架橋させにくく、有機導電層形成後に充分な強度が得られない傾向にある。
また、多官能アクリル化合物のうち、多官能ウレタンアクリレートは、溶媒溶解性、耐摩耗性、低収縮の点で、分子量1000以下であることが好ましい。分子量が1000を超える多官能ウレタンアクリレートでは、イソシアネート基とポリオール(水酸基)により形成されるウレタン基の導入率が減少して、溶媒に対する溶解性が低くなる傾向にある。
【0036】
アクリル化合物の重合体の含有量は、π共役系導電性高分子とポリアニオンの合計100質量%に対して0.05〜50質量%であることが好ましく、0.3〜30質量%であることがより好ましい。アクリル化合物の重合体の含有量が0.05質量%未満であると、有機導電層の強度が不足することがあり、50質量%より多くなると、有機導電層中のπ共役系導電性高分子の含有量が少なくなり、充分な導電性が得られないことがある。
【0037】
(2つ以上のヒドロキシ基を有する芳香族化合物)
また、有機導電層は、導電性がより高くなることから、2つ以上のヒドロキシ基を有する芳香族化合物を含有することが好ましい。
2つ以上のヒドロキシ基を有する芳香族化合物としては、1,4−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン、2,3−ジヒドロキシ−1−ペンタデシルベンゼン、2,4−ジヒドロキシアセトフェノン、2,5−ジヒドロキシアセトフェノン、2,4−ジヒドロキシベンゾフェノン、2,6−ジヒドロキシベンゾフェノン、3,4−ジヒドロキシベンゾフェノン、3,5−ジヒドロキシベンゾフェノン、2,4’−ジヒドロキシジフェニルスルフォン、2,2’,5,5’−テトラヒドロキシジフェニルスルフォン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフォン、ヒドロキシキノンカルボン酸及びその塩類、2,3−ジヒドロキシ安息香酸、2,4−ジヒドロキシ安息香酸、2,5−ジヒドロキシ安息香酸、2,6−ジヒドロキシ安息香酸、3,5−ジヒドロキシ安息香酸、1,4−ヒドロキノンスルホン酸及びその塩類、4,5−ヒドロキシベンゼン−1,3−ジスルホン酸及びその塩類、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン−2,6−ジカルボン酸、1,6−ジヒドロキシナフタレン−2,5−ジカルボン酸、1,5−ジヒドロキシナフトエ酸、1,4−ジヒドロキシ−2−ナフトエ酸フェニルエステル、4,5−ジヒドロキシナフタレン−2,7−ジスルホン酸及びその塩類、1,8−ジヒドロキシ−3,6−ナフタレンジスルホン酸及びその塩類、6,7−ジヒドロキシ−2−ナフタレンスルホン酸及びその塩類、1,2,3−トリヒドロキシベンゼン(ピロガロール)、1,2,4−トリヒドロキシベンゼン、5−メチル−1,2,3−トリヒドロキシベンゼン、5−エチル−1,2,3−トリヒドロキシベンゼン、5−プロピル−1,2,3−トリヒドロキシベンゼン、トリヒドロキシ安息香酸、トリヒドロキシアセトフェノン、トリヒドロキシベンゾフェノン、トリヒドロキシベンゾアルデヒド、トリヒドロキシアントラキノン、2,4,6−トリヒドロキシベンゼン、テトラヒドロキシ−p−ベンゾキノン、テトラヒドロキシアントラキノン、ガーリック酸メチル(没食子酸メチル)、ガーリック酸エチル(没食子酸エチル)等が挙げられる。
なお、これら芳香族化合物の一部は還元剤としても機能する。したがって、2つ以上のヒドロキシ基を有する芳香族化合物を還元剤として兼用することで、導電性をより高めることもできる。
【0038】
2つ以上のヒドロキシ基を有する芳香族化合物の含有量は、ポリアニオンのアニオン基単位1モルに対して0.05〜50モルの範囲であることが好ましく、0.3〜10モルの範囲であることがより好ましい。2つ以上のヒドロキシ基を有する芳香族化合物の含有量が、ポリアニオンのアニオン基単位1モルに対して0.05モルより少なくなると、導電性が高くならないことがある。また、2つ以上のヒドロキシ基を有する化合物の含有量が、ポリアニオンのアニオン基単位1モルに対して50モルより多くなると、有機導電層中のπ共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られないことがある。
【0039】
(添加剤)
有機導電層は、必要に応じて、酸化防止剤、紫外線吸収剤を含有してもよい。
酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、糖類、ビタミン類等が挙げられる。
紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、オギザニリド系紫外線吸収剤、ヒンダードアミン系紫外線吸収剤、ベンゾエート系紫外線吸収剤等が挙げられる。
酸化防止剤と紫外線吸収剤とは併用することが好ましい。
【0040】
(厚さ)
有機導電層の厚さは0.001〜10μmであることが好ましく、0.01〜1μmであることがより好ましい。有機導電層の厚さが0.001μm以上であれば、導電性シートの導電性がより高くなり、10μm以下であれば、充分な可撓性を確保できる。
【0041】
<無機導電層>
無機導電層は、金属および導電性金属酸化物の一方または両方を含有する層である。
金属としては、いずれの金属であってもよいが、導電性に優れることから、銅、銀、金、白金、鉄、亜鉛、パラジウム、ニッケル、アルミニウム、クロム、コバルト、チタン、マンガン、マグネシウム、錫、ロジウム、ルテニウム、イリジウムよりなる群から選ばれる1種以上の金属であることが好ましい。
導電性金属酸化物としては、いずれの導電性金属酸化物であってもよいが、導電性に優れることから、酸化錫、酸化インジウム、五酸化アンチモン、酸化亜鉛よりなる群から選ばれる1種以上の金属酸化物であることが好ましい。
【0042】
無機導電層の厚さは1〜5000nmであり、1〜3000nmであることが好ましく、1〜2000nmであることがより好ましい。無機導電層の厚さが1nm未満であると、異導体に対する接触抵抗が小さくならず、5000nmを超えると、透明性が低くなる。
【0043】
以上の導電性シートは、有機導電層の表面に厚さ1nm以上の無機導電層が形成されているため、異導体に対する接触抵抗が小さい。また、無機導電層の厚さは5000nm以下であるから、無機導電層が金属から形成されたとしても光学的に透明である。
また、無機導電層と透明基材との間に有機導電層を設けた上記導電性シートは耐屈曲性および耐擦傷性に優れる。無機導電層がITOの層である場合には、耐屈曲性および耐擦傷性の向上はとりわけ求められるが、上記導電性シートによれば、その要求を満たすことができる。
このような導電性シートは、例えば、後述する入力デバイスに好適に用いられるが、表示デバイスの電極シートとして用いてもよい。表示デバイスとしては、例えば、エレクトロルミネッセンスディスプレイ、液晶ディスプレイ等が挙げられる。
【0044】
「導電性シートの製造方法」
本発明の導電性シートの製造方法は、透明基材の片面または両面に導電性高分子溶液を塗布して有機導電層を形成する工程(以下、第1の工程という。)と、第1の工程により得た有機導電層の表面に厚さ1〜5000nmの無機導電層を形成する工程(以下、第2の工程という。)とを有する方法である。
【0045】
<第1の工程>
導電性高分子溶液は、π共役系導電性高分子とポリアニオンと溶媒とを含有する。
溶媒としては特に制限されず、例えば、水、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、クレゾール、フェノール、キシレノール等のフェノール類、アセトン、メチルエチルケトン等のケトン類、ヘキサン、ベンゼン、トルエン等の炭化水素類、ジオキサン、2−メチルテトラヒドロフラン、ジエチルエーテル等のエーテル化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチレンホスホルトリアミド、1,3−ジメチル−2−イミダゾリジン、ジメチルイミダゾリン、酢酸エチル、ジメチルスルホキシド、スルホラン、ジフェニルスルホン酸等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上の混合物としてもよいし、他の有機溶媒との混合物としてもよい。
前記溶媒の中でも、取り扱い性の点から、水、アルコール類が好ましい。
【0046】
導電性高分子溶液は、成膜性が向上することから、上述したアクリル化合物を含有することが好ましい。アクリル化合物の中でも、成膜性がより向上する点では、(メタ)アクリルアミド化合物および多官能アクリル化合物の一方または両方を含有することが好ましい。
【0047】
導電性高分子溶液は、必要に応じて、添加剤を含有してもよい。
添加剤としてはπ共役系導電性高分子及びポリアニオンと混合しうるものであれば特に制限されず、例えば、アルカリ性化合物、界面活性剤、消泡剤、カップリング剤、上述した酸化防止剤および紫外線吸収剤などを使用できる。
アルカリ性化合物としては、公知の無機アルカリ化合物や有機アルカリ化合物を使用できる。無機アルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等が挙げられる。
有機アルカリ化合物としては、例えば、脂肪族アミン、芳香族アミン、4級アミン、アミン以外の窒素含有化合物、金属アルコキシド、ジメチルスルホキシドなどが挙げられる。これらの中でも、導電性がより高くなることから、脂肪族アミン、芳香族アミン、4級アミンよりなる群から選ばれる1種もしくは2種以上が好ましい。
界面活性剤としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等の陰イオン界面活性剤;アミン塩、4級アンモニウム塩等の陽イオン界面活性剤;カルボキシベタイン、アミノカルボン酸塩、イミダゾリウムベタイン等の両性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリオキシエチレン脂肪酸アミド等の非イオン界面活性剤等が挙げられる。
消泡剤としては、シリコーン樹脂、ポリジメチルシロキサン、シリコーンレジン等が挙げられる。
カップリング剤としては、ビニル基、アミノ基、エポキシ基等を有するシランカップリング剤等が挙げられる。
【0048】
導電性高分子溶液は、例えば、ポリアニオンの水溶液中でπ共役系導電性高分子の前駆体モノマーを化学酸化重合することで調製できる。
【0049】
導電性高分子溶液の塗布方法として、例えば、コンマコーティング、リバースコーティング、リップコーティング、マイクログラビアコーティング等を適用することができる。
【0050】
導電性高分子溶液塗布後には、硬化処理を施すことが好ましい。
硬化方法としては、加熱または光照射が適用される。加熱方法としては、例えば、熱風加熱や赤外線加熱などの通常の方法を採用できる。また、光照射により硬化する場合には、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプなどの光源から紫外線を照射する方法を採用できる。紫外線照射における照度は100mW/cm以上が好ましい。照度が100mW/cm未満であると、充分に架橋せず、有機導電層の耐摺動性(耐久性)が低くなる傾向にある。なお、本発明における照度は、トプコン社製UVR−T1(工業用UVチェッカー、受光器;UD−T36、測定波長範囲;300〜390nm、ピーク感度波長;約355nm)を用いて測定した値である。
なお、光照射による硬化は、無機導電層形成後であっても構わない。
【0051】
導電性高分子溶液がアクリル化合物を含有する場合には、硬化処理の際に、アクリル化合物を重合させる。重合方法としては、ラジカル重合法、熱重合法、光ラジカル重合法、プラズマ重合法を適用できる。
ラジカル重合法では、重合開始剤として、例えばアゾビスイソブチロニトリル等のアゾ化合物、過酸化ベンゾイル、ジアシルペルオキシド類、ペルオキシエステル類、ヒドロペルオキシド類等の過酸化物などを用いて重合する。
光ラジカル重合法では、重合開始剤として、カルボニル化合物、イオウ化合物、有機過酸化物、アゾ化合物などを用いて重合する。具体的には、ベンゾフェノン、ミヒラーズケトン、キサントン、チオキサントン、2−エチルアントラキノン、アセトフェノン、トリクロロアセトフェノン、2−ヒドロキシ−2−メチル-プロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエーテル、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、ベンジル、メチルベンゾイルホルメート、1−フェニル−1,2−プロパンジオン−2−(o−ベンゾイル)オキシム、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、テトラメチルチウラム、ジチオカーバメート、過酸化ベンゾイル、N−ラウリルピリジウムアジド、ポリメチルフェニルシランなどが挙げられる。
プラズマ重合では、プラズマを短時間照射し、プラズマの電子衝撃によるエネルギーを受けて、フラグメンテーションとリアレンジメントをしたのち、ラジカルの再結合により重合体を生成する。
【0052】
また、化合物(a−1)および化合物(b)におけるビニルエーテル基の重合は、カチオン重合法が採られる。カチオン重合においては、反応促進のため、ハロゲン化金属、有機金属化合物等のルイス酸、その他、ハロゲン、強酸塩、カルボニウムイオン塩等の光または熱でカチオンを生成する求電子試薬などを使用してもよい。
【0053】
<第2の工程>
無機導電層を形成する方法としては、例えば、スパッタリング法、化学蒸着法、真空蒸着法、イオンプレーティング法などを適用することができる。これらの中でも、簡便にかつ均一に無機導電層を形成できることから、スパッタリング法が好ましい。
【0054】
以上の導電性シートの製造方法では、有機導電層の表面に厚さ1〜5000nmの無機導電層を形成するため、耐屈曲性、耐擦傷性および透明性が高く、しかも異導体に対する接触抵抗が小さい導電シートを得ることができる。
【0055】
「入力デバイス」
本発明の入力デバイスは、上記導電性シートを電極シートとして備えるものである。入力デバイスの中でも、本発明の効果がとりわけ発揮されることから、抵抗膜式タッチパネルが好適である。以下、上記導電性シートを電極シートとして備えた抵抗膜式タッチパネルの例について説明する。
本例の抵抗膜式タッチパネルは、図1に示すように、透明基材11表面に上記有機導電層12aおよび無機導電層12bが形成され、入力者側に配置された可動電極シート10と、透明基材21表面にITO膜22が形成され、画像表示装置側に配置された固定電極シート20とが、無機導電層12bとITO膜22が対向するように設けられたものである。また、可動電極シート10と固定電極シート20との間には、透明なドットスペーサ24が配置されて、隙間が形成されている。
【0056】
可動電極シート10または固定電極シート20の透明基材11,21としては、例えば、単層または2層以上のプラスチックフィルム、ガラス板、フィルムとガラス板との積層体が挙げられる。ただし、可動電極シート10の透明基材11としては、可撓性を有することから、プラスチックフィルムが好ましく、固定電極シート20の透明基材21としては、固定しやすいことから、ガラス板を用いたものが好ましい。
【0057】
可動電極シート10の透明基材11の厚さは100〜250μmであることが好ましい。透明基材11の厚さが100μm以上であれば、充分な強度を確保でき、250μm以下であれば、充分な可撓性を確保できる。
可動電極シート10の有機導電層12aと無機導電層12bの合計の厚さは50〜700μmであることが好ましい。有機導電層12aと無機導電層12bの合計の厚さが50μm以上であれば、充分な導電性を確保でき、700μm以下であれば、充分な可撓性及び透明性を確保できる。
固定電極シート20の透明基材21の厚さは0.8〜2.5mmであることが好ましい。透明基材21の厚さが0.8mm以上であれば、充分な強度を確保でき、2.5mm以下であれば、薄くすることができ、省スペース化を実現できる。
固定電極シート20のITO膜22の厚さは0.01〜1.0μmであることが好ましい。ITO膜22の厚さが0.01μm以上であれば、充分な導電性を確保でき、1.0μm以下であれば、薄くすることができ、省スペース化を実現できる。
可動電極シート10と固定電極シート20の非押圧時の間隔は20〜100μmであることが好ましい。可動電極シート10と固定電極シート20の非押圧時の間隔は20μm以上であれば、非押圧時に可動電極シート10と固定電極シート20とを確実に接触させないようにすることができ、100μm以下であれば、押圧時に可動電極シート10と固定電極シート20とを確実に接触させることができる。前記間隔になるようにするためには、ドットスペーサ24の大きさを適宜選択すればよい。
【0058】
この抵抗膜式タッチパネルでは、指またはスタイラスにより可動電極シート10を押した際に、可動電極シート10の無機導電層12bと固定電極シート20のITO膜22とを接触させて導通させ、その際の電圧を取り込んで、位置を検出するようになっている。
このような抵抗膜式タッチパネルでは、無機導電層12bがITO膜22に接触するため、ITO膜22に対する接触抵抗が小さく、入力感度の低下や座標入力時間遅れ等の動作不良が起きにくい。また、有機導電層12aおよび無機導電層12bの透明性が高いから、画像表示装置の画像の視認性に優れる。
【0059】
また、入力デバイスは静電容量式タッチパネルであってもよい。上記導電性シートを用いた静電容量式タッチパネルとしては、例えば、有機導電層および無機導電層が透明基材の両面に設けられ、透明電極全体に低圧の電界を形成し、指で触れることで表面電荷の変化を捉え、位置を検出するものが挙げられる。
この静電容量式タッチパネルでは、有機導電層の表面に無機導電層が形成された導電性シートを電極シートとして用いているから、電荷の変化を確実に捉えることができ、動作不良が起きにくい。また、有機導電層および無機導電層の透明性が高いから、画像表示装置の画像の視認性に優れる。
【0060】
このような入力デバイスは、例えば、電子手帳、携帯情報端末(PDA)、携帯電話、PHS、現金自動預け払い機(ATM)、自動販売機、販売時点情報管理(POS)用レジスタなどに備え付けられる。
【実施例】
【0061】
以下、本発明の実施例を具体的に示すが、本発明は実施例により限定されるものではない。
(製造例1)ポリスチレンスルホン酸の調製
1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を2時間攪拌した。
これにより得られたスチレンスルホン酸ナトリウム含有溶液に10質量%に希釈した硫酸を1000mlと10000mlのイオン交換水を添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約10000ml溶液を除去し、残液に10000mlのイオン交換水を加え、限外ろ過法を用いて約10000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。
さらに、得られたろ液に約10000mlのイオン交換水を添加し、限外ろ過法を用いて約10000ml溶液を除去した。この限外ろ過操作を3回繰り返した。
限外ろ過条件は下記の通りとした(他の例でも同様)。
限外ろ過膜の分画分子量:30000
クロスフロー式
供給液流量:3000ml/分
膜分圧:0.12Pa
得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。
【0062】
(製造例2)ポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)水溶液の調製
14.2gの3,4−エチレンジオキシチオフェンと、36.7gの製造例1で得たポリスチレンスルホン酸を2000mlのイオン交換水に溶かした溶液とを20℃で混合した。
これにより得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。
得られた反応液に2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。
そして、上記ろ過処理が行われた処理液に200mlの10質量%に希釈した硫酸と2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの処理液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの液を除去した。この操作を3回繰り返した。
さらに、得られた処理液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの処理液を除去した。この操作を5回繰り返し、約1.5質量%の青色のポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)(PEDOT−PSS)水溶液を得た。
【0063】
(実施例1)
ハイドロキノン3.6g、イルガキュア127(チバ・スペシャルティ・ケミカルズ社製)0.9g、2−ヒドロキシエチルアクリルアミド18g、ペンタエリスリトールトリアクリレート7.2g、エタノール300gを混合し、撹拌した。これにより得た溶液に、製造例2で得たPEDOT−PSS水溶液600gを添加し、撹拌して、導電性高分子溶液Aを得た。
導電性高分子溶液Aをポリエチレンテレフタレートフィルム(東洋紡製A4300、厚さ;188μm)に、リバースコーターにより塗布し、100℃、2分間、赤外線照射により乾燥して、有機導電層を形成した。
次いで、得られた有機導電層の表面に、スパッタリングターゲットとして銀ターゲットを用い、マグネトロンスパッタリング(株式会社大阪真空機器製作所製MF−3)により、アルゴンガス雰囲気中でスパッタ(出力12W、時間5秒、すなわち60W・s、アルゴン流量60sccm、スパッタ圧力0.42Pa)を行って、厚さ240nmの無機導電層を形成させた。なお、スライドガラス上に、金属を400kW・sと800kW・sでスパッタして形成し、1W・sあたりの厚みを換算して、金属の無機導電層の厚みを求めた。
その後、紫外線(高圧水銀灯120W、360mJ/cm、178mW/cm)照射し、硬化させて、導電性シートを得た。
得られた導電性シートの表面抵抗と光透過率と接触抵抗と耐擦傷性を以下の方法により測定した。それらの結果を表1に示す。
【0064】
[表面抵抗値]
三菱化学社製ロレスタMCP−T600を用い、JIS K 7194に準じて測定した。
[光透過率およびヘイズ]
日本電色工業社製ヘイズメータ測定器(NDH5000)を用い、JIS K7136に準じて光透過率およびヘイズを測定した。
[接触抵抗]
得られた導電性シートを40mm×50mmに裁断し、その裁断したシートの無機導電層12b上の幅方向の縁に導電性ペースト(藤倉化成社製FA−401CA)をスクリーン印刷し、乾燥させて電極配線13a,13bを形成して、入力者側の可動電極シート10(図2参照)を得た。
また、ITO膜22が設けられ、40mm×50mmに裁断されたガラス板21(表面抵抗:300Ω)を用意した。その用意したガラス板21のITO膜22上の長手方向の縁に、導電性ペースト(藤倉化成社製XA436)をスクリーン印刷し、乾燥させて電極配線23a,23bを形成した。次いで、ITO膜22上に、ドットスペーサ用ペースト(藤倉化成社製SN−8400C)をスクリーン印刷し、乾燥し、紫外線照射して、ドットスペーサ24を形成させた。次いで、電極配線23a,23b上に、レジスト用ペースト(藤倉化成社製SN−8800G)をスクリーン印刷し、乾燥し、UV照射して、絶縁層25を形成させた。さらに、絶縁層25上に、接着剤(藤倉化成社製XB−114)をスクリーン印刷し、乾燥させて、可動電極シート10に貼り合わせるための接着剤層26を形成させた。これにより、画像表示装置用の固定電極シート20(図3参照)を得た。
次いで、図4に示すように、可動電極シート10と固定電極シート20とを、無機導電層12bとITO膜22が対向するように配置させ、接着剤層26により貼り合せて抵抗膜式タッチパネルモジュールを作製した。また、固定電極シート20の一方の電極配線23aと精密電源31とを、プルアップ抵抗(82.3kΩ)32、およびプルアップ抵抗32に並列に接続されたプルアップ抵抗32の電圧測定用テスタ33を介して電気的に接続した。また、精密電源31と可動電極シート10の一方の電極配線13aとを電気的に接続した。また、可動電極シート10の他方の電極配線13bと固定電極シート20の他方の電極配線23bとを、抵抗膜式タッチパネルモジュールの電圧測定用テスタ34を介して電気的に接続した。これにより、接触抵抗測定用の電気回路を得た。
接触抵抗は次のように測定した。先端が0.8Rのポリアセタール製スタイラス35で、可動電極シート10を250gの荷重で押圧し、精密電源31により電圧5Vを印加した際のプルアップ抵抗の電圧と抵抗膜式タッチパネルモジュールの電圧を測定し、これらの測定結果より、接触抵抗を測定した。
具体的には、プルアップ抵抗32に流れる電流値を、測定した電圧値を用いてオームの法則から算出し、その算出した電流値および抵抗膜式タッチパネルモジュールの電圧値を下記式に代入して接触抵抗を求めた。
接触抵抗(Ω)=[(抵抗膜式タッチパネルモジュールの電圧(V))/(プルアップ抵抗の電圧(V))]×プルアップ抵抗(Ω)
[摺動試験]
導電層(有機導電層および無機導電層)の塗膜強度を測定するため、エタノールで湿らせたキムワイプ(日本製紙クレシア社製)を、100gf/cmの荷重をかけて30往復擦り、導電層の抜けを目視により検査した。また、摺動試験後の接触抵抗を測定した。これらの結果は導電層の膜強度の指標になる。
◎ :剥離なし、○:わずかに剥離、△:一部剥離、×:完全剥離
[耐擦傷性]
タッチパネル研究所社製摺動筆記耐久試験機を用いて、タッチパネルの可動電極シートの表面に、ポリアセタールペンの先端を450gの荷重で30万回摺動させた。
その摺動試験前後の電圧分布の直線性を下記のように測定した。摺動試験前後の電圧分布直線性の変化が小さい程、耐擦傷性に優れる。
・電圧分布直線性
図5に示すように、可動電極シートにおいて、一方の電極配線と他方の電極配線とを一定電圧を印加すると共に、一方の電極配線から他方の電極配線に向かって任意の間隔で電圧を測定した。
理論的には電圧分布は直線になるが、実物では理論直線からのずれが見られる(図6参照)。測定開始点aにおける電圧をEa、測定終了点bにおける電圧をEb、測定開始点aから測定終了点bまでの距離をY、測定開始点aから測定点xまでの距離をX、印加電圧をEab、測定点xにおける実測の電圧をEx、測定点xにおける理論電圧をEx’とすると、直線性は下式で示される。
直線性(%)={(Ex’−Ex)/(Eb−Ea)}×100(%)
ただし、Ex’=Eab×(X/Y)+Ea
【0065】
【表1】

【0066】
(実施例2)
2,3,3’,4,4’,5’−ヘキサヒドロキシベンゾフェノン3.6g、イルガキュア127(チバ・スペシャルティ・ケミカルズ社製)0.9g、2−ヒドロキシエチルアクリルアミド18g、トリプロピレングリコールジアクリレート7.2g、エタノール300gを混合し、撹拌した。これにより得た溶液に、製造例2で得たPEDOT−PSS水溶液600gを添加し、撹拌して、導電性高分子溶液Bを得た。
次いで、導電性高分子溶液Aの代わりに導電性高分子溶液Bを用い、スパッタリングターゲットとしてニッケルターゲットを用い、スパッタを12W、10秒(すなわち、120W・s)で行ったこと以外は実施例1と同様にして、厚さ480nmの無機導電層を形成させて導電性シートを得た。そして、実施例1と同様にして評価した。評価結果を表1に示す。
【0067】
(実施例3)
実施例1におけるスパッタリングターゲットを銀ターゲットから錫ターゲットに変更し、スパッタを18W、10秒(すなわち、180W・s)で行ったこと以外は実施例1と同様にして、厚さ720nmの無機導電層を形成させて導電性シートを得た。そして、実施例1と同様にして評価した。評価結果を表1に示す。
【0068】
(実施例4)
実施例2におけるスパッタリングターゲットをニッケルターゲットからアルミニウムターゲットに変更し、スパッタを25W、10秒(すなわち、250W・s)で行ったこと以外は実施例1と同様にして、厚さ1000nmの無機導電層を形成させて導電性シートを得た。そして、実施例1と同様にして評価した。評価結果を表1に示す。
【0069】
(実施例5)
実施例1において2−ヒドロキシエチルアクリルアミドの代わりにジメチルスルホキシ度20gを添加し、ペンタエリスリトールトリアクリレートを添加しなかったこと以外は実施例1と同様にして、導電性高分子溶液Cを得た。次いで、導電性高分子溶液Aの代わりに導電性高分子溶液Cを用いたこと以外は実施例1と同様にして、厚さ240nmの無機導電層を形成させて導電性シートを得た。そして、実施例1と同様にして評価した。評価結果を表1に示す。
【0070】
(実施例6)
実施例2においてトリプロピレングリコールジアクリレートを添加しなかったこと以外は実施例2と同様にして、導電性高分子溶液Dを得た。次いで、導電性高分子溶液Aの代わりに導電性高分子溶液Dを用いたこと以外は実施例1と同様にして、厚さ480nmの無機導電層を形成させて導電性シートを得た。そして、実施例1と同様にして評価した。評価結果を表1に示す。
【0071】
(実施例7)
実施例2の導電性高分子溶液Bを、ポリエチレンテレフタレートフィルム(東洋紡製A4300、厚さ;188μm)に、リバースコーターにより塗布し、100℃、2分間、赤外線照射により乾燥した。次いで、紫外線(高圧水銀灯120W、360mJ/cm、178mW/cm)照射し、硬化させて、有機導電層を形成した。
次いで、得られた有機導電層の表面に、スパッタリングターゲットとしてニッケルターゲットを用い、マグネトロンスパッタリングにより、アルゴンガス雰囲気中でスパッタ(出力50W、時間50秒、すなわち2500W・s)を行い、厚さ4200nmの無機導電層を形成させて、導電性シートを得た。そして、実施例1と同様に評価した。評価結果を表1に示す。
【0072】
(実施例8)
ガーリック酸3.6g、イルガキュア127(チバ・スペシャルティ・ケミカルズ社製)0.9g、2−ヒドロキシエチルアクリルアミド18g、エトキシ化グリセリントリアクリレート7.2g、エタノール300gを混合し、撹拌した。これにより得た溶液に、製造例2で得たPEDOT−PSS水溶液600gを添加し、撹拌して、導電性高分子溶液Eを得た。
導電性高分子溶液Eをポリエチレンテレフタレートフィルム(東洋紡製A4300、厚さ;188μm)に、リバースコーターにより塗布し、100℃、2分間、赤外線照射により乾燥して、有機導電層を形成した。
次いで、得られた有機導電層の表面に、スパッタリングターゲットとしてインジウム90質量%−錫10質量%の合金ターゲットを用い、マグネトロンスパッタリング(株式会社大阪真空機器製作所製MF−3)により、アルゴンガス80体積%と酸素20体積%からなる混合ガスの雰囲気中でスパッタ(出力20W、時間15秒、すなわち300W・s、アルゴン流量130sccm、酸素流量35sccm、スパッタ圧力0.52Pa)を行った。これにより、厚さ400nmの無機導電層を形成させて、導電性シートを得た。そして、実施例1と同様にして評価した。評価結果を表1に示す。
【0073】
(実施例9)
実施例8においてスパッタを、出力18W、時間10秒(すなわち、180W・s)で行った以外は実施例8と同様にして、厚さ200nmの無機導電層を形成させて導電性シートを得た。そして、実施例1と同様にして評価した。評価結果を表1に示す。
【0074】
(比較例1)
実施例1においてスパッタリングを行わず、無機導電層を形成しなかった以外は実施例1と同様にして導電性シートを得て、評価した。評価結果を表1に示す。
【0075】
(比較例2)
実施例2の導電性高分子溶液Bを、ポリエチレンテレフタレートフィルム(東洋紡製A4300、厚さ;188μm)に、リバースコーターにより塗布し、100℃、2分間、赤外線照射により乾燥した。次いで、紫外線(高圧水銀灯120W、360mJ/cm、178mW/cm)照射し、硬化させて、有機導電層を形成した。
次いで、得られた有機導電層の表面に、スパッタリングターゲットとして銀ターゲットを用い、マグネトロンスパッタリングにより、アルゴンガス雰囲気中でスパッタ(出力100W、時間100秒、すなわち10000W・s)を行い、厚さ40,000nmの無機導電層を形成させて、導電性シートを得た。そして、実施例1と同様に評価した。評価結果を表1に示す。
【0076】
(比較例3)
実施例8において、導電性高分子塗料を塗布せず、有機導電層を形成しなかった以外は実施例8と同様にして導電性シートを得て、評価した。評価結果を表1に示す。
【0077】
有機導電層の表面にスパッタ法により無機導電層を形成した実施例1〜9によれば、ITO膜に対する接触抵抗が小さい導電性シートを得ることができた。しかも、導電性、透明性および耐擦傷性にも優れていた。
さらに、実施例1〜4では、導電性高分子溶液が多官能アクリル化合物を含んでいたため、これにより得られた有機導電層は、膜強度、透明基材に対する有機導電層の密着性、無機導電層の密着性にも優れていた。
また、実施例1〜4,6〜9では、導電性高分子溶液が(メタ)アクリルアミド化合物を含んでいたため、導電性により優れた導電性シートを得ることができた。
【0078】
無機導電層を形成しなかった比較例1では、ITO膜に対する接触抵抗が大きかった。したがって、比較例1で得られた導電性シートは、入力デバイス用として適していなかった。
無機導電層の厚みが5000nmを超えていた比較例2では、透明性が低かった。したがって、比較例2で得られた導電性シートは、入力デバイス用として適していなかった。
有機導電層を形成しなかった比較例3の導電性シートでは、耐擦傷性が低かった。
【図面の簡単な説明】
【0079】
【図1】本発明の入力デバイスの一例を示す断面図である。
【図2】接触抵抗の測定方法における入力者側の電極シートを示す断面図である。
【図3】接触抵抗の測定方法における画像表示装置側の電極シートを示す断面図である。
【図4】接触抵抗の測定方法における回路を示す模式図である。
【図5】電圧分布の直線性の測定方法を示す図である。
【図6】可動電極シートの一例における電圧分布を示すグラフである。
【符号の説明】
【0080】
10 可動電極シート
11 透明基材
12a 有機導電層
12b 無機導電層
13a,13b 電極配線
20 固定電極シート
21 透明基材
22 ITO膜
23a,23b 電極配線
24 ドットスペーサ

【特許請求の範囲】
【請求項1】
透明基材と、該透明基材の片面または両面に形成され、π共役系導電性高分子およびポリアニオンを含有する有機導電層と、該有機導電層の表面に形成され、金属および導電性金属酸化物の一方または両方を含有する厚さ1〜5000nmの無機導電層とを有することを特徴とする導電性シート。
【請求項2】
無機導電層に含まれる金属が、銀、金、白金、鉄、亜鉛、パラジウム、銅、ニッケル、アルミニウム、クロム、コバルト、チタン、マグネシウム、錫、ロジウム、ルテニウム、イリジウムよりなる群から選ばれる1種以上の金属であることを特徴とする請求項1に記載の導電性シート。
【請求項3】
無機導電層に含まれる導電性金属酸化物が、酸化錫、酸化インジウム、五酸化アンチモン、酸化亜鉛よりなる群から選ばれる1種以上の金属酸化物であることを特徴とする請求項1に記載の導電性シート。
【請求項4】
透明基材の片面または両面に、π共役系導電性高分子とポリアニオンと溶媒とを含有する導電性高分子溶液を塗布して有機導電層を形成する工程と、
該有機導電層の表面に、金属および導電性金属酸化物の一方または両方を含有する厚さ1〜5000nmの無機導電層を形成する工程とを有することを特徴とする導電性シートの製造方法。
【請求項5】
導電性高分子溶液が(メタ)アクリルアミド化合物および多官能アクリル化合物の一方または両方をさらに含有することを特徴とする請求項4に記載の導電性シートの製造方法。
【請求項6】
前記無機導電層をスパッタリング法により形成することを特徴とする請求項4または5に記載の導電性シートの製造方法。
【請求項7】
請求項1〜3のいずれかに記載の導電性シートを電極シートとして備えたことを特徴とする入力デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−170408(P2009−170408A)
【公開日】平成21年7月30日(2009.7.30)
【国際特許分類】
【出願番号】特願2008−289921(P2008−289921)
【出願日】平成20年11月12日(2008.11.12)
【出願人】(000190116)信越ポリマー株式会社 (1,394)
【Fターム(参考)】