説明

炭化物製造方法および炭化物製造装置

【課題】高品質で高機能性の炭化物を高収率でしかも省エネルギーで連続的に得ることができる炭化物製造方法および炭化物製造装置を提供する。
【解決手段】炭化炉内を、被処理物を乾燥・熱分解・炭化させる前工程ゾーンと炭素化・精煉させる後工程ゾーンに分けて温度管理し、加熱方式が前工程ゾーンは炭化ガスの高温燃焼ガスによる間接加熱、後工程ゾーンは熱分解ガスの部分燃焼による直接加熱となるよう、炉内に、炭化炉と同軸回転可能で且つ、空気送気管および空気吹出口を有する伝熱管を配設する。なお、当該伝熱管内には炭化ガスの高温燃焼ガスを循環導入する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、木材、竹材、草などのバイオマス資源、および食品残渣、畜産廃棄物、ごみ固形燃料(RDF)、一般家庭廃棄物、汚泥などの有機性廃棄物から、良質の炭素化物(以下、炭化物という)を製造する炭化物製造方法および炭化物製造装置に関するものである。
【背景技術】
【0002】
炭化物の連続製造装置としては従来からロータリー式炭化装置があり、大きく分けてこれの炭化炉には被処理物を高温の燃焼ガスと直接接触させるか、もしくは空気を導入して被処理物の一部を燃焼させて加熱する直接加熱方式(直火方式あるいは内燃式ともいう。例えば、特許文献1および特許文献2参照。)と、炭化炉の外壁面を通して炭化炉内の被処理物を加熱する間接加熱方式があった(例えば、特許文献3および特許文献4参照。)。
【0003】
【特許文献1】特開2003−171669号公報
【特許文献2】特開2004−43587号公報
【特許文献3】特開平10−300356号公報
【特許文献4】特開2002−11451号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上記のような従来法の直接加熱および間接加熱にはそれぞれ得失があり、例えば直火方式では熱効率はよいが被処理物および炭化物の燃焼量が多くなりそのため炭化物の収率が低下する。とくに700℃以上の高温度で炭化しようとする場合には炭化炉内に送り込む高温ガスや空気の量が多くなり、これによって運び去られる炭化物粒子の量が著しく増加して収率は大幅に低下するという欠点があった。さらには得られた炭化物の表面には燃焼した灰分が多く付着し概観上の品質を損なうなどの問題もあった。
【0005】
また間接加熱方式では、燃焼による炭化物の損失は減少し炭化物の収率は高くなるが、炭化炉の壁面を通した間接的な加熱であるため熱効率が悪く炭化炉は大型になる問題が生じていた。また、炉内を600℃以上の高温度にしようとする場合には、通常の熱交換器方式では不可能となるため、炭化炉の外壁面を高温の炎で直接加熱する方法となっていた。このため、炭化炉は過酷な条件にさらされて炉の寿命は著しく短くなり数年しかもたないという問題があった。
【0006】
本発明は、従来からのかかる問題の解決を図るとともに、近年、とくに要求されるようになってきた炭化物の高機能化を実現させるよう高温炭化、賦活処理が可能な経済的な炭化物製造装置提供するものである。即ち、従来にない直間併用型の特殊構造の炭化炉とすることによって、高熱効率・高耐久性でコンパクトな炭化物製造装置が得られるともに、500℃の低温から900℃の高温に至る広い範囲の温度管理を確実に行って高品質で高機能性の炭化物を高収率で、しかも省エネルギーで連続的に製造することを目的とするものである。
【課題を解決するための手段】
【0007】
本発明は、長年にわたる炭化炉の開発・設計の経験と炭化物の特性および前記の課題解決に関する鋭意研究の結果、得られたもので、上記目的を達成するために、第一に、被処理物を燃焼させることなく500℃程度まで昇温させて、乾燥・熱分解・炭化を行わせ、そしてさらに被処理物の炭化物を燃焼させることなく500℃〜900℃程度の範囲内に設定された目的温度まで昇温させて、炭素化・精煉を行わせる必要のあること、第二に、そのためには炭化処理操作を、乾燥・熱分解・炭化を行う前工程と炭化・精煉を行う後工程の二つに分割して行う必要のあること、第三に、前工程の炭化処理で発生する可燃性の熱分解ガスを最大限有効活用して熱効率を向上させる必要のあること、とくに熱分解ガスの高温燃焼処理ガスが保有する高熱量のみを効率よく炭化炉内に導入する必要のあることであって、そして第四には、高品質・高機能性の炭化物を得るためには正確な温度管理と炉内の高温化・賦活処理が必要であることに着目してなされたものである。
【0008】
具体的には、炭化物製造方法に係わる第一の発明の一つ目は、炭化炉内を、被処理物を乾燥・熱分解・炭化させる前工程ゾーンと、被処理物の炭化物をさらに炭素化・精煉させる後工程ゾーンの二つに分けてそれぞれのゾーンの温度を正確に管理しながら加熱する。そしてこれらの加熱方式は、可燃性の熱分解ガスを盛んに発生する前工程ゾーンでは空気遮断の間接加熱とし、炭化物を加熱する後工程ゾーンでは、可燃性熱分解ガスの燃焼による直接加熱とすることである。
【0009】
また、炭化物製造方法に係わる第一の発明の二つ目は、上記間接加熱は、炭化炉内に設けた伝熱管に高温燃焼ガスを被処理物に対して向流となるよう外部より導入して行い、そして上記直接加熱は、後工程となる炭化炉内の後半部ゾーンに必要量の空気を外部より導入して発生した熱分解ガスの一部を炉内で部分燃焼させて行うことである。
【0010】
また、炭化物製造方法に係わる第一の発明の三つ目は、前工程ゾーンでは炉内温度を熱分解・炭化がほぼ終了する500℃に、そして後工程ゾーンでは炉内温度を炭素化・精煉が進行する500℃〜900℃の範囲の目的温度に、それぞれ設定して温度管理することを特定事項としている。
【0011】
また、第一の発明を実施するための炭化物製造装置に係わる第二の発明の一つ目は、炭化炉の内部に当該炭化炉と同軸回転する放熱手段付伝熱管および空気導入手段を配設することであって、前記放熱手段は平板、波板、パイプを伝熱管表面に接合した構造のもの、もしくは伝熱管表面を凹凸に加工したことを特定事項とするものであり、そして前記空気導入手段は空気送気管と前記後工程ゾーンに空気を吹き出すよう設置された複数の空気吹出口で構成され、これらの空気導入手段は前記伝熱管の内部に回転可能に配設されていることを特定事項とするものである。
【0012】
また、第一の発明を実施するための炭化物製造装置に係わる第二の発明の二つ目は、炭化物製造装置の炭化炉と上記熱分解ガスを燃焼させる燃焼脱臭炉とは分離して配設し、上記熱分解ガスを含む炭化ガスが上記炭化炉を出てこの燃焼脱臭炉内に導入されるよう、そしてこの燃焼脱臭炉内で燃焼処理された上記熱分解ガスの高温燃焼処理ガスの一部が上記炭化炉内の上記放熱手段付伝熱管内に導入されて熱放出した後、再び上記燃焼脱臭炉内に戻るよう、ダクトを配設して、この高温燃焼処理ガスの一部を循環使用するよう構成したことを特定事項とするものである。
【発明の効果】
【0013】
以上、説明したように、炭化物製造方法に係わる第一の発明および炭化物製造装置に係わる第二の発明によれば、高品質・高機能性の炭化物を高収率で、しかも高熱効率・省エネルギーで、炭化炉の耐久性を損なうことなく連続的に製造することができる。
【0014】
具体的には、炭化炉内を被処理物の流れ方向に前工程と後工程の二つのゾーンに分割し、それぞれのゾーンの温度を個別に管理することから、バイオマス資源および有機性廃棄物などの有機性被処理物が加熱過程で示す乾燥・熱分解・炭化、そして炭素化・精煉という物理的・化学的変化を無理なく素直に進行させることができる。さらには、前工程を空気遮断の間接加熱方式とすることから、この被処理物および発生する可燃性熱分解ガスの燃焼を防止することができる。また後工程においても、この可燃性熱分解ガスの一部を燃焼させて加熱する直接加熱方式であることから、このゾーンを通過する炭化物の燃焼を防ぐことができる。このようなことから炭化物の収率は著しく高いものとなる。
【0015】
また、炭化物の品質・特性は炭化温度によって大きく変化するため、特定の炭化物を得ようとすればその炭化温度は正確でなくてはならない。本発明の後工程ゾーンにおいては、設定した炭化温度を正確に管理・制御することから目標の炭化物を得ることができる。
【0016】
また、前工程ゾーンの間接加熱では高温燃焼処理ガスを熱源とすること、および後工程ゾーンでは熱分解ガスの部分燃焼で加熱を行うことから、これらの熱源として新たな化石燃料を必要としないため炭化処理は省エネルギーとなってくる。
【0017】
また、従来の炭化炉ように炉筒を二重構造にした間接加熱方式では、炉内に取り込むべき有効な熱量が外壁から失われていた。そしてさらには熱の移動形態が壁面からの熱伝導と炉内における対流伝熱であったため、熱の移動速度が緩慢となり、炉筒を大型化しなければならなかったが、本発明のように放熱手段付伝熱管による炉内からの加熱にすると、前記放熱ロスを防止できるだけではなく、放熱手段からの輻射伝熱も大きく作用して熱の移動速度は著しく大きくなり、炭化炉は小型化できるようになる。
【0018】
また、本発明では放熱板付伝熱管を炭化炉と緩やかに同軸回転させるため、炭化炉内の雰囲気はこの伝熱管で撹拌されて前記伝熱効果はさらに増大する。また同時に、この撹拌で炉内温度は均一になり、均質性に優れた炭化物が得られる結果となる。そしてまた、前記伝熱管は回転しているため、当該伝熱管上に被処理物および炭化物の堆積は起こらず、伝熱効率を低下させることがない。
【0019】
また、被処理物の熱分解ガスは臭気物質や有害物質を含むため、900℃〜1000℃程度の高温で焼却処理しなければならない。このため燃焼脱臭炉を必要とするが、この燃焼脱臭炉と炭化炉とは分離して設置されているため、従来の風呂釜式炭化炉のように炭化炉自身がこの高温度の雰囲気にさらされて損傷を受けることがない。
【0020】
また、この燃焼脱臭炉の高温燃焼処理ガスの一部が上記伝熱管を通って再び燃焼脱臭炉に戻るように、炭化炉と燃焼脱臭炉をダクトで接続しているため、高温燃焼処理ガスの一部は間接加熱用の熱源として繰り返し循環再利用できることから熱利用上、極めて経済的な炭化処理となる。
【発明を実施するための最良の形態】
【0021】
以下、本発明の実施形態を図面に基づいて説明する。
【0022】
図1は、本発明の実施形態に係わる炭化物製造装置を示したもので、1は回転する円筒型の炭化炉、2は炭化炉1の供給側ケーシング、3は同じく排出側ケーシング、21、31は炭化炉1とそれぞれのケーシングの摺動部に取付けられた耐熱帆布製のシール手段、4は耐熱金属製の伝熱管、5は伝熱管4に配設された放熱手段、61、62は伝熱管4と炭化炉1を固定する伝熱管固定手段、71、72はケーシング2およびケーシング3に設置された伝熱管4のシール機能付回転支持手段、8は炭化物の排出側に設けられた空気導入手段、81は前記放熱手段5を避けて配設された複数の空気吹出口、82は空気吹出口81と連結した空気送気管、83はロータリージョイント、9は被処理物を炭化炉内に定量供給する供給シュート付供給手段、10は炭化物を冷却しながら搬送するスクリューコンベア式の排出手段、11は被処理物の熱分解ガスを含む炭化ガスの排出ダクト、12a、12bは炭化炉前半部ゾーンおよび後半部ゾーンの雰囲気温度を計測するスリップリング式熱電対(温度センサー)であって感温部は炉内に挿入されている。131、132は炭化炉の支持手段、14は炭化炉のギア式回転駆動手段、15は炭化炉の架台、161、162、163は炭化炉および両ケーシングの外部断熱材、164は排出側ケーシングを高温度から保護するために内部壁面に設置された断熱材、171、172は伝熱管4の放熱ロスを防止するための外部断熱材であり、173は伝熱管4を高温度から保護するために設置された断熱材である。ここで、炭化炉1は、被処理物が炭化炉の回転によって炭化炉内を排出側方向に移動するように1度程度傾斜して架台15の上に設置されている。
【0023】
図2は、図1に示した炭化炉1の断面A−Aであって、伝熱管4の放熱手段5が複数の板状フィンの場合を示したものである。ここで131aはタイヤ、131b、131cは支持ローラー、131dはスペーサーである。
【0024】
図3は同じく断面B−Bであって、61a、61b、61c、61dは伝熱管固定手段61の固定板、61eは同じく固定リングであって、炭化炉1と伝熱管4とが共に回転するよう構成されている。ここで、板状フィンおよび固定手段の個数は、適宜決められるが、とくに固定手段は、伝熱管4の著しい熱変形を防ぐ適当間隔の配置と個数が選ばれるため、装置の大型化が可能となる。
【実施例】
【0025】
以下、本発明の炭化物製造装置における炭化処理工程と作用効果を説明する。
実施例1
炭化炉内の温度として、あらかじめ、例えば、被処理物の投入側の雰囲気温度を500℃に、炭化物排出側の雰囲気温度を800℃にそれぞれ設定しておく。これらの温度は、温度センサー12a、12bで検出し、前者の温度制御は燃焼処理ガスの伝熱管4への導入量の増減で、そして後者では後工程ゾーンへの燃焼用空気の送気量の増減で、それぞれ独立して個別に行えるようにしてある。
【0026】
ただし、運転立上時においては、加熱源が伝熱管4からの熱量のみであるため、炉内全般の雰囲気温度は500℃に維持・管理されることになる。炭化処理は被処理物を炉内へ投入することから始まり、被処理物は供給手段9によって緩やかに回転している炭化炉内に定量供給される。この被処理物は撹拌されながら前工程ゾーンを移動し、伝熱管4や放熱板5からの熱で間接加熱されて室温から次第に昇温していく。先ず、100℃前後で水分蒸発が起こり、次いで150℃〜200℃程度になって熱分解が始まる。被処理物が炭化炉内の中央部に到達して500℃になるまでの間、可燃性の熱分解ガスが盛んに発生する。この500℃の段階では既に被処理物は揮発性成分を多く含む炭化物となっており、流動しながら後工程ゾーンへと緩やかに移動する。このとき、可燃性の熱分解ガスを含む炭化ガスは伝熱管4の回転で撹拌されながらこの炭化物とは若干早く炉内を移動して炉内の後半部に到達し、空気吹出口81から送られた適量の空気に触れて燃焼する。これによって後工程ゾーンの雰囲気温度は800℃に昇温・維持され、やがてここに到達した炭化物もこの燃焼熱で直接加熱されて800℃に昇温する。この800℃に維持・管理された雰囲気中に炭化物を所定時間滞留させることで、炭素化・精煉が行われて目的とする800℃の均質な炭化物が得られる。
【0027】
こうすることによって、燃焼による被処理物や炭化物の大幅な収率低下を防ぐことができると同時に、設定した炭化温度を正確に制御できることから、高品質の炭化物を高収率で製造できる。
実施例2
【0028】
次に、本発明の炭化物製造装置において、高温燃焼処理ガスを間接加熱の熱源として循環使用する場合、および高機能性炭化物を得る場合の炭化物製造装置の炭化処理工程と、それに応じた制御について説明する。
【0029】
図4は、本発明の他の実施形態に係わる炭化物製造装置を示したもので、1は円筒型炭化炉、2、3は供給側、排出側のケーシング、4は放熱手段付伝熱管、8は空気導入手段、81は空気吹出口で82は空気送気管、9は被処理物の供給手段、10は炭化物の排出手段、11は炭化ガスの排出ダクト、12a(T1)、12b(T2)は炭化炉前半部および後半部の温度センサー、18は炭化ガスを900℃〜1000℃で高温燃焼する燃焼脱臭炉、181は燃焼脱臭炉18と燃焼処理ガス導入側の伝熱管4を連結するダクト、182は燃焼処理ガス排出側の伝熱管4と燃焼脱臭炉18を連結するダクト、18aは燃焼脱臭炉の温度センサー、183は燃料の燃焼制御ユニット、19は排熱回収装置、191は水蒸気バルブ、192は水蒸気配管、20は水分除去装置、B1、B3は吸引ブロア、B2、B4は送気ブロア、Mはモーター、Pはポンプである。
【0030】
被処理物は連続的に供給手段9によって炭化炉1に定量供給されて連続的に炭化処理されるが、炭化炉内の雰囲気温度は、炭化炉前半部はT1:500℃、後半部はT2:800℃にそれぞれ設定されて、温度センサー12aおよび12bによって管理されている。このとき、温度T1の制御は、前記実施例1と同様、伝熱管4を通る燃焼処理ガス量をブロアB1で増減させて行う。そのために吸引ブロアB1の回転数は温度センサー12aの信号を受けて可変となるように構成されている。また、温度T2の制御は、前記実施例1と同様、空気導入手段8のブロアB2による空気送気量を増減させて行う。そのため、送気ブロアB2の回転数も温度センサー12bの信号を受けて可変するよう構成されている。
【0031】
被処理物は前記に説明したと同様に、所定時間炭化炉内に滞留して炭化物となり、炭化物排出手段10を通って冷却されて連続的に排出される。一方、炭化ガスは排出ダクト11を経て燃焼脱臭炉18に送られて、ここで900℃〜1000℃の温度で焼却処理される。この高温焼却処理ガスの一部は被処理物の間接加熱の熱源として伝熱管4に送られる。この間に熱量を放出して500℃程度に温度降下して炭化炉を出て、ダクト182、ブロアB1を通って再び燃焼脱臭炉18に戻される。ここで再び、900℃〜1000℃に加熱されて、繰り返し伝熱管4に送られる。燃焼脱臭炉18に送られた炭化ガスには多量の可燃性ガスが含まれるため、これの燃焼には多量の空気が必要となるが、これに必要な適当量の空気は送気ブロアB4で供給する。この燃焼脱臭炉の炉内温度T3の制御は、送気ブロアB4による送気量の増減と、燃料の燃焼制御ユニット183で行うことができる。
【0032】
間接加熱用の熱源として循環使用されない高温焼却処理ガスは、排熱回収装置19で水と熱交換して、水分除去装置を経て屋外に排出される。このとき得られた水蒸気の一部を、水蒸気バルブ191、水蒸気配管192および空気導入手段8を通して、前記後工程ゾーンに導入すると、炭化物の水蒸気賦活処理が行われて活性炭に匹敵する吸着性能を有する高機能性の炭化物が得られる。
【0033】
上記水蒸気賦活処理において、水蒸気は、単一管とした空気送気管82を通して熱分解ガスの燃焼用空気と交互に炉内に導入されてもよいし、空気送気管82を複数管として設け、その一部を水蒸気導入用の専用管とし、空気と並行して同時に導入されてもよい。
【0034】
また、上記空気導入手段8は、炭化炉1への被処理物の投入側に配設されていてもよい。いずれにしても上記実施形態と同様の思想考え方となる。
【図面の簡単な説明】
【0035】
【図1】本発明の実施形態に係わる炭化物製造装置を示す説明図である。
【図2】本発明の実施形態に係わる炭化物製造装置図1の、断面A−Aを示す説明図である。
【図3】本発明の実施形態に係わる炭化物製造装置図1の、断面B−Bを示す説明図である。
【図4】本発明の他の実施形態に係わる炭化物製造装置を示す説明図である。
【符号の説明】
1 炭化炉
2 供給側ケーシング
3 排出側ケーシング
4 放熱手段付伝熱管
5 放熱手段
61,62 伝熱管固定手段
8 空気導入手段
81 空気吹出口
82 空気送気管
11 炭化ガス排出ダクト
12a、12b、18a 温度センサー
18 燃焼脱臭炉
181、182 連結ダクト

【特許請求の範囲】
【請求項1】
ロータリー式炭化装置であって、炭化炉内を、被処理物を乾燥・熱分解・炭化させる前工程ゾーンと、炭素化・精煉させる後工程ゾーンの二つのゾーンに分けてそれぞれのゾーンを温度管理し、そしてこれらの加熱方式を前工程ゾーンは間接加熱、後工程ゾーンは直接加熱とすることを特徴とする炭化物製造方法。
【請求項2】
請求項1記載の炭化物製造方法であって、上記間接加熱は、前記炭化炉内に設けた伝熱管内に被処理物に対して向流となるよう外部より導入した高温燃焼ガスによって行い、上記直接加熱は、前記炭化炉内の前記後工程ゾーンに外部より空気を導入し、上記被処理物の熱分解により発生した熱分解ガスの一部を炉内で燃焼させて行うことを特徴とする炭化物製造方法。
【請求項3】
ロータリー式炭化装置であって、炭化炉内部に当該炭化炉と同軸回転する放熱手段付伝熱管を配設すること、および複数の空気吹出口を有する空気導入手段をこの伝熱管内に配設してなることを特徴とする炭化物製造装置。
【請求項4】
請求項3記載の放熱手段は平板、波板、パイプを伝熱管表面に接合した構造のもの、もしくは伝熱管表面を凹凸に加工したものであること、そして請求項3記載の空気吹出口は、請求項1記載の後工程ゾーンに空気を吹き出すよう前記伝熱管の表面に前記放熱手段を避けて配設してなることを特徴とする炭化物製造装置。
【請求項5】
請求項3記載の炭化物製造装置の炭化炉と、請求項2記載の熱分解ガスを燃焼させる燃焼脱臭炉とは分離して配設し、前記熱分解ガスを含む炭化ガスが上記炭化炉を出てこの燃焼脱臭炉内に導入されるよう、そしてこの燃焼脱臭炉内で燃焼処理された上記炭化ガスの高温燃焼処理ガスの一部が上記炭化炉内の上記放熱手段付伝熱管内に導入されて排出された後、再び上記燃焼脱臭炉内に戻るようダクトを配設し、この高温燃焼処理ガスを循環使用するよう構成したことを特徴とする炭化物製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2006−206856(P2006−206856A)
【公開日】平成18年8月10日(2006.8.10)
【国際特許分類】
【出願番号】特願2005−54580(P2005−54580)
【出願日】平成17年1月31日(2005.1.31)
【出願人】(399082726)
【Fターム(参考)】