説明

熱可塑性樹脂フィルムの製造方法

【課題】液晶表示素子にフィルムを組み込んだ際、高温、高湿経時後でも色ムラの発生を抑制できる熱可塑性樹脂フィルムを製造できる。
【解決手段】熱可塑性樹脂フィルムを、2N/cm2 以上120N/cm2 以下の張力で搬送しながら、熱可塑性樹脂のガラス転移温度Tg−30°C以上Tg+20°C以下の温度で10秒以上600秒以下の時間、熱処理を行なう。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は熱可塑性樹脂フィルムの製造方法に係り、特に、液晶表示装置に使用される飽和ノルボルネン系樹脂等の熱可塑性樹脂フィルムの製造方法に関する。
【背景技術】
【0002】
熱可塑性樹脂フィルムの製造は大きく分けて、溶液製膜法と溶融製膜法とに分類される。溶液製膜法は熱可塑性樹脂を溶剤に溶解したドープをダイから支持体、例えば冷却ドラム上に流延してフィルム状にする方法であり、溶融製膜法は熱可塑性樹脂を押出機で溶融した後、ダイから支持体、例えば冷却ドラム上に押し出してフィルム状にする方法である。これらの方法により製膜された熱可塑性樹脂フィルムは、通常、縦(長手)方向、横(幅)方向に延伸することによって、面内レターデーション(Re)、厚み方向のレターデーション(Rth)を発現させ、液晶表示素子の位相差膜として使用し、視野角拡大を図ることが実施されている(例えば特許文献1、及び特許文献2参照)。
【特許文献1】特表平6−501040号公報
【特許文献2】特開2001−42130号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
ところで、溶液製膜法及び溶融製膜法のいずれの場合にも、従来の製造方法で製膜された熱可塑性樹脂フィルムは、高温多湿の条件下に置かれると収縮(以下、熱収縮という)が起きやすいという問題がある。そして、フィルムを液晶表示素子に組み込んだ際、この熱収縮によって液晶表示画面のコーナーより光が漏れたり、変色したりする色ムラと呼ばれる現象が発生しやすい。特に、光学用途の高機能性フィルムとして使用する場合には、このような額縁故障や色ムラが発生するフィルムは問題となる。
【0004】
熱収縮の発生を抑制する方法としては、熱収縮し難い熱可塑性樹脂を選んだり、熱可塑性樹脂を溶融する温度条件や冷却する温度条件の最適化等を行なうことが考えられる。しかしながら、これらの方法では、光学フィルムに悪影響を及ぼすような熱収縮の発生を効果的に抑制することができないという問題があった。
【0005】
本発明はこのような事情に鑑みてなされたもので、額縁故障や色ムラの原因となる熱収縮が発生し難い熱可塑性樹脂フィルムを製造することのできる熱可塑性樹脂フィルムの製造方法及びその方法で製造された熱可塑性樹脂フィルムを提供することを目的とする。
【課題を解決するための手段】
【0006】
請求項1に記載の発明は前記目的を達成するために、熱可塑性樹脂フィルムを、2N/cm2 以上120N/cm2 以下の張力で搬送しながら、前記飽和ノルボルネン系樹脂のガラス転移温度Tg−30°C以上Tg+20°C以下の温度で10秒以上600秒以下の時間、熱処理を行なうことを特徴とする熱可塑性樹脂フィルムの製造方法を提供する。
【0007】
本発明の発明者は、上記課題に鑑みて鋭意検討した結果、熱処理炉内を低張力で熱可塑性樹脂フィルムを搬送しながら、所定温度で所定時間熱処理してフィルム搬送方向(以下MD方向という)にフィルムを熱処理させることで、フィルムの熱収縮率を低減させることができるという知見を得た。すなわち、熱可塑性樹脂フィルムを熱緩和させることで、面内のレターデーションRe、厚み方向のレターデーションRthの値をほとんど変化させずに、熱収縮率だけを低減させることを見出した。
【0008】
請求項1の発明によれば、2N/cm2 以上120N/cm2 以下の張力で搬送しながら、熱可塑性樹脂のガラス転移温度Tg−30°C以上Tg+20°C以下の温度で10秒以上600秒以下の時間熱処理を行なうようにしたので、額縁故障や色ムラの原因となる熱収縮が発生し難い熱可塑性樹脂フィルムを製造することができる。すなわち、熱可塑性樹脂フィルムを、2N/cm2 以上120N/cm2 以下の張力で搬送するので、搬送中にフィルムが弛んでしまうことを防止しながらMD方向に熱緩和させることができる。搬送するための張力は、フィルムを搬送中に弛ませることなく、MD方向に緩和できる範囲である必要があり、2〜120N/cm2 の範囲内であれば問題なく、好ましくは5〜100N/cm2 の範囲内、より好ましくは8〜80N/cm2 の範囲内、更に好ましくは10〜40N/cm2 の範囲内である。また、熱処理の温度は、低すぎると緩和させることができず、高すぎるとRe、Rthの値が動いてしまうため、熱可塑性樹脂のガラス転移温度Tg−30°C〜Tg+20°Cの範囲内が好ましい。より好ましくはTg−20°C〜Tg+15°Cの範囲内、更に好ましくはTg−10°C〜Tg+10°Cの範囲内、最も好ましくはTg−5°C〜Tg+5°Cの範囲内である。そして、熱処理の時間であるが、短すぎると熱処理の効果がなく、また長すぎるとRe、Rthの値も低下してしまうことから、10秒〜600秒の範囲内が好ましい。より好ましくは20秒〜450秒の範囲内、更に好ましくは30秒〜300秒の範囲内、最も好ましくは40秒〜200秒の範囲内である。尚、本発明は、溶液製膜法又は溶融製膜法のいずれで製造された熱可塑性樹脂フィルムにも適用できる。
【0009】
請求項2に記載の発明は請求項1の発明において、前記熱可塑性樹脂フィルムは、湿熱寸法変化(δL(w))、及び乾熱寸法変化(δL(d))のいずれもが0%以上0.5%以下であることを特徴とする。
【0010】
本発明で製造される熱可塑性樹脂フィルムは、湿熱寸法変化(δL(w))、及び乾熱寸法変化(δL(d))のいずれもが0%以上0.3%以下の範囲内にすることができる。ここで、湿熱寸法変化とは、80°Cドライで500時間経時前後の長手(MD)方向の寸法変化(δMD(d))、幅(TD)方向の寸法変化(δTD(d))のうち大きい方の値をいう。なお、ドライとは相対湿度が10%以下の状態を指す。また、乾熱寸法変化とは、60°C90%rhで500時間経時前後の寸法変化であり、下記式で示される長手(MD)方向の寸法変化(δMD(w))、幅(TD)方向の寸法変化(δTD(w))のうち大きい方の値をいう。
【0011】
請求項3に記載の発明は請求項1又は2の発明において、前記熱可塑性樹脂フィルムは、面内のレターデーション(Re)の湿熱変化(δRe(w))、乾熱変化(δRe(d))、及び、厚み方向のレターデーション(Rth)の湿熱変化(δRth(w))、乾熱変化(δRth(d))、のいずれもが0%以上10%以下であることを特徴とする。
【0012】
本発明で製造される熱可塑性樹脂フィルムは、面内のレターデーション(Re)の湿熱変化(δRe(w))、乾熱変化(δRe(d))、及び、厚み方向のレターデーション(Rth)の湿熱変化(δRth(w))、乾熱変化(δRth(d))、のいずれもが0%以上10%以下の範囲内にすることができる。ここで、レタデーションの湿熱変化、及び乾熱変化とは、上述した試験条件におけるレタデーションの変化をいう。
【0013】
請求項4に記載の発明は請求項1〜3のいずれか1の発明において、前記熱可塑性樹脂フィルムは、配向角が0°±5°以内、又は90°±5°以内、ボーイング歪みの大きさが10%以下、面内のレターデーション(Re)が0nm以上500nm以下、厚み方向のレターデーション(Rth)が0nm以上500nm以下、であることを特徴とする。
【0014】
本発明で製造される熱可塑性樹脂フィルムは、配向角が0°±5°以内、又は90°±5°以内、ボーイング歪みの大きさが10%以下、面内のレターデーション(Re)が0nm以上500nm以下、厚み方向のレターデーション(Rth)が0nm以上500nm以下、の範囲内にすることができる。
【0015】
請求項5に記載の発明は請求項1〜4のいずれか1の発明において、前記熱可塑性樹脂フィルムは、微細レターデーションむらが0%以上10%以下であることを特徴とする。
【0016】
本発明で製造される熱可塑性樹脂フィルムは、微細レターデーションむらが0%以上10%以下の範囲内にすることができる。ここで、微細レターデーションむらとは1mm以内の微小領域で発生するレターデーションの変化をいう。
【0017】
請求項6に記載の発明は請求項1〜5のいずれか1の発明において、前記熱可塑性樹脂は、飽和ノルボルネン系樹脂であることを特徴とする。
【0018】
本発明は、熱可塑性樹脂が飽和ノルボルネン系樹脂である場合に特に有効である。
【0019】
請求項7に記載の発明は請求項6の発明において、熱可塑性樹脂フィルムは、平均粒子径が0.1μm以上3.0μm以下の微粒子を1ppm以上10000ppm以下含むことを特徴とする。
【0020】
本発明は、熱可塑性樹脂フィルムの製造において、特に、微細レターデーションむらを防止するのに有効である。
【0021】
請求項8に記載の発明は請求項1〜7のいずれか1において、前記熱処理を、未延伸の熱可塑性樹脂フィルムについて行うことを特徴とする。
【0022】
請求項9に記載の発明は請求項1〜7のいずれか1において、前記熱処理を、延伸した後の延伸の熱可塑性樹脂フィルムについて行うことを特徴とする。
【0023】
本発明は熱可塑性樹脂フィルムを延伸しない前の未延伸フィルム及び延伸後の延伸フィルムのいずれにも適用できるが、延伸することにより熱収縮が発生しやすくなるので、延伸フィルムに適用することで本発明の効果を一層発揮できる。
【0024】
請求項10は、請求項8に記載の製造方法で製造された未延伸の熱可塑性樹脂フィルムを少なくとも1層積層した偏光板であり、請求項11は、請求項8に記載の製造方法で製造された未延伸の熱可塑性樹脂を基材に用いたことを特徴とする液晶表示板用光学補償フィルムであり、請求項12は請求項8に記載の製造方法で製造された未延伸の熱可塑性樹脂フィルムを基材に用いた反射防止フィルムある。
【0025】
また、請求項13は請求項9に記載の製造方法で製造された延伸熱可塑性樹脂フィルムを少なくとも1層積層した偏光板であり、請求項14は請求項9に記載の製造方法で製造された延伸熱可塑性樹脂フィルムを基材に用いた液晶表示板用光学補償フィルムであり、請求項15は請求項10に記載の製造方法で製造された延伸熱可塑性樹脂フィルムを基材に用いた反射防止フィルムである。
【発明の効果】
【0026】
本発明によれば、色ムラの原因となる熱収縮が発生し難い熱可塑性樹脂フィルムを製造することができる。従って、本発明によって製造された熱可塑性樹脂を使用した偏光板、液晶表示板用光学補償フィルム、及び反射防止フィルムの品質を向上させることができる。
【発明を実施するための最良の形態】
【0027】
以下添付図面に従って本発明に係る熱可塑性樹脂フィルムの製造方法の好ましい実施の形態について説明する。なお、本実施の形態では、飽和ノルボルネン系樹脂フィルムを製造する例を示すが、本発明はこれに限定するものではなく、ポリカーボネート樹脂フィルムなどの熱可塑性樹脂フィルムの製造にも適用することができる。
【0028】
図1は、本発明の熱可塑性樹脂フィルムの製造装置の概略構成の一例を示したものであり、延伸熱可塑性樹脂フィルムを溶融製膜法により製造する場合で説明する。
【0029】
図1に示すように製造装置10は主として、延伸前の飽和ノルボルネン系樹脂フィルム12を製膜する製膜工程部20と、製膜工程部20で製膜された飽和ノルボルネン系樹脂フィルム12をそれぞれ縦延伸、横延伸する縦延伸工程部30、横延伸工程部40と、延伸された飽和ノルボルネン系樹脂フィルム12’を熱処理する熱処理工程部70と、熱処理された飽和ノルボルネン系樹脂フィルム12’’を巻き取る巻取工程部50とで構成される。尚、本実施の形態では、熱処理工程部を製造装置10の工程中に組み入れたオンライン熱処理で説明するが、巻取工程部50で一旦巻き取った後に別の熱処理ラインで熱処理するオフライン熱処理で行ってもよい。また、本実施の形態では延伸した後に熱処理を行うようにしたが、延伸を行わない未延伸飽和ノルボルネン系樹脂フィルムについて熱処理を行ってもよい。
【0030】
製膜工程部20では、押出機14で溶融された飽和ノルボルネン系樹脂がダイ16からシート状に押し出され、回転するドラム17上にキャストされる。そして、ドラム17、18、19の表面で溶融樹脂が冷却固化されて飽和ノルボルネン系樹脂フィルム12が得られる。この飽和ノルボルネン系樹脂フィルム12はドラム19から剥離された後、縦延伸工程部30、横延伸工程部40に順に送られて延伸され、巻取工程部50でロール状に巻き取られる。これにより、延伸飽和ノルボルネン系樹脂フィルム12’が製造される。
【0031】
以下、各工程部の詳細について説明する。
【0032】
図2は、製膜工程部20の押出機14の構成を示している。同図に示すように、押出機14のシリンダ52内には、スクリュー軸54にフライト56を取りつけた単軸スクリュー38が設けられており、この単軸スクリュー58が不図示のモータによって回転するようになっている。
【0033】
シリンダ52の供給口60には不図示のホッパーが取りつけられており、このホッパーから飽和ノルボルネン系樹脂が供給口60を介してシリンダ52内に供給される。
【0034】
シリンダ52内は供給口60側から順に、供給口60から供給された飽和ノルボルネン系樹脂を定量輸送する供給部(Aで示す領域)と、飽和ノルボルネン系樹脂を混練・圧縮する圧縮部(Bで示す領域)と、混練・圧縮された飽和ノルボルネン系樹脂を計量する計量部(Cで示す領域)とで構成される。押出機14で溶融された飽和ノルボルネン系樹脂は、吐出口62からダイ16に連続的に送られる。
【0035】
押出機14のスクリュー圧縮比は、2.5〜4.5に設定され、L/Dは20〜70に設定されている。ここで、スクリュー圧縮比とは、供給部Aと計量部Cとの容積比、即ち供給部Aの単位長さ当たりの容積÷計量部Cの単位長さ当たりの容積で表され、供給部Aのスクリュー軸34の外径d1、計量部Cのスクリュー軸34の外径d2、供給部Aの溝部径a1、及び計量部Cの溝部径a2とを使用して算出される。また、L/Dとは、図2のシリンダ内径(D)に対するシリンダ長さ(L)の比である。また、押出温度は190〜240°Cに設定される。押出機14内での温度が240°Cを超える場合には、押出機14とダイ16との間に冷却機(図示せず)を設けるようにするとよい。
【0036】
尚、押出機14は、1軸押出機でも2軸押出機でもよいが、スクリュー圧縮比が2.5を下回って小さすぎると、十分に混練されず、未溶解部分が発生したり、剪断発熱が小さく結晶の融解が不十分となり、製造後の飽和ノルボルネン系樹脂フィルムに微細な結晶が残存し易くなったり、気泡が混入し易くなる。これにより、飽和ノルボルネン系樹脂フィルム12を延伸したときに、残存した結晶が延伸性を阻害し、配向を十分に上げることができなくなる。逆に、スクリュー圧縮比が4.5を上回って大きすぎると、剪断応力がかかり過ぎて発熱により樹脂が劣化し易くなるので、製造後の飽和ノルボルネン系樹脂フィルムに黄色みが出易くなる。また、剪断応力がかかり過ぎると分子の切断が起こり分子量が低下してフィルムの機械的強度が低下する。従って、製造後の飽和ノルボルネン系樹脂フィルムに黄色みが出にくく且つ延伸破断しにくくするためには、スクリュー圧縮比は2.5〜4.5の範囲が良く、より好ましくは2.8〜4.2の範囲、特に好ましくは3.0〜4.0の範囲である。
【0037】
また、L/Dが20を下回って小さすぎると、溶融不足や混練不足となり、圧縮比が小さい場合と同様に製造後の飽和ノルボルネン系樹脂フィルムに微細な結晶が残存し易くなる。逆に、L/Dが70を上回って大きすぎると、押出機14内での飽和ノルボルネン系樹脂の滞留時間が長くなり過ぎ、樹脂の劣化を起こし易くなる。また、滞留時間が長くなると分子の切断が起こり分子量が低下してフィルムの機械的強度が低下する。従って、製造後の飽和ノルボルネン系樹脂フィルムに黄色みが出にくく且つ延伸破断しにくくするためには、L/Dは20〜70の範囲が良く、好ましくは22〜45の範囲、特に好ましくは24〜40の範囲である。
【0038】
また、押出温度が190°Cを下回って低すぎると、結晶の融解が不十分となり、製造後の飽和ノルボルネン系樹脂フィルムに微細な結晶が残存し易くなり、飽和ノルボルネン系樹脂フィルムを延伸したときに、延伸性を阻害し、配向を十分に上げることができなくなる。逆に、押出温度が240°Cを超えて高すぎると、飽和ノルボルネン系樹脂が劣化し、黄色み(YI値)の程度が悪化してしまう。従って、製造後の飽和ノルボルネン系樹脂フィルムに黄色みが出にくく且つ延伸破断しにくくするためには、押出温度は190°C〜240°Cが良く、好ましくは195°C〜235°Cの範囲、特に好ましくは200°C〜230°Cの範囲である。
【0039】
溶融樹脂は、図1のダイ16に連続的に供給される。供給された溶融樹脂はダイ16の先端(下端)からシート状に吐出され、吐出された溶融樹脂は、ドラム17上にキャストされ、ドラム17、18、19の表面で冷却固化された後、ドラム19の表面から剥離され、飽和ノルボルネン系樹脂フィルム12が製膜される。
【0040】
製膜工程部20で製膜された飽和ノルボルネン系樹脂フィルム12は、縦延伸工程部30、横延伸工程部40に順に送られる。以下に、製膜工程部20で製造した飽和ノルボルネン系樹脂フィルム12を延伸し、延伸飽和ノルボルネン系樹脂フィルム12’を製造するまでの延伸工程について説明する。
【0041】
飽和ノルボルネン系樹脂フィルム12の延伸は、飽和ノルボルネン系樹脂フィルム12中の分子を配向させ、面内のレターデーション(Re)と厚み方向のレターデーション(Rth)を発現させるために行われる。ここで、レターデーションRe、Rthは、以下の式で求められる。
【0042】
Re(nm)=|n(MD)−n(TD)|×T(nm)
Rth(nm)=|{(n(MD)+n(TD))/2}−n(TH)|×T(nm)
式中のn(MD)、n(TD)、n(TH)は長手方向、幅方向、厚み方向の屈折率を示し、Tはnm単位で表した厚みを示す。
【0043】
図1に示すように、飽和ノルボルネン系樹脂フィルム12は、先ず、縦延伸工程部30で長手方向に縦延伸される。縦延伸工程部30では、飽和ノルボルネン系樹脂フィルム12が予熱された後、飽和ノルボルネン系樹脂フィルム12が加熱された状態で、二つのニップロール28、30に巻き掛けられる。出口側のニップロール34は、入口側のニップロール32よりも早い搬送速度で飽和ノルボルネン系樹脂フィルム12を搬送しており、これによって、飽和ノルボルネン系樹脂フィルム12が縦方向に延伸される。
【0044】
縦延伸された飽和ノルボルネン系樹脂フィルム12は、横延伸工程部40に送られ、幅方向に横延伸される。横延伸工程部40では例えばテンターを好適に用いることができ、このテンターによって飽和ノルボルネン系樹脂フィルム12の幅方向の両端部をクリップで把持し、横方向(幅方向)に延伸する。この横延伸によって、レターデーションRthを一層大きくすることができる。
【0045】
上述した縦、横の延伸処理を施すことによって、レターデーションRe、Rthを発現させた延伸飽和ノルボルネン系樹脂12が得られる。延伸飽和ノルボルネン系樹脂フィルム12は、Reが0nm以上500nm以下、より好ましくは10nm以上400nm以下、さらに好ましくは15nm以上300nm以下、Rthが30nm以上500nm以下、より好ましくは50nm以上400nm以下、さらに好ましくは70nm以上350nm以下である。このうちRe≦Rthを満足するものがより好ましく、さらに好ましくはRe×2≦Rthを満足するものがさらに好ましい。このような高Rth、低Reを実現するためには、上述のように縦延伸したものを、横(幅)方向に延伸するのが好ましい。即ち、縦方向と横方向の配向の差が面内のレターデーションの差(Re)となるが、縦方向に加えその直交方向である横方向にも延伸することで、縦横の配向の差を小さくし面配向(Re)を小さくできる。一方、縦に加え横にも延伸することで面積倍率は増加するため、厚みの減少に伴い厚み方向の配向は増加し、Rthを増加させることができるためである。
【0046】
さらに、Re,Rthの幅方向、長手方向の場所による変動をいずれも5%以下、より好ましくは4%以下、さらに好ましくは3%以下にすることが好ましい。さらに配向角を90°±5°以下または0°±5°以下とすることが好ましく、より好ましくは90°±3°以下または0°±3°以下、さらに好ましくは90°±1°以下または0°±1°以下とすることが好ましい。これらは、本発明のような延伸処理を行うことでボーイングを低減することができ、テンターに入る前の飽和ノルボルネン系樹脂フィルム12の面上に幅方向に沿って描いた直線が延伸終了後には凹部に変形したセンター部のずれを幅で割ったボーイング歪みが10%以下、好ましくは5%以下、より好ましくは3%以下とすることが好ましい。
【0047】
次に、本発明に係る熱緩和工程部70について説明する。図3は、本発明に用いる熱緩和装置60の構成の一例を示したものである。熱緩和工程部70は、図1において、縦延伸工程30、および横延伸工程40において延伸された延伸飽和ノルボルネン系樹脂フィルム12’に対して行なうため、横延伸工程40の後、巻取工程部50の前で行なっても良い。また、縦横の延伸後、巻取工程部50で一度巻き取った延伸飽和ノルボルネン系樹脂フィルム12’を、熱緩和工程のみからなる装置に搬送することで行なっても良い。また、当然のことではあるが、延伸飽和ノルボルネン系樹脂フィルム12’は、本発明に係る装置で製造されたものではなく、市販品として流通している延伸済みのフィルムを使用しても良い。
【0048】
熱緩和装置70は、温度を調節するための炉71の内部に、延伸飽和ノルボルネン系樹脂フィルム12’を搬送するためのパスローラ72、72、…が備えられている。延伸飽和ノルボルネン系樹脂フィルム12’を低い張力を維持しながら搬送を行なうため、炉71への搬送、及び炉からの引き抜きにはニップロール74を用いることが好ましい。このようにすることで、テンション測定ロール76によって張力を測定したうえで、ニップロール74のローラの回転速度を変えることで、低い張力を維持することができる。尚、この際、テンションカットを行うのに、ニップロール74のかわりにサクションドラムを使用しても良い。
【0049】
延伸飽和ノルボルネン系樹脂フィルム12’は、2N/cm2 以上120N/cm2 以下の張力で搬送されながら、Tg−30°C以上Tg+20°C以下の温度で10秒以上60秒以下の時間、熱処理が行なわれる。2N/cm2 以上であるのは、これよりも小さいと延伸飽和ノルボルネン系樹脂フィルム12’が弛んでしまうためであり、120N/cm2 以下であるのは、これを超えて大きいと延伸飽和ノルボルネン系樹脂フィルム12’を更に延伸してしまい、熱収縮を低下させることが出来ないからである。また、Tg−30°C以上であるのは、これよりも小さいと熱処理の効果が出ないからであり、Tg+20°C以下であるのは、これを超えて大きいと延伸飽和ノルボルネン系樹脂フィルム12’のRe、Rth等の光学物性が変化してしまうからである。そして、10秒以上であるのは、これよりも短いと熱処理としての時間が短すぎて効果が出ないからであり、600秒以下であるのは、これを超えて長いと延伸飽和ノルボルネン系樹脂フィルム12’のRe、Rth等の光学物性が変化してしまうからである。尚、張力は2〜120N/cm2 の範囲内であれば問題なく、好ましくは5〜100N/cm2 の範囲内、より好ましくは8〜80N/cm2の範囲内、更に好ましくは10〜40N/cm2 の範囲内である。また、温度はTg−30°C〜Tg+20°Cの範囲内が好ましく、より好ましくはTg−20°C〜Tg+15°Cの範囲内、更に好ましくはTg−10°C〜Tg+10°Cの範囲内、最も好ましくはTg−5°C〜Tg+5°Cの範囲内である。
【0050】
このようにして得られた熱緩和処理後の延伸飽和ノルボルネン系樹脂フィルム12’’は、湿熱寸法変化(δL(w))、及び乾熱寸法変化(δL(d))のいずれもが0%以上0.3%以下の範囲内にすることができる。また、面内のレターデーション(Re)の湿熱変化(δRe(w))、乾熱変化(δRe(d))、及び、厚み方向のレターデーション(Rth)の湿熱変化(δRth(w))、乾熱変化(δRth(d))、のいずれもが0%以上10%以下の範囲内にすることができる。尚、ここで湿熱とは、60°C、90%RHの雰囲気で500時間放置した状態を言い、乾熱とは、80°C、10%RH以下の雰囲気で500時間放置した状態を言う。変化の測定は、フィルムを温度25°C、60%RHの雰囲気に5時間以上調湿した状態を基準として求める。また、レターデーションは、フィルムを温度25°C、60%RHの雰囲気に5時間以上調湿後、同条件の雰囲気下でフィルム表面に対し垂直方向から波長550nmの光に対するレターデーション値であり、例えば、自動複屈折計(KOBRA−21ADH/PR:王子計測器(株)製)により測定することができる。
【0051】
δL(d)は、下記式で示される長手(MD)方向の寸法変化(δMD(d))、幅(TD)方向の寸法変化(δTD(d))のうち大きい方の値を指す。なお、ドライとは相対湿度が10%以下の状態を指す。
【0052】
δTD(d)(%)=100×|TD(F)−TD(T)|/TD(F)
δMD(d)(%)=100×|MD(F)−MD(T)|/MD(F)
(TD(F)、MD(F)は25°C60%rhで5時間以上放置後にその雰囲気で測定したサーモ前の寸法を指し、TD(T)、MD(T)はサーモ(80°Cドライで500時間経時)後に25°C60%rhで5時間以上放置後その雰囲気で測定した寸法を指す)
δTD(w)、δMD(w)は、下記式で示される長手(MD)方向の寸法変化(δMD(w))、幅(TD)方向の寸法変化(δTD(w))のうち大きい方の値を指す。
【0053】
δTD(w)(%)=100×|TD(F)−TD(t)|/TD(F)
δMD(w)(%)=100×|MD(F)−MD(t)|/MD(F)
(TD(F)、MD(F)は25°C60%rhで5時間以上放置後にその雰囲気で測定したサーモ前の寸法を指し、TD(t)、MD(t)はサーモ(60°C90%rhで500時間経時)後に25°C60%rhで5時間以上放置後その雰囲気で測定した寸法を指す)
好ましいδL(w)、δL(d)は0%以上0.3%以下が好ましく、より好ましくは0%以上0.2%以下、さらに好ましくは0%以上0.15%以下である。
【0054】
本発明でいうδRe(d)、δRth(d)とは、80°Cドライで500時間経時前後のRe,Rth変化であり、下記式で示される。なお、ドライとは相対湿度が10%以下の状態を指す。
【0055】
δRe(d)(%)=100×|Re(F)−Re(T)|/Re(F)
δRth(d)(%)=100×|Rth(F)−Rth(T)|/Rth(F)
(Re(F)、Rth(F)は80°Cドライで500時間経時前のRe、Rthを指し、Re(T)、Rth(T)は80°Cドライで500時間経時後のRe、Rthを指す)
本発明でいうδRe(w)、δRth(w)とは、60°C90%rhで500時間経時前後のRe,Rth変化であり、下記式で示される。
【0056】
δRe(w)(%)=100×|Re(F)−Re(t)|/Re(F)
δRth(w)(%)=100×|Rth(F)−Rth(t)|/Rth(F)
(Re(F)、Rth(F)は60°C90%rhで500時間経時前のRe、Rthを指し、Re(t)、Rth(t)は60°C90%rhで500時間経時後のRe、Rthを指す)
さらに、微細レターデーションむらが0%以上10%以下、より好ましくは0%以上8%以下、さらに好ましくは0%以上5%以下であることが好ましく、これにより色むらを低減できる。尚、このような微細レターデーションむらは、液晶表示装置の高解像度化に伴い問題となってきている。
【0057】
ここで云う微細レターデーションむらとは、1mm以内の微小領域で発生するレターデーションの変化を指し、以下の方法で測定される。
【0058】
サンプルフィルムを幅方向(TD)、長手方向(MD)に1mmの間を0.1mmピッチで面内のレターデーション(Re)で測定し、その最大値と最小値の差を求めその平均値で割り百分率で示す。そして、MD,TDで求めた上記百分率のうち大きいものを微細レターデーションむらとする。
【0059】
また、飽和ノルボルネンフィルム中に微粒子を1ppm以上10000ppm以下含有させることが好ましい。
【0060】
易滑剤として微粒子を加えることにより、縦延伸中にニップロールとのステッキング(粘着)を防止でき、これに起因する微細レターデーションむらを防止できる。これは縦延伸ではTgを上回りフィルムが軟化する温度でニップロール上で引っ張られるが、易滑剤無いと局部的に粘着を引き起こしやすく、そこで延伸むらを発生し易いためである。即ち剤によりニップロールとフィルムとを滑らせ局所的に応力が掛かるのを防止している。
【0061】
マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。また架橋高分子からなる微粒子なども用いることができる。
【0062】
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とした。
【0063】
好ましい微粒子の量は飽和ノルボルネン樹脂に対し重量比で1ppm以上10000ppm以下が好ましく、より好ましくは5ppm以上7000ppm以下、さらに好ましくは10ppm以上5000ppm以下である。
【0064】
微粒子はケイ素を含むものが濁度を低くでき好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
【0065】
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
【0066】
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
【0067】
以下に、本発明に適した飽和ノルボルネン樹脂、飽和ノルボルネン樹脂フィルムの加工方法について手順にそって詳細に説明する。
【0068】
《飽和ノルボルネン樹脂》
本発明においては、本発明の目的を損なわない範囲内において、開環重合可能な他のシクロオレフィン類を併用することができる。このようなシクロオレフィンの具体例としては、例えば、シクロペンテン、シクロオクテン、5,6−ジヒドロジシクロペンタジエンなどのごとき反応性の二重結合を1個有する化合物が例示される。
【0069】
このような延伸は下記のような飽和ノルボルネン系フィルムに対して実施するのが好ましい。これらは、延伸により適度なRe、Rth発現性を有している上、高温、高湿経時後でもRe、Rthが変動しにくく、微細Reむらが発現しにくく優れているためである。
【0070】
これらの飽和ノルボルネン樹脂として、下記、飽和ノルボルネン樹脂−A、飽和ノルボルネン樹脂−Bいずれも好ましく用いることができ、両者とも後述の溶液製膜法、溶融製膜法を適用できるが、飽和ノルボルネン樹脂−Aは溶融製膜法に用いるのがより好ましく、飽和ノルボルネン樹脂−Bは溶液製膜法に用いるのがより好ましい。
【0071】
(飽和ノルボルネン樹脂−A)
本発明で使用する飽和ノルボルネン系樹脂としては、例えば、(1)ノルボルネン系モノマーの開環(共)重合体を、必要に応じてマレイン酸付加、シクロペンタジエン付加のごときポリマー変性を行なった後に、水素添加した樹脂、(2)ノルボルネン系モノマーを付加型重合させた樹脂、(3)ノルボルネン系モノマーとエチレンやα−オレフィンなどのオレフィン系モノマーと付加型共重合させた樹脂などが挙げることができる。重合方法および水素添加方法は、常法により行なうことができる。
【0072】
ノルボルネン系モノマーとしては、例えば、ノルボルネン、およびそのアルキルおよび/またはアルキリデン置換体、例えば、5−メチル−2−ノルボルネン、5−ジメチル−2−ノルボルネン、5−エチル−2−ノルボルネン、5−ブチル−2−ノルボルネン、5−エチリデン−2−ノルボルネン等、これらのハロゲン等の極性基置換体;ジシクロペンタジエン、2,3−ジヒドロジシクロペンタジエン等;ジメタノオクタヒドロナフタレン、そのアルキルおよび/またはアルキリデン置換体、およびハロゲン等の極性基置換体、例えば、6−メチル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−エチル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−エチリデン−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−クロロ−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−シアノ−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−ピリジル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−メトキシカルボニル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン等;シクロペンタジエンとテトラヒドロインデン等との付加物;シクロペンタジエンの3〜4量体、例えば、4,9:5,8−ジメタノ−3a,4,4a,5,8,8a,9,9a−オクタヒドロ−1H−ベンゾインデン、4,11:5,10:6,9−トリメタノ−3a,4,4a,5,5a,6,9,9a,10,10a,11,11a−ドデカヒドロ−1H−シクロペンタアントラセン;等が挙げられる。
【0073】
(飽和ノルボルネン樹脂−B)
また、飽和ノルボルネン樹脂として、下記一般式(1)〜(4)で表わされるものを挙げることができ、これらのうち、下記一般式(1)で表されるものが特に好ましい。
【0074】
【化1】

〔一般式(1)〜(4)中、A、B、CおよびDは、水素原子または1価の有機基を示し、これらのうち少なくとも1つは極性基である。〕
これらの飽和ノルボルネン樹脂の重量平均分子量としては、通常5,000〜1,000,000が好ましく、より好ましくは8,000〜200,000である。
【0075】
本発明の飽和ノルボルネン系樹脂としては、例えば、特開昭60−168708号公報、特開昭62−252406号公報、特開昭62−252407号公報、特開平2−133413号公報、特開昭63−145324号公報、特開昭63−264626号公報、特開平1−240517号公報、特公昭57−8815号公報などに記載されている樹脂などを挙げることができる。
【0076】
これらの樹脂の中でも、ノルボルネン系モノマーの開環重合体を水素添加して得られる水添重合体が特に好ましい。
【0077】
これらの飽和ノルボルネン樹脂のガラス転移温度(Tg)は120°C以上であることが好ましく、更に好ましくは140°C以上であり、飽和吸水率は1重量%以下であることが好ましく、更に好ましくは0.8重量%以下とされる。上記一般式(1)〜(4)で表わされる飽和ノルボルネン樹脂のガラス転移温度(Tg)および飽和吸水率は、置換基A、B、C、Dの種類を選択することにより制御することができる。
【0078】
本発明の飽和ノルボルネン樹脂としては、下記一般式(5)で表わされる少なくとも1種のテトラシクロドデセン誘導体を単独で、あるいは、当該テトラシクロドデセン誘導体と、これと共重合体可能な不飽和環状化合物とをメタセシス重合して得られる重合体を水素添加して得られる水添重合体を用いても良い。
【0079】
【化2】

(式中、A、B、CおよびDは、水素原子または1価の有機基を示し、これらのうち少なくとも1つは極性基である。)
上記一般式(5)で表わされるテトラシクロドデセン誘導体において、A、B、CおよびDのうち少なくとも1つが極性基であることにより、他の材料との密着性、耐熱性などに優れた偏光フィルムを得ることができる。さらに、この極性基が−(CH2 n COOR(ここで、Rは炭素数1〜20の炭化水素基、nは0〜10の整数を示す。)で表わされる基であることが、最終的に得られる水添重合体(偏光フィルムの基材)が高いガラス転移温度を有するものとなるので好ましい。特に、この−(CH2 n COORで表わされる極性置換基は、一般式(5)のテトラシクロドデセン誘導体の1分子あたりに1個含有されることが吸水率を低下させる点から好ましい。上記極性置換基において、Rで示される炭化水素基の炭素数が多くなるほど得られる水添重合体の吸湿性が小さくなる点では好ましいが、得られる水添重合体のガラス転移温度とのバランスの点から、当該炭化水素基は、炭素数1〜4の鎖状アルキル基または炭素数5以上の(多)環状アルキル基であることが好ましく、特にメチル基、エチル基、シクロヘキシル基であることが好ましい。
【0080】
さらに、−(CH2 n COORで表わされる基が結合した炭素原子に、炭素数1〜10の炭化水素基が置換基として結合されている一般式(5)のテトラシクロドデセン誘導体は、得られる水添重合体の吸湿性が低いものとなるので好ましい。特に、この置換基がメチル基またはエチル基である一般式(5)のテトラシクロドデセン誘導体は、その合成が容易な点で好ましい。具体的には、8−メチル−8−メトキシカルボニルテトラシクロ〔4,4,0,12.5 ,17.10〕ドデカ−3−エンが好ましい。これらのテトラシクロドデセン誘導体、およびこれと共重合可能な不飽和環状化合物の混合物は、例えば特開平4−77520号公報第4頁右上欄12行〜第6頁右下欄第6行に記載された方法によってメタセシス重合、水素添加することができる。
【0081】
これらのノルボルネン系樹脂は、クロロホルム中、30°Cで測定される固有粘度(ηinh )が、0.1〜1.5dl/gであることが好ましく、更に好ましくは0.4〜1.2dl/gである。また、水添重合体の水素添加率としては、60MHz、1H−NMRで測定した値が50%以上とされ、好ましくは90%以上、さらに好ましくは98%以上である。水素添加率が高いほど、得られる飽和ノルボルネンフィルムは、熱や光に対する安定性が優れたものとなる。該水添重合体中に含まれるゲル含有量が5重量%以下であることが好ましく、さらに好ましくは1重量%以下である。
【0082】
本発明の飽和ノルボルネン系樹脂には、公知の酸化防止剤、例えば2,6−ジ−t−ブチル−4−メチルフェノール、2,2′−ジオキシ−3,3′−ジ−t−ブチル−5,5′−ジメチルフェニルメタン、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2′−ジオキシ−3,3′−ジ−t−ブチル−5,5′−ジエチルフェニルメタン、3,9−ビス[1,1−ジメチル−2−〔β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕エチル]、2,4,8,10−テトラオキスピロ[5,5]ウンデカン、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6−ジ−t−ブチル−4−メチルフェニル)ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト;紫外線吸収剤、例えば2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノンなどを添加することによって安定化することができる。また、加工性を向上させる目的で滑剤などの添加剤を添加することもできる。
【0083】
これらの酸化防止剤の添加量は、飽和ノルボルネン系樹脂100重量部に対して、通常0.1〜3重量部、好ましくは0.2〜2重量部である。
【0084】
さらに飽和ノルボルネン系樹脂には、所望により、フェノール系やリン系などの老化防止剤、耐電防止剤、紫外線吸収剤、上述の易滑剤などの各種添加剤を添加してもよい。特に、液晶は、通常、紫外線により劣化するので、ほかに紫外線防護フィルターを積層するなどの防護手段を取らない場合は、紫外線吸収剤を添加することが好ましい。紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾル系紫外線吸収剤、アクリルニトリル系紫外線吸収剤などを用いることができ、それらの中でもベンゾフェノン系紫外線吸収剤が好ましく、添加量は、通常10〜100,000ppm、好ましくは100〜10,000ppmである。また、溶液流延法によりシートを作製する場合は、表面粗さを小さくするため、レベリング剤の添加が好ましい。レベリング剤としては、例えば、フッ素系ノニオン界面活性剤、特殊アクリル樹脂系レベリング剤、シリコーン系レベリング剤など塗料用レベリング剤を用いることができ、それらの中でも溶媒との相溶性の良いものが好ましく、添加量は、通常5〜50,000ppm、好ましくは10〜20,000ppmである。
【0085】
(溶融製膜)
(i)溶融
溶融製膜の前に飽和ノルボルネン樹脂をペレット状にすることが好ましく、これにより溶融押し出し機のホッパーでのサージングを抑制し、安定供給が可能となる。好ましいペレットの大きさは断面積が1mm2 以上300mm2 以下、長さが1mm以上30mm以下がこのましく、より好ましくは断面積が2mm2 以上100mm2 以下、長さが1.5mm以上10mm以下である。
【0086】
この飽和ノルボルネン樹脂のペレットを溶融押出し機に入れ、100°C以上200°C以下で1分以上10時間以下脱水した後、混練押出しする。混練は1軸あるいは2軸の押出し機を使用できる。
【0087】
この飽和ノルボルネン樹脂は押出機の供給口を介してシリンダー内に供給される。シリンダー内は供給口側から順に、供給口から供給した飽和ノルボルネン樹脂を定量輸送する供給部(領域A)と、溶融混練・圧縮する圧縮部(領域B)と計量する計量部(領域C)とで構成される。残存する酸素による溶融樹脂の酸化を防止するために、押出機内を不活性(窒素等)気流中、あるいはベント付き押出し機を用い真空排気しながら実施するのがより好ましい。押出機のスクリュー圧縮比は2.5〜4.5に設定され、L/Dは20〜70に設定されている。ここでスクリュー圧縮比とは供給部Aと計量部Cとの容積比、即ち供給部Aの単位長さあたりの容積÷計量部Cの単位長さあたりの容積で表され、供給部Aのスクリュー軸の外径d1、計量部Cのスクリュー軸の外径d2、供給部Aの溝部径a1、及び計量部Cの溝部径a2とを使用して算出される。また、L/Dとはシリンダー内径に対するシリンダー長さの比である。また、押出温度は240〜320°C、より好ましくは250〜310°C、さらに好ましくは260°C〜300°C 設定される。
【0088】
押し出し機の種類として、一般的には設備コストの比較的安い単軸押し出し機が用いられることが多く、フルフライト、マドック、ダルメージ等のスクリュータイプがあるが、フルフライトタイプが好ましい。また、設備コストは効果であるが、スクリューセグメントを変更することにより、途中でベント口を設けて不要な揮発成分を脱揮させながら押出が出来る二軸押出機を用いることが可能である、二軸押し出し機には大きく分類して同方向と異方向のタイプがありどちらも用いることが可能であるが、滞留部分が発生し難くセルフクリーニング性能の高い同方向回転のタイプが好ましい。二軸押出機は設備が効果であるが、混練性が高く、樹脂の供給性能が高いため、低温での押出が可能となるため、飽和ノルボルネン樹脂の製膜に適している。ベント口を適正に配置することにより、未乾燥状態での飽和ノルボルネンペレットやパウダーをそのまま使用することも可能である。又、製膜途中で出たフィルムのミミ等も乾燥させることなしにそのまま再利用することも出来る。
【0089】
なお、好ましいスクリューの直径は目標とする単位時間あたりの押出量によってことなるが、10mm以上300mm以下、より好ましくは20mm以上250mm以下、更に好ましくは30mm以上150mm以下である。
【0090】
(ii)濾過
樹脂中の異物濾過のためや異物によるギアポンプ損傷を避けるため押し出し機出口にフィルター濾材を設けるいわゆるブレーカープレート式の濾過を行うことが好ましい。またさらに精度高く異物濾過をするために、ギアポンプ通過後にいわゆるリーフ型ディスクフィルターを組み込んだ濾過装置を設けることが好ましい。濾過は、濾過部を1カ所設けて行うことができ、また複数カ所設けて行う多段濾過でも良い。フィルター濾材の濾過精度は高い方が好ましいが、濾材の耐圧や濾材の目詰まりによる濾圧上昇から、濾過精度は15μmm〜3μmmが好ましく更に好ましくは10μmm〜3μmmである。特に最終的に異物濾過を行うリーフ型ディスクフィルター装置を使用する場合では品質の上で濾過精度の高い濾材を使用することが好ましく、耐圧,フィルターライフの適性を確保するために装填枚数にて調整することが可能である。濾材の種類は、高温高圧下で使用される点から鉄鋼材料を用いることが好ましく、鉄鋼材料の中でも特にステンレス鋼,スチールなどを用いることが好ましく、腐食の点から特にステンレス鋼を用いることが望ましい。濾材の構成としては、線材を編んだものの他に、例えば金属長繊維あるいは金属粉末を焼結し形成する焼結濾材が使用でき、濾過精度,フィルターライフの点から焼結濾材が好ましい。
【0091】
(iii)ギアポンプ
厚み精度を向上させるためには、吐出量の変動を減少させることが重要であり、押出機出機とダイスの間にギアポンプを設けて、ギアポンプから一定量の飽和ノルボルネン樹脂を供給することは効果がある。ギアポンプとは、ドライブギアとドリブンギアとからなる一対のギアが互いに噛み合った状態で収容され、ドライブギアを駆動して両ギアを噛み合い回転させることにより、ハウジングに形成された吸引口から溶融状態の樹脂をキャビティ内に吸引し、同じくハウジングに形成された吐出口からその樹脂を一定量吐出するものである。押出機先端部分の樹脂圧力が若干の変動があっても、ギアポンプを用いることにより変動を吸収し、製膜装置下流の樹脂圧力の変動は非常に小さなものとなり、厚み変動が改善される。ギアポンプを用いることにより、ダイ部分の樹脂圧力の変動巾を±1%以内にすることが可能である。
【0092】
ギアポンプによる定量供給性能を向上させるために、スクリューの回転数を変化させて、ギアポンプ前の圧力を一定に制御する方法も用いることが出来る。又、ギアポンプのギアの変動を解消した3枚以上のギアを用いた高精度ギアポンプも有効である。
【0093】
ギアポンプを用いるその他のメリットとしては、スクリュー先端部の圧力を下げて製膜できることから、エネルギー消費の軽減・樹脂温上昇の防止・輸送効率の向上・押出機内での滞留時間の短縮・押出機のL/Dを短縮が期待できる。又、異物除去のために、フィルターを用いる場合には、ギアポンプが無いと、ろ圧の上昇と共に、スクリューから供給される樹脂量が変動したりすることがあるが、ギアポンプを組み合わせて用いることにより解消が可能である。一方、ギアポンプのデメリットとしては、設備の選定方法によっては、設備の長さが長くなり、樹脂の滞留時間が長くなることと、ギアポンプ部のせん断応力によって分子鎖の切断を引き起こすことがあり、注意が必要である。
【0094】
樹脂が供給口から押出機に入ってからダイスから出るまでの樹脂の好ましい滞留時間は2分以上60分以下であり、より好ましくは3分以上40分以下であり、さらに好ましくは4分以上30分以下である。
【0095】
ギアポンプの軸受循環用ポリマーの流れが悪くなることにより、駆動部と軸受部におけるポリマーによるシールが悪くなり、計量及び送液押し出し圧力の変動が大きくなったりする問題が発生するため、飽和ノルボルネン樹脂の溶融粘度に合わせたギアポンプの設計(特にクリアランス)が必要である。また、ギアポンプの滞留部分が飽和ノルボルネン樹脂の劣化の原因となるため、滞留の出来るだけ少ない構造が好ましい。押出機とギアポンプあるいはギアポンプとダイ等をつなぐポリマー管やアダプタについても、出来るだけ滞留の少ない設計が必要であり、押出圧力安定化のためには温度の変動を出来るだけ小さくすることが好ましい。一般的には、ポリマー管の加熱には設備コストの安価なバンドヒーターが用いられることが多いが、温度変動のより少ないアルミ鋳込みヒーターを用いることがより好ましい。
【0096】
(iv)ダイ
上記の如く構成された押出機によって飽和ノルボルネン樹脂が溶融され、必要に応じ濾過機、ギアポンプを経由して溶融樹脂がダイに連続的に送られる。ダイはダイス内の溶融樹脂の滞留が少ない設計であれば、一般的に用いられるTダイ、フィッシュテールダイ、ハンガーコートダイの何れのタイプでも構わない。又、Tダイの直前に樹脂温度の均一性アップのためのスタティックミキサーを入れることも問題ない。Tダイ出口部分のクリアランスは一般的にフィルム厚みの1.0〜5.0倍が良く、好ましくは1.2〜3倍、更に好ましくは1.3〜2倍である。リップクリアランスがフィルム厚みの1.0倍小さい場合には製膜により面状の良好なシートを得ることが困難である。また、リップクリアランスがフィルム厚みの5.0倍を超えて大きい場合にはシートの厚み精度が低下するため好ましくない。ダイはフィルムの厚み精度を決定する非常に重要な設備であり、厚み調整が厳密にコントロール出来るものが好ましい。通常厚み調整は40〜50mm間隔で調整可能であるが、好ましくは35mm間隔以下、更に好ましくは25mm間隔以下でフィルム厚み調整が可能なタイプが好ましい。また、ダイの温度ムラや巾方向の流速ムラの出来るだけ少ない設計が重要である。また、下流のフィルム厚みを計測して、厚み偏差を計算し、その結果をダイの厚み調整にフィードバックさせる自動厚み調整ダイも長期連続生産の厚み変動の低減に有効である。
【0097】
フィルムの製造は設備コストの安い単層製膜装置が一般的に用いられるが、場合によっては機能層を外層に設けために多層製膜装置を用いて2種以上の構造を有するフィルムの製造も可能である。一般的には機能層を表層に薄く積層することが好ましいが、特に層比を限定するものではない。
【0098】
(v)キャスト
上記方法にて、ダイよりシート上に押し出された溶融樹脂をキャスティングドラム上で冷却固化し、フイルムを得る。この時、静電印加法、エアナイフ法、エアーチャンバー法、バキュームノズル法、タッチロール法等の方法を用い、キャスティングドラムと溶融押出ししたシートの密着を上げることが好ましい。このような密着向上法は、溶融押出しシートの全面に実施してもよく、一部に実施しても良い。特にエッジピニングと呼ばれる、フイルムの両端部にのみを密着させる方法が取られることも多いが、これに限定される物ではない。
【0099】
キャスティングドラムは複数本用い、徐冷する法がより好ましい、特に一般的には3本の冷却ロールを用いることが比較的よく行われているが、この限りではない。ロールの直径は50mm以上5000mm以下が好ましくより好ましくは、100mm以上2000mm以下、さらに好ましくは150mm以上1000mm以下である。複数本あるロールの間隔は、面間で0.3mm以上300mm以下が好ましく、より好ましくは、1mm以上100mm以下、さらに好ましくは3mm以上30mm以下である。
【0100】
キャスティングドラムは60°C以上160°C以下が好ましく、より好ましくは70°C以上150°C以下、さらに好ましくは80°C以上140°C以下である。この後、キャスティングドラムから剥ぎ取り、ニップロールを経た後巻き取る。巻き取り速度は10m/分以上100m/分以下が好ましく、より好ましくは15m/分以上80m/分以下、さらに好ましくは20m/分以上70m/分以下である。
【0101】
製膜幅は0.7m以上5m以下、さらに好ましくは1m以上4m以下、さらに好ましくは1.3m以上3m以下が好ましい。このようにして得られた未延伸フィルムの厚みは30μm以上400μm以下が好ましく、より好ましくは40μm以上300μm以下、さらに好ましくは50μm以上200μm以下である。
【0102】
製膜した飽和ノルボルネンフィルムの厚みむらは長手方向、幅方向いずれも0%以上2%以下が好ましく、より好ましくは0%以上1.5%以下、さらに好ましくは0%以上1%以下であり、これらを上記方法で延伸し、本発明の飽和ノルボルネンフィルムを得る。
また、いわゆるタッチロール法を用いる場合、タッチロール表面は、ゴム、テフロン等の樹脂でもよく、金属ロールでも良い。さらに、金属ロールの厚みを薄くすることでタッチしたときの圧力によりロール表面が若干くぼみ、圧着面積が広くなりフレキシブルロールと呼ばれる様なロールを用いることも可能である。
【0103】
タッチロール温度は60°C以上160°C以下が好ましく、より好ましくは70°C以上150°C以下、さらに好ましくは80°C以上140°C以下である。
【0104】
(vi)巻き取り
このようにして得たシートは両端をトリミングし、巻き取ることが好ましい。トリミングされた部分は、粉砕処理された後、或いは必要に応じて造粒処理や解重合・再重合等の処理を行った後、同じ品種のフィルム用原料として又は異なる品種のフィルム用原料として再利用してもよい。トリミングカッターはロータリーカッター、シャー刃、ナイフ等の何れのタイプの物を用いても構わない。材質についても、炭素鋼、ステンレス鋼何れを用いても構わない。一般的には、超硬刃、セラミック刃を用いると刃物の寿命が長く、また切り粉の発生が抑えられて好ましい。
【0105】
また、巻き取り前に、少なくとも片面にラミフィルムを付けることも、傷防止の観点から好ましい。好ましい巻き取り張力は1kg/m幅以上50kg/幅以下、より好ましくは2kg/m幅以上40kg/幅以下、更に好ましくは3kg/m幅以上20kg/幅以下である。巻き取り張力が1kg/m幅より小さい場合には、フィルムを均一に巻き取ることが困難である。逆に、巻き取り張力が50kg/幅を超える場合には、フィルムが堅巻きになってしまい、巻き外観が悪化するのみでなく、フィルムのコブの部分がクリープ現象により延びてフィルムの波うちの原因になったり、あるいはフィルムの伸びによる残留複屈折が生じるため好ましくない。巻き取り張力は、ラインの途中のテンションコントロールにより検知し、一定の巻き取り張力になるようにコントロールされながら巻き取ることが好ましい。製膜ラインの場所により、フィルム温度に差がある場合には熱膨張により、フィルムの長さが僅かに異なる場合があるため、ニップロール間のドロー比率を調整し、ライン途中でフィルムに規定以上の張力がかからない様にすることが必要である。
【0106】
巻き取り張力はテンションコントロールの制御により、一定張力で巻き取ることもできるが、巻き取った直径に応じてテーパーをつけ、適正な巻取り張力にすることがより好ましい。一般的には巻き径が大きくなるにつれて張力を少しずつ小さくするが、場合によっては、巻き径が大きくなるにしたがって張力を大きくする方が好ましい場合もある。
【0107】
尚、上記巻き取り方法については一般的なものであり、本発明の熱処理をオフラインで行う場合である。オンラインで本発明の熱処理を行なう場合には、前述の通り制御しなければならない。
【0108】
このような巻き取り方法は、下述の溶液製膜方にも同様に適用できる。
【0109】
(溶液製膜)
本発明の飽和ノルボルネン樹脂を溶媒に溶解させる際の樹脂の濃度は3〜50重量%が好ましく、より好ましくは5〜40重量%、さらに好ましくは10〜35重量%である。このような室温での上記溶液の粘度は、通常は1〜1,000,000(mPa・s)、好ましくは10〜100,000(mPa・s)、さらに好ましくは100〜50,000(mPa・s)、特に好ましくは1,000〜40,000(mPa・s)である。
【0110】
使用する溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、メチルセロソルブ、エチルセロソルブ、1−メトキシ−2−プロパノール等のセロソルブ系溶媒、ジアセトンアルコール、アセトン、シクロヘキサノン、メチルエチルケトン、4−メチル−2−ペンタノン、シクロヘキサノン、エチルシクロヘキサノン、1,2−ジメチルシクロヘキサン等のケトン系溶媒、乳酸メチル、乳酸エチル等のエステル系溶媒、2,2,3,3−テトラフルオロ−1−プロパノール、塩化メチレン、クロロホルム等のハロゲン含有溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、1−ペンタノール、1−ブタノール等のアルコール系溶媒を挙げることができる。
【0111】
また、上記以外でも、SP値(溶解度パラメーター)が通常10〜30(MPa1/2)、好ましくは10〜25(MPa1/2)、さらに好ましくは15〜25(MPa1/2)、特に好ましくは15〜20(MPa1/2)の範囲の溶媒を使用するのが好ましい。上記溶媒は単独であるいは2種以上併用して使用することができる。溶媒を2種以上併用する場合には、混合物としてのSP値の範囲を上記範囲内とすることが好ましい。このとき、混合物としてのSP値の値は、その重量比から求めることができ、例えば二種の混合物の場合は、各溶媒の重量分率をW1,W2、また、SP値をSP1,SP2とすると混合溶媒のSP値は下記式:SP値=W1・SP1+W2・SP2により計算した値として求めることができる。
【0112】
さらに飽和ノルボルネンフィルムの表面平滑性を向上させるためにレベリング剤を添加してもよい。一般的なレベリング剤であれば何れも使用できるが、例えば、フッ素系ノニオン界面活性剤、特殊アクリル樹脂系レベリング剤、シリコーン系レベリング剤などが使用できる。
【0113】
本発明の飽和ノルボルネンフィルムを溶剤キャスト法により製造する方法としては、上記溶液をダイスやコーターを使用して金属ドラム、スチールベルト、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリテトラフルオロエチレン製ベルトなどの基材の上に塗布し、その後溶剤を乾燥・除去して基材よりフィルムを剥離する方法が一般に挙げられる。
【0114】
また、スプレー、ハケ、ロールスピンコート、ディッピングなどの手段を用いて,樹脂溶液を基材に塗布し、その後溶剤を乾燥・除去して基材よりフィルムを剥離することにより製造することもできる。なお、塗布の繰り返しにより厚みや表面平滑性等を制御してもよい。
【0115】
また、基材としてポリエステルフィルムを使用する場合には、表面処理されたフィルムを使用してもよい。表面処理の方法としては、一般的に行われている親水化処理方法、例えばアクリル系樹脂やスルホン酸塩基含有樹脂をコーテイングやラミネートにより積層する方法、あるいは、コロナ放電処理等によりフィルム表面の親水性を向上させる方法等が挙げられる。
【0116】
上記溶剤キャスト法の乾燥(溶剤除去)工程については、特に制限はなく一般的に用いられる方法、例えば多数のローラーを介して乾燥炉中を通過させる方法等で実施できるが、乾燥工程において溶媒の蒸発に伴い気泡が発生すると、フィルムの特性を著しく低下させるので、これを避けるために、乾燥工程を2段以上の複数工程とし、各工程での温度あるいは風量を制御することが好ましい。
【0117】
また、光学用フィルム中の残留溶媒量は、通常は10重量%以下、好ましくは5重量%以下、さらに好ましくは1重量%以下、特に好ましくは0.5重量%以下である。このように残留溶剤を少なくすることで、より一層粘着跡故障を軽減でき好ましい。
【0118】
本発明の飽和ノルボルネンフィルムの厚さは、10〜300μmが好ましく、より好ましくは20〜250μm 、さらに好ましくは30〜200μmであり、厚み分布は、平均値に対して±8%以内が好ましく、より好ましくは±5%以内、さらに好ましくは±3%以内である。また、1cmあたりの厚みの変動は、通常は5%以下、好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下である。
(飽和ノルボルネンフィルムの加工)
上述の方法で1軸または2軸に延伸した飽和ノルボルネンフィルムは単独で使用してもよく、これらと偏光板組み合わせて使用してもよく、これらの上に液晶層や屈折率を制御した層(低反射層)やハードコート層を設けて使用しても良い。これらは以下の工程により達成できる。
(i)表面処理
飽和ノルボルネンフィルムは表面処理を行うことによって、各機能層(例えば、下塗層およびバック層)との接着の向上させることができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3 〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば10〜1000Kev下で20〜500Kgyの照射エネルギーが用いられ、より好ましくは30〜500Kev下で20〜300Kgyの照射エネルギーが用いられる。
【0119】
これらの中でも特に好ましくは、グロー放電処理、コロナ処理、火炎処理である。
【0120】
機能層との接着のため下塗り層を設けることも好ましい。この層は上記表面処理をした後、塗設しても良く、表面処理なしで塗設しても良い。下塗層についての詳細は、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて32頁に記載されている。
【0121】
これらの表面処理、下塗り工程は、製膜工程の最後に組み込むこともでき、単独で実施することもでき、後述の機能層付与工程の中で実施することもできる。
(ii)機能層の付与
本発明の飽和ノルボルネンフィルムに、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて32頁〜45頁に詳細に記載されている機能性層を組み合わせることが好ましい。中でも好ましいのが、偏光層の付与(偏光板)、光学補償層の付与(光学補償シート)、反射防止層の付与(反射防止フィルム)である。
(イ)偏光層の付与(偏光板の作成)
(イー1)使用素材
現在、市販の偏光層は、延伸したポリマーを、浴槽中のヨウ素もしくは二色性色素の溶液に浸漬し、バインダー中にヨウ素、もしくは二色性色素を浸透させることで作製されるのが一般的である。偏光膜は、Optiva Inc.に代表される塗布型偏光膜も利用できる。偏光膜におけるヨウ素および二色性色素は、バインダー中で配向することで偏向性能を発現する。二色性色素としては、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素あるいはアントラキノン系色素が用いられる。二色性色素は、水溶性であることが好ましい。二色性色素は、親水性置換基(例、スルホ、アミノ、ヒドロキシル)を有することが好ましい。例えば、発明協会公開技法、公技番号2001−1745号、58頁(発行日2001年3月15日)に記載の化合物が挙げられる。
【0122】
偏光膜のバインダーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。バインダーには、例えば特開平8−338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。重合度が異なるポリビニルアルコールまたは変性ポリビニルアルコールを2種類併用することが特に好ましい。ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。変性ポリビニルアルコールについては、特開平8−338913号、同9−152509号および同9−316127号の各公報に記載がある。ポリビニルアルコールおよび変性ポリビニルアルコールは、二種以上を併用してもよい。
【0123】
バインダー厚みの下限は、10μmであることが好ましい。厚みの上限は、液晶表示装置の光漏れの観点からは、薄ければ薄い程よい。現在市販の偏光板(約30μm)以下であることが好ましく、25μm以下が好ましく、20μm以下がさらに好ましい。
【0124】
偏光膜のバインダーは架橋していてもよい。架橋性の官能基を有するポリマー、モノマーをバインダー中に混合しても良く、バインダーポリマー自身に架橋性官能基を付与しても良い。架橋は、光、熱あるいはpH変化により行うことができ、架橋構造をもったバインダーを形成することができる。架橋剤については、米国再発行特許23297号明細書に記載がある。また、ホウ素化合物(例、ホウ酸、硼砂)も、架橋剤として用いることができる。バインダーの架橋剤の添加量は、バインダーに対して、0.1乃至20質量%が好ましい。偏光素子の配向性、偏光膜の耐湿熱性が良好となる。
【0125】
架橋反応が終了後でも、未反応の架橋剤は1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このようにすることで、耐候性が向上する。
【0126】
(イー2)偏光層の延伸
偏光膜は、偏光膜を延伸するか(延伸法)、もしくはラビングした(ラビング法)後に、ヨウ素、二色性染料で染色することが好ましい。
【0127】
延伸法の場合、延伸倍率は2.5乃至30.0倍が好ましく、3.0乃至10.0倍がさらに好ましい。延伸は、空気中でのドライ延伸で実施できる。また、水に浸漬した状態でのウェット延伸を実施してもよい。ドライ延伸の延伸倍率は、2.5乃至5.0倍が好ましく、ウェット延伸の延伸倍率は、3.0乃至10.0倍が好ましい。延伸はMD方向に平行に行っても良く(平行延伸)、斜め方向におこなっても良い(斜め延伸)。これらの延伸は、1回で行っても、数回に分けて行ってもよい。数回に分けることによって、高倍率延伸でもより均一に延伸することができる。
a)平行延伸法
延伸に先立ち、PVAフィルムを膨潤させる。膨潤度は1.2〜2.0倍(膨潤前と膨潤後の重量比)である。この後、ガイドロール等を介して連続搬送しつつ、水系媒体浴内や二色性物質溶解の染色浴内で、15〜50°C、好ましくは17〜40°Cの浴温で延伸する。延伸は2対のニップロールで把持し、後段のニップロールの搬送速度を前段のそれより大きくすることで達成できる。延伸倍率は、延伸後/初期状態の長さ比(以下同じ)に基づくが前記作用効果の点より好ましい延伸倍率は1.2〜3.5倍、好ましくは1.5〜3.0倍である。この後、50°Cから90°Cにおいて乾燥させて偏光膜を得る。
b)斜め延伸法
これには特開2002−86554に記載の斜め方向に傾斜め方向に張り出したテンターを用い延伸する方法を用いることができる。この延伸は空気中で延伸するため、事前に含水させて延伸しやすくすることが必用である。好ましい含水率は5%以上100%以下、より好ましくは10%以上100%以下である。
【0128】
延伸時の温度は40°C以上90°C以下が好ましく、より好ましくは50°C以上80°C以下である。湿度は50%rh以上100%rh以下が好ましく、より好ましくは70%rh以上100%rh以下、さらに好ましくは80%rh以上100%rh以下である。長手方向の進行速度は、1m/分以上が好ましく、より好ましくは3m/分以上である。
延伸の終了後、50°C以上100°C以下より好ましくは60°C以上90°C以下で、0.5分以上10分以下乾燥する。より好ましくは1分以上5分以下である。
【0129】
このようにして得られた偏光膜の吸収軸は10度から80度が好ましく、より好ましくは30度から60度であり、さらに好ましくは実質的に45度(40度から50度)である。
【0130】
(イー3)貼り合せ
上記表面処理後の飽和ノルボルネンフィルムと、延伸して調製した偏光層を貼り合わせ偏光板を調製する。張り合わせる方向は、飽和ノルボルネンフィルムの流延軸方向と偏光板の延伸軸方向が45度になるように行うのが好ましい。
【0131】
貼り合わせの接着剤は特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液、エポキシ系接着剤等が挙げられ、中でもPVA系樹脂、エポキシ系接着剤が好ましい。接着剤層厚みは乾燥後に0.01乃至10μmが好ましく、0.05乃至5μmが特に好ましい。
【0132】
このようにして得た偏光板の光線透過率は高い方が好ましく、偏光度も高い方が好ましい。偏光板の透過率は、波長550nmの光において、30乃至50%の範囲にあることが好ましく、35乃至50%の範囲にあることがさらに好ましく、40乃至50%の範囲にあることが最も好ましい。偏光度は、波長550nmの光において、90乃至100%の範囲にあることが好ましく、95乃至100%の範囲にあることがさらに好ましく、99乃至100%の範囲にあることが最も好ましい。
【0133】
さらに、このようにして得た偏光板はλ/4板と積層し、円偏光を作成することができる。この場合λ/4の遅相軸と偏光板の吸収軸を45度になるように積層する。この時、λ/4は特に限定されないが、より好ましくは低波長ほどレターデーションが小さくなるような波長依存性を有するものがより好ましい。さらには長手方向に対し20度〜70度傾いた吸収軸を有する偏光膜、および液晶性化合物からなる光学異方性層から成るλ/4板を用いることが好ましい。
【0134】
(ロ)光学補償層の付与(光学補償シートの作成)
光学異方性層は、液晶表示装置の黒表示における液晶セル中の液晶化合物を補償するためのものであり、飽和ノルボルネンフィルムの上に配向膜を形成し、さらに光学異方性層を付与することで形成される。
【0135】
(ロー1)配向膜
上記表面処理した飽和ノルボルネンフィルム上に配向膜を設ける。この膜は、液晶性分子の配向方向を規定する機能を有する。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを偏光子上に転写して本発明の偏光板を作製することも可能である。
【0136】
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
【0137】
配向膜は、ポリマーのラビング処理により形成することが好ましい。配向膜に使用するポリマーは、原則として、液晶性分子を配向させる機能のある分子構造を有する。
【0138】
本発明では、液晶性分子を配向させる機能に加えて、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。
【0139】
配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができし、これらの組み合わせを複数使用することができる。ポリマーの例には、例えば特開平8−338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。重合度が異なるポリビニルアルコールまたは変性ポリビニルアルコールを2種類併用することが特に好ましい。ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。
【0140】
液晶性分子を配向させる機能を有する側鎖は、一般に疎水性基を官能基として有する。具体的な官能基の種類は、液晶性分子の種類および必要とする配向状態に応じて決定する。
【0141】
例えば、変性ポリビニルアルコールの変性基としては、共重合変性、連鎖移動変性またはブロック重合変性により導入できる。変性基の例には、親水性基(カルボン酸基、スルホン酸基、ホスホン酸基、アミノ基、アンモニウム基、アミド基、チオール基等)、炭素数10〜100個の炭化水素基、フッ素原子置換の炭化水素基、チオエーテル基、重合性基(不飽和重合性基、エポキシ基、アジリニジル基等)、アルコキシシリル基(トリアルコキシ、ジアルコキシ、モノアルコキシ)等が挙げられる。これらの変性ポリビニルアルコール化合物の具体例として、例えば特開2000−155216号公報明細書中の段落番号[0022]〜[0145]、同2002−62426号公報明細書中の段落番号[0018]〜[0022]に記載のもの等が挙げられる。
【0142】
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償シートの強度を著しく改善することができる。
【0143】
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報明細書中段落番号[0080]〜[0100]記載のもの等が挙げられる。配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。
【0144】
架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾールおよびジアルデヒド澱粉が含まれる。二種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報明細書中の段落番号[0023]〜[024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。
【0145】
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。が発生することがある。
【0146】
配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤を含む透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行って良い。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。
【0147】
配向膜の塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法またはロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1乃至10μmが好ましい。加熱乾燥は、20°C〜110°Cで行なうことができる。充分な架橋を形成するためには60°C〜100°Cが好ましく、特に80°C〜100°Cが好ましい。乾燥時間は1分〜36時間で行なうことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5で、特に5が好ましい。
【0148】
配向膜は、透明支持体上又は上記下塗層上に設けられる。配向膜は、上記のようにポリマー層を架橋したのち、表面をラビング処理することにより得ることができる。
【0149】
前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さおよび太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
【0150】
工業的に実施する場合、搬送している偏光層のついたフィルムに対し、回転するラビングロールを接触させることで達成するが、ラビングロールの真円度、円筒度、振れ(偏芯)はいずれも30μm以下であることが好ましい。ラビングロールへのフィルムのラップ角度は、0.1乃至90゜が好ましい。ただし、特開平8−160430号公報に記載されているように、360゜以上巻き付けることで、安定なラビング処理を得ることもできる。フィルムの搬送速度は1〜100m/minが好ましい。ラビング角は0〜60゜の範囲で適切なラビング角度を選択することが好ましい。液晶表示装置に使用する場合は、40乃至50゜が好ましい。45゜が特に好ましい。
このようにして得た配向膜の膜厚は、0.1乃至10μmの範囲にあることが好ましい。
【0151】
次に、配向膜の上に光学異方性層の液晶性分子を配向させる。その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させる。
【0152】
光学異方性層に用いる液晶性分子には、棒状液晶性分子および円盤状液晶性分子が含まれる。棒状液晶性分子および円盤状液晶性分子は、高分子液晶でも低分子液晶でもよく、さらに、低分子液晶が架橋され液晶性を示さなくなったものも含まれる。
(ロー2)棒状液晶性分子
棒状液晶性分子としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
【0153】
なお、棒状液晶性分子には、金属錯体も含まれる。また、棒状液晶性分子を繰り返し単位中に含む液晶ポリマーも、棒状液晶性分子として用いることができる。言い換えると、棒状液晶性分子は、(液晶)ポリマーと結合していてもよい。
【0154】
棒状液晶性分子については、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載がある。
【0155】
棒状液晶性分子の複屈折率は、0.001乃至0.7の範囲にあることが好ましい。
【0156】
棒状液晶性分子は、その配向状態を固定するために、重合性基を有することが好ましい。重合性基は、ラジカル重合性不飽基或はカチオン重合性基が好ましく、具体的には、例えば特開2002−62427号公報明細書中の段落番号[0064]〜[0086]記載の重合性基、重合性液晶化合物が挙げられる。
(ロー3)円盤状液晶性分子
円盤状(ディスコティック)液晶性分子には、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physics lett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルが含まれる。
【0157】
円盤状液晶性分子としては、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造である液晶性を示す化合物も含まれる。分子または分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。円盤状液晶性分子から形成する光学異方性層は、最終的に光学異方性層に含まれる化合物が円盤状液晶性分子である必要はなく、例えば、低分子の円盤状液晶性分子が熱や光で反応する基を有しており、結果的に熱、光で反応により重合または架橋し、高分子量化し液晶性を失った化合物も含まれる。円盤状液晶性分子の好ましい例は、特開平8−50206号公報に記載されている。また、円盤状液晶性分子の重合については、特開平8−27284公報に記載がある。
【0158】
円盤状液晶性分子を重合により固定するためには、円盤状液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。円盤状コアと重合性基は、連結基を介して結合する化合物が好ましく、これにより重合反応においても配向状態を保つことが出来る。例えば、特開2000−155216号公報明細書中の段落番号[0151]〜「0168」記載の化合物等が挙げられる。
【0159】
ハイブリッド配向では、円盤状液晶性分子の長軸(円盤面)と偏光膜の面との角度が、光学異方性層の深さ方向でかつ偏光膜の面からの距離の増加と共に増加または減少している。角度は、距離の増加と共に減少することが好ましい。さらに、角度の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、あるいは、増加及び減少を含む間欠的変化が可能である。間欠的変化は、厚さ方向の途中で傾斜角が変化しない領域を含んでいる。角度は、角度が変化しない領域を含んでいても、全体として増加または減少していればよい。さらに、角度は連続的に変化することが好ましい。
【0160】
偏光膜側の円盤状液晶性分子の長軸の平均方向は、一般に円盤状液晶性分子あるいは配向膜の材料を選択することにより、またはラビング処理方法の選択することにより、調整することができる。また、表面側(空気側)の円盤状液晶性分子の長軸(円盤面)方向は、一般に円盤状液晶性分子あるいは円盤状液晶性分子と共に使用する添加剤の種類を選択することにより調整することができる。円盤状液晶性分子と共に使用する添加剤の例としては、可塑剤、界面活性剤、重合性モノマー及びポリマーなどを挙げることができる。長軸の配向方向の変化の程度も、上記と同様に、液晶性分子と添加剤との選択により調整できる。
【0161】
(ロー4)光学異方性層の他の組成物
上記の液晶性分子と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶分子の配向性等を向上することが出来る。液晶性分子と相溶性を有し、液晶性分子の傾斜角の変化を与えられるか、あるいは配向を阻害しないことが好ましい。
【0162】
重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、円盤状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
【0163】
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報明細書中の段落番号[0028]〜[0056]記載の化合物が挙げられる。
【0164】
円盤状液晶性分子とともに使用するポリマーは、円盤状液晶性分子に傾斜角の変化を与えられることが好ましい。
【0165】
ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性分子の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
【0166】
円盤状液晶性分子のディスコティックネマティック液晶相−固相転移温度は、70〜300°Cが好ましく、70〜170°Cがさらに好ましい。
【0167】
(ロー5)光学異方性層の形成
光学異方性層は、液晶性分子および必要に応じて後述の重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。
【0168】
塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
【0169】
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
【0170】
光学異方性層の厚さは、0.1乃至20μmであることが好ましく、0.5乃至15μmであることがさらに好ましく、1乃至10μmであることが最も好ましい。
【0171】
(ロー6)液晶性分子の配向状態の固定
配向させた液晶性分子を、配向状態を維持して固定することができる。固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
【0172】
光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
【0173】
光重合開始剤の使用量は、塗布液の固形分の0.01乃至20質量%の範囲にあることが好ましく、0.5乃至5質量%の範囲にあることがさらに好ましい。
【0174】
液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。
【0175】
照射エネルギーは、20mJ/cm2 乃至50J/cm2 の範囲にあることが好ましく、20乃至5000mJ/cm2 の範囲にあることがより好ましく、100乃至800mJ/cm2 の範囲にあることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。保護層を、光学異方性層の上に設けてもよい。
【0176】
この光学補償フィルムと偏光層を組み合わせることも好ましい。具体的には、上記のような光学異方性層用塗布液を偏光膜の表面に塗布することにより光学異方性層を形成する。その結果、偏光膜と光学異方性層との間にポリマーフイルムを使用することなく、偏光膜の寸度変化にともなう応力(歪み×断面積×弾性率)が小さい薄い偏光板が作成される。本発明に従う偏光板を大型の液晶表示装置に取り付けると、光漏れなどの問題を生じることなく、表示品位の高い画像を表示することができる。
【0177】
偏光層と光学補償層の傾斜角度は、LCDを構成する液晶セルの両側に貼り合わされる2枚の偏光板の透過軸と液晶セルの縦または横方向のなす角度にあわせるように延伸することが好ましい。通常の傾斜角度は45゜である。しかし、最近は、透過型、反射型および半透過型LCDにおいて必ずしも45゜でない装置が開発されており、延伸方向はLCDの設計にあわせて任意に調整できることが好ましい。
【0178】
(ロー7)液晶表示装置
このような光学補償フィルムが用いられる各液晶モードについて説明する。
【0179】
(TNモード液晶表示装置)
カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。TNモードの黒表示における液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
【0180】
(OCBモード液晶表示装置)
棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液晶セルを用いた液晶表示装置は、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend) 液晶モードとも呼ばれる。
【0181】
OCBモードの液晶セルもTNモード同様、黒表示においては、液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
【0182】
(VAモード液晶表示装置)
電圧無印加時に棒状液晶性分子が実質的に垂直に配向しているのが特徴であり、VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
【0183】
(IPSモード液晶表示装置)
電圧無印加時に棒状液晶性分子が実質的に面内に水平に配向しているのが特徴であり、これが電圧印加の有無で液晶の配向方向を変えることでスイッチングするのが特徴である。具体的には特開2004−365941、特開2004−12731、特開2004−215620、特開2002−221726、特開2002−55341、特開2003−195333に記載のものなどを使用できる。
【0184】
(その他液晶表示装置)
ECBモードおよびSTNモードの液晶表示装置に対しては、上記と同様の考え方で光学的に補償することができる。
【0185】
(ハ)反射防止層の付与(反射防止フィルム)
反射防止膜は、一般に、防汚性層でもある低屈折率層、及び低屈折率層より高い屈折率を有する少なくとも一層の層(即ち、高屈折率層、中屈折率層)とを透明基体上に設けて成る。
【0186】
屈折率の異なる無機化合物(金属酸化物等)の透明薄膜を積層させた多層膜として、化学蒸着(CVD)法や物理蒸着(PVD)法、金属アルコキシド等の金属化合物のゾルゲル方法でコロイド状金属酸化物粒子皮膜を形成後に後処理(紫外線照射:特開平9−157855号公報、プラズマ処理:特開2002−327310号公報)して薄膜を形成する方法が挙げられる。
【0187】
一方、生産性が高い反射防止膜として、無機粒子をマトリックスに分散されてなる薄膜を積層塗布してなる反射防止膜が各種提案されている。
【0188】
上述したような塗布による反射防止フィルムに最上層表面が微細な凹凸の形状を有する防眩性を付与した反射防止層から成る反射防止フィルムも挙げられる。
【0189】
本発明の飽和ノルボルネンフィルムは上記いずれの方式にも適用できるが、特に好ましいのが塗布による方式(塗布型)である。
【0190】
(ハー1)塗布型反射防止フィルムの層構成
基体上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成から成る反射防止膜は、以下の関係を満足する屈折率を有する様に設計される。
【0191】
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
又、透明支持体と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよい。
【0192】
例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等が挙げられる。 又、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例、特開平10−206603号公報、特開2002−243906号公報等)等が挙げられる。
【0193】
反射防止膜のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。又膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
【0194】
(ハー2)高屈折率層および中屈折率層
反射防止膜の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物超微粒子及びマトリックスバインダーを少なくとも含有する硬化性膜から成る。
【0195】
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
【0196】
このような超微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造とすること(:特開2001−166104等)、特定の分散剤併用(例、特開平11−153703号公報、特許番号US6210858B1、特開2002−2776069号公報等)等挙げられる。
【0197】
マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。
【0198】
更に、ラジカル重合性及び/又はカチオン重合性の重合性基を少なくとも2個以上含有の多官能性化合物含有組成物、加水分解性基を含有の有機金属化合物及びその部分縮合体組成物から選ばれる少なくとも1種の組成物が好ましい。例えば、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の化合物が挙げられる。
【0199】
又、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開2001−293818号公報等に記載されている。
【0200】
高屈折率層の屈折率は、−般に1.70〜2.20である。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
【0201】
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。
【0202】
(ハー3)低屈折率層
低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は1.20〜1.55である。好ましくは1.30〜1.50である。
【0203】
耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等から成る薄膜層の手段を適用できる。
【0204】
含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47である。また、含フッ素化合物はフッ素原子を35〜80質量%の範囲で含む架橋性若しくは重合性の官能基を含む化合物が好ましい。
【0205】
例えば、特開平9−222503号公報明細書段落番号[0018]〜[0026]、同11−38202号公報明細書段落番号[0019]〜[0030]、特開2001-40284号公報明細書段落番号[0027]〜[0028]、特開2000−284102号公報等に記載の化合物が挙げられる。
【0206】
シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン(例、サイラプレーン(チッソ(株)製等)、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)等が挙げられる。
【0207】
架橋又は重合性基を有する含フッ素及び/又はシロキサンのポリマーの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時または塗布後に光照射や加熱することにより実施することが好ましい。
【0208】
又、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。
【0209】
例えば、ポリフルオロアルキル基含有シラン化合物またはその部分加水分解縮合物(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ「パーフルオロアルキルエーテル」基を含有するシリル化合物(特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)等が挙げられる。
【0210】
低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820公報の段落番号[0020]〜[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。
【0211】
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良い。安価に製造できる点で、塗布法が好ましい。
【0212】
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
【0213】
(ハー4)ハードコート層
ハードコート層は、反射防止フィルムに物理強度を付与するために、透明支持体の表面に設ける。特に、透明支持体と前記高屈折率層の間に設けることが好ましい。
【0214】
ハードコート層は、光及び/又は熱の硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。 硬化性官能基としては、光重合性官能基が好ましく、又加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。
【0215】
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。
【0216】
ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、WO0/46617号公報等記載のものが挙げられる。
【0217】
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。
【0218】
ハードコート層は、平均粒径0.2〜10μmの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層(後述)を兼ねることもできる。
【0219】
ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μmである。
【0220】
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。又、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
【0221】
(ハー5)前方散乱層
前方散乱層は、液晶表示装置に適用した場合の、上下左右方向に視角を傾斜させたときの視野角改良効果を付与するために設ける。上記ハードコート層中に屈折率の異なる微粒子を分散することで、ハードコート機能と兼ねることもできる。
【0222】
例えば、前方散乱係数を特定化した特開11−38208号公報、透明樹脂と微粒子の相対屈折率を特定範囲とした特開2000−199809号公報、ヘイズ値を40%以上と規定した特開2002−107512号公報等が挙げられる。
【0223】
(ハー6)その他の層
上記の層以外に、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
【0224】
(ハー7)塗布方法
反射防止フィルムの各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート、マイクログラビア法やエクストルージョンコート法(米国特許2681294号明細書)により、塗布により形成することができる。
【0225】
(ハー8)アンチグレア機能
反射防止膜は、外光を散乱させるアンチグレア機能を有していてもよい。アンチグレア機能は、反射防止膜の表面に凹凸を形成することにより得られる。反射防止膜がアンチグレア機能を有する場合、反射防止膜のヘイズは、3〜30%であることが好ましく、5〜20%であることがさらに好ましく、7〜20%であることが最も好ましい。
【0226】
反射防止膜表面に凹凸を形成する方法は、これらの表面形状を充分に保持できる方法であればいずれの方法でも適用できる。例えば、低屈折率層中に微粒子を使用して膜表面に凹凸を形成する方法(例えば、特開2000−271878号公報等)、低屈折率層の下層(高屈折率層、中屈折率層又はハードコート層)に比較的大きな粒子(粒径0.05〜2μm)を少量(0.1〜50質量%)添加して表面凹凸膜を形成し、その上にこれらの形状を維持して低屈折率層を設ける方法(例えば、特開2000−281410号公報、同2000−95893号公報、同2001−100004号公報、同2001−281407号公報等)、最上層(防汚性層)を塗設後の表面に物理的に凹凸形状を転写する方法(例えば、エンボス加工方法として、特開昭63−278839号公報、特開平11−183710号公報、特開2000−275401号公報等記載)等が挙げられる。
【0227】
以下に本発明で使用した測定法について記載する。
【0228】
(1)湿熱寸法変化(δL(w))
(i)サンプルフィルムをMD,TD方向に切り出し、25°C60%rhで5時間以上調湿後、20cm基長のピンゲージを用い測長する(それぞれMD(F)、TD(F)とする)。
【0229】
(ii)これを60°C90%rhの恒温恒湿槽に無張力で500時間放置(サーモ処理)する。
【0230】
(iii)恒温恒湿槽から取り出した後、25°C60%rhで5時間以上調湿後、20cm基長のピンゲージを用い測長する(それぞれMD(t)、TD(t)とする)。
【0231】
(iv)下記式でMD、TD方向の湿熱寸法変化(δMD(w)、δTD(w))を求め、このうち大きい方の値を湿熱寸法変化(δL(w))とする。
【0232】
δTD(w)(%)=100×|TD(F)−TD(t)|/TD(F)
δMD(w)(%)=100×|MD(F)−MD(t)|/MD(F)
(2)乾熱寸法変化(δL(d))
上記湿熱寸法変化のサーモ処理を、80°Cドライで500時間に変えた以外は全て同様にして求める。
【0233】
(3)Re、Rth
サンプルフィルムを25°C60%rhに5時間以上調湿後、自動複屈折計(KOBRA-21ADH:王子計測器(株)製)を用いて、25°C60%rhにおいて、サンプルフィルム表面に対し垂直方向および、フィルム面法線から±40°傾斜させて方向から波長550nmにおけるレターデーション値を測定する。垂直方向から面内のレターデーション(Re)、垂直方向、±40°方向の測定値から厚み方向のレターデーション(Rth)を算出する。これらをRe,Rthとする。
【0234】
(4)Re、Rthの湿熱変化
(i)サンプルフィルムを25°C60%rhで5時間以上調湿後、上記の方法でRe,Rthを測定する(Re(f)、Rth(f)とする)。
【0235】
(ii)これを60°C90%rhの恒温恒湿槽に無張力で500時間放置(サーモ処理)する。
【0236】
(iii)恒温恒湿槽から取り出した後、25°C60%rhで5時間以上調湿後、上記の方法でRe,Rthを測定する(Re(t)、Rth(t)とする)。
【0237】
(iv)下記式でRe,Rthの湿熱変化を求める。
【0238】
Reの湿熱変化(%)=100×(Re(f)−Re(t))/Re(f)
Rthの湿熱変化(%)=100×(Rth(f)−Rth(t))/Rth(f)
(5)Re、Rthの乾熱変化
上記Re、Rthの湿熱変化のサーモ処理を、80°Cドライで500時間に変えた以外は全て同様にして求める。
【0239】
(6)微細レターデーションむら
サンプルフィルムを25°C60%rhに5時間以上調湿後、エリプソメーター(UNIOPT(株)製自動複屈折測定装置ABR−10A−10AT)を用い0.1mmずつMD方向にずらしながら10点のReを測定する。このときの最大値と最小値の差を、10点の平均値で割った値(MDの微細レターデーションむら)を求める。
【0240】
TD方向にも同様に0.1mmずつずらしながら測定し(TDの微細レターデーションむら)を求める。
【0241】
MDの微細レターデーションむらとTDの微細レターデーションむらのうち大きいほうを微細レターデーションむらとする。
【0242】
(7)縦/横比
延伸に用いるニップロールの間隔(L:2対のニップロールの芯間の距離)を延伸前の飽和ノルボルネンフィルムの幅(W)で割った値(L/W)。3対以上のニップロールがある場合は、もっとも大きいL/Wの値を縦横比とした。
【0243】
(8)緩和率
緩和する長さを延伸前の寸法で割り百分率で示した値を指す。
【0244】
以下に本発明の飽和ノルボルネンフィルムについての具体的な実施態様を記述するが、これらに限定されるものではない。
【実施例】
【0245】
飽和ノルボルネン樹脂
(1)飽和ノルボル樹脂−A
6−メチル−1,4,5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレンに、重合触媒としてトリエチルアルミニウムの15%シクロヘキサン溶液10部、トリエチルアミン5部、および四塩化チタンの20%シクロヘキサン溶液10部を添加して、シクロヘキサン中で開環重合し、得られた開環重合体をニッケル触媒で水素添加してポリマー溶液を得た。このポリマー溶液をイソプロピルアルコール中で凝固させ、乾燥し、粉末状の樹脂を得た。この樹脂の数平均分子量は40,000、水素添加率は99.8%以上、Tgは139°Cであった。
【0246】
(2)飽和ノルボル樹脂−B
8−メチル−8−メトキシカルボニルテトラシクロ[4.4.0.12.5 ,17.10]−3−ドデセン(特定単量体B)100部と、5−(4−ビフェニルカルボニルオキシ)ビシクロ[2.2.1]ヘプト−2−エン(特定単量体A)150部と、1−ヘキセン(分子量調節剤)18部と、トルエン750部とを窒素置換した反応容器に仕込み、この溶液を60°Cに加熱した。次いで、反応容器内の溶液に、重合触媒としてトリエチルアルミニウム(1.5モル/l)のトルエン溶液0.62部と、t−ブタノール及びメタノールで変性した六塩化タングステン(t−ブタノール:メタノール:タングステン=0.35モル:0.3モル:1モル)のトルエン溶液(濃度0.05モル/l)3.7部とを添加し、この系を80°Cで3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であり、得られた開環重合体について、30°Cのクロロホルム中で測定した固有粘度(ηinh )は0.65dl/gであった。
【0247】
このようにして得られた開環重合体溶液4,000部をオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6 5 3 3 0.48部を添加し、水素ガス圧100kg/cm2 、反応温度165°Cの条件下で、3時間加熱攪拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(特定の環状ポリオレフィン系樹脂)を得た。このようにして得られた水素添加重合体について400MHz、1H−NMRを用いてオレフィン性不飽和結合の水素添加率を測定したところ99.9%であった。このTgは110°Cであり、GPC法(溶媒:テトラヒドロフラン)によりポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)を測定したところ、数平均分子量(Mn)は39,000、重量平均分子量(Mw)は126,000、分子量分布(Mw/Mn)は3.23であった。
【0248】
2.製膜
(1)溶融製膜
上記飽和ノルボルネン樹脂−Aに表1記載の二酸化珪素から成る微粒子を添加し直径3mm長さ5mmの円柱状のペレットに成形した。これを110°Cの真空乾燥機で乾燥し、含水率を0.1%以下とした後、Tg−10°Cになるように調整したホッパーに投入した。なお二酸化珪素の代わりに、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ等を用いた場合も同様の結果を得た。
【0249】
溶融粘度が5000Pa・sとなるように溶融温度を調整し、この温度で5分間かけて1軸混練機を用い溶融した後、溶融温度より10°C高く設定したT−ダイからTg−5°Cに設定したキャスティングドラム上に流延し固化しフィルムとした。この時、各水準静電印加法(10kVのワイヤーをメルトのキャスティングドラムへの着地点から10cmのところに設置)を用いた。固化したメルトを剥ぎ取り、巻き取った。なお、巻き取り直前に両端(全幅の各3%)をトリミングした後、両端に幅10mm、高さ50μmの厚みだし加工(ナーリング)をつけた。各水準とも、幅は1.5mで30m/分で3000m巻き取った。
【0250】
(2)溶液製膜
上記飽和ノルボルネン樹脂−Bと表1記載の二酸化珪素から成る微粒子を、トルエン中に30%濃度になるように撹拌しながら投入した。なお二酸化珪素の代わりに、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ等を用いた場合も同様の結果を得た。
【0251】
投入が終わると撹拌を停止し、25°Cで3時間膨潤させスラリーを作成した。これを再度撹拌し、完全に溶解した(この溶液をドープと呼ぶ)。この溶液の室温での粘度は30,000mPa・sであった)。これを、絶対濾過精度0.01mmの濾紙(東洋濾紙(株)製、#63)でろ過し、さらに絶対濾過精度2.5μmの濾紙(ポール社製、FH025)にて濾過した。
【0252】
上述のドープを35°Cに加温し、25°Cに設定したバンド長60mの鏡面ステンレス支持体上に流延した。使用したギーサーは、特開平11−314233号に記載の形態に類似するものを用いた。なお流延スピードは60m/分でその流延幅は250cmとした。
【0253】
残留溶剤が100wt%で剥ぎ取った後、130°Cで乾燥した後、表2に示す残留溶剤となったところで巻き取り、飽和ノルボルネンフィルムを得た。得られたフィルムは両端を3cmトリミングした後、両端から2〜10mmの部分に高さ100μmのナーリングを付与し、3000mロール状に巻き取った。
【0254】
3.延伸
(i).縦(MD)延伸
上記溶融製膜、溶液製膜で得たセルロースアシレートフィルム(いずれも残留溶剤は0.1重量%以下)を、2対のニップロールを用い、Tg+15°Cで縦延伸した。
(ii).横(TD)延伸
縦延伸後にテンターを用いてTg+10°Cで表1に記載の倍率で横方向に延伸した。
【0255】
4.熱処理
その後、表1の熱処理条件(熱処理温度、熱処理時搬送張力、及び熱処理時間)で熱処理工程を行なった。
【0256】
5.延伸フィルムの評価
このようにして得た延伸フィルムの湿熱寸法変化(δL(w))、乾熱寸法変化(δL(d))、湿熱、乾熱処理前(フレッシュ)のRe、Rth、微細レターデーションむら、およびRe、Rthの湿熱変化(δRe(w) 、δRth(w))、Re、Rthの乾熱変化(δRe(d)、δRth(d))を上記の方法で測定し表1に記載した。
【0257】
図4の表1の実施例1〜8、及び比較例1〜4において、飽和ノルボルネン樹脂は同一のもの(上記の飽和ノルボル樹脂−A)であり、平均粒子径0.60μmの微粒子を30ppm添加したものを、溶融製膜法で延伸飽和ノルボルネン樹脂フィルムを作成したものである。熱処理条件が本発明の条件、2N/cm2 以上120N/cm2 以下の張力、Tg−30°C以上Tg+20°C以下の温度、及び10秒以上600秒以下の処理時間、を満たしている実施例1〜8は、満たしていない比較例1〜4(比較例4に関しては熱処理を行っていない)と比較すると、湿熱変化(δL(w)、δRe(w) 、δRth(w))、乾熱変化(δL(d)、δRe(d)、δRth(d))が小さくなり、特に微細レターデーションむらが少なくなることが分かる。また、未延伸フィルムに関しても同様に、熱処理を行わない比較例5に比べ、本発明の条件で熱処理を行った実施例9は、湿熱変化、乾熱変化が小さくなる。また、延伸条件を変えた実施例9〜11(実施例9に関しては未延伸フィルム)でも良好な結果が得られていることが分かる。
【0258】
実施例12〜17は、上記の飽和ノルボル樹脂−Aにおいて微粒子の粒子径及び添加量を変えて延伸飽和ノルボルネン樹脂フィルムを作成した場合である。実施例16は微粒子を添加しなかったために、微細Reムラが他の実施例に比べ大きくなり、また実施例17は微粒子の平均粒子径が0.1μm〜3.0μmの範囲にはなく、1ppm〜10000ppmの添加の範囲を超えているので、湿熱変化、乾熱変化が若干大きくなる傾向があるが、全体的に良好な結果が得られた。
【0259】
更に、実施例18及び比較例6は同一の上記飽和ノルボル樹脂−Bで溶液製膜法によって延伸飽和ノルボルネン樹脂フィルムを作成した場合である。溶液製膜法で作成された延伸飽和ノルボルネン樹脂フィルムにおいても、熱処理条件が本発明の条件、2N/cm2 以上120N/cm2 以下の張力、Tg−30°C以上Tg+20°C以下の温度、及び10秒以上600秒以下の処理時間、を満たすことで、湿熱変化(δL(w)、δRe(w) 、δRth(w))、乾熱変化(δL(d)、δRe(d)、δRth(d))が小さくなり、微細レターデーションむらが少なくなることが分かる(比較例6は熱処理温度Tg+20°C以下(この樹脂の場合、162°C以下)の条件を満たしていない)。
【0260】
6.偏光板の作成
(1)表面処理
いずれの水準も、水との接触角が45度になるように、フィルム表面にコロナ処理を行った。
【0261】
(2)偏光層の作成
特開平2001−141926の実施例1に従い、2対のニップロール間に周速差を与え、長手方向に延伸したで厚み20μmの偏光層を調製した。なお、特開平2002−86554の実施例1のように延伸軸が斜め45度となるように延伸した偏光層も同様に作成したが、以降の評価結果は上述のものと同様な結果が得られた。
【0262】
(3)貼り合わせ
このようにして得た偏光層を、上記鹸化処理した延伸飽和ノルボルネンフィルム(位相差板)と鹸化処理した偏光板保護フィルム(商品名:フジタック)の間に挟み込んだ。この際、位相差板と偏光層の接着は、位相差板がセルロースアシレートの場合はPVA((株)クラレ製PVA−117H)3%水溶液を接着剤とし、位相差板がこれ以外の場合はエポキシ系接着剤を用いて貼り合せた。またフジタックと偏光層の間は上述のPVA水溶液を接着剤として貼り合わせた。貼り合わせ方向は、偏光軸と位相差板の長手方向が45度となるようした。
【0263】
このようにして得た偏光板のフレッシュ品と、ウエットサーモ(60°C90%rh500時間)、ドライサーモ(80°Cドライ500時間)後の偏光板を、飽和ノルボルネンフィルムを液晶側になるようにして、特開2000−154261号公報の図2〜9に記載の20インチVA型液晶表示装置液晶表示装置に取り付けた。これをフレッシュ品の偏光板を用いたものと、ドライ、ウエットサーモ品の偏光板を用いたものを比較し、目視評価し色むらの発生領域の全面積に占める割合を表1に記載した。
【0264】
図4の表1から分かるように、本発明を実施したものは良好な性能が得られた。
【0265】
7.光学補償フィルムの作成
特開平11−316378号の実施例1の液晶層を塗布したセルロースアセテートフィルムの代わりに、本発明の延伸飽和ノルボルネンフィルムを使用した。この時製膜、延伸直後のもの(フレッシュ品)を用いた場合と、ウエットサーモ(60°C90%rh500時間)、ドライサーモ(80°Cドライ500時間)後のものを用いた場合で、両者比較し色むらの発生している領域を目視評価したが、本発明を用いたものは良好な光学補償フィルムを作成できた。
【0266】
特開平7−333433の実施例1の液晶層を塗布したセルロースアセテートフィルムに代わって、本発明の延伸飽和ノルボルネンフィルムに変更し光学補償フィルターフィルムを作製したものでも同様に良好な光学補償フィルムを作成できた。
【0267】
8.低反射フィルムの作成
本発明の延伸飽和ノルボルネンフィルムを発明協会公開技報(公技番号2001−1745)の実施例47に従い本発明の延伸飽和ノルボルネンフィルムを用いて低反射フィルムを作成したところ、良好な光学性能が得られた。
【0268】
9.液晶表示素子の作成
上記本発明の偏光板を、特開平10−48420号公報の実施例1に記載の液晶表示装置、特開平9−26572号公報の実施例1に記載のディスコティック液晶分子を含む光学的異方性層、ポリビニルアルコールを塗布した配向膜、特開2000−154261号公報の図2〜9に記載の20インチVA型液晶表示装置、特開2000−154261号公報の図10〜15に記載の20インチOCB型液晶表示装置、特開2004−12731の図11に記載のIPS型液晶表示装置に用いた。さらに、本発明の低反射フィルムをこれらの液晶表示装置の最表層に貼り評価を行ったところ、高温、高湿経時後でも色むらの発生しない良好な液晶表示素子を得た。
【図面の簡単な説明】
【0269】
【図1】本発明が適用されるフィルム製造装置の構成図
【図2】押出機の構成を示す概略図
【図3】濾過装置の構成を示す模式図
【図4】本発明の実施例の説明図
【符号の説明】
【0270】
10…フィルム製造装置、12…飽和ノルボルネン系樹脂フィルム、12’…延伸飽和ノルボルネン系樹脂フィルム、12’’…熱緩和処理後の延伸飽和ノルボルネン系樹脂フィルム、14…押出機、16…ダイ、17,18,19…冷却ドラム、20…製膜工程部、30…縦延伸工程部、40…横延伸工程部、50,50’…巻取工程部、70…熱緩和装置、71…炉、72…パスローラ、74…ニップロール、76…テンション測定ロール

【特許請求の範囲】
【請求項1】
熱可塑性樹脂フィルムを、2N/cm2 以上120N/cm2 以下の張力で搬送しながら、熱可塑性樹脂のガラス転移温度Tg−30°C以上Tg+20°C以下の温度で10秒以上600秒以下の時間、熱処理を行なうことを特徴とする熱可塑性樹脂フィルムの製造方法。
【請求項2】
前記熱可塑性樹脂フィルムは、
湿熱寸法変化(δL(w))、及び乾熱寸法変化(δL(d))のいずれもが0%以上0.3%以下であることを特徴とする請求項1に記載の熱可塑性樹脂フィルムの製造方法。
【請求項3】
前記熱可塑性樹脂フィルムは、
面内のレターデーション(Re)の湿熱変化(δRe(w))、乾熱変化(δRe(d))、及び、厚み方向のレターデーション(Rth)の湿熱変化(δRth(w))、乾熱変化(δRth(d))、のいずれもが0%以上10%以下であることを特徴とする請求項1又は2に記載の熱可塑性樹脂フィルムの製造方法。
【請求項4】
前記熱可塑性樹脂フィルムは、
配向角が0°±5°以内、又は90°±5°以内、
ボーイング歪みの大きさが10%以下、
面内のレターデーション(Re)が0nm以上500nm以下、
厚み方向のレターデーション(Rth)が0nm以上500nm以下、であることを特徴とする請求項1〜3の何れか1に記載の熱可塑性樹脂フィルムの製造方法。
【請求項5】
前記熱可塑性樹脂フィルムは、
微細レターデーションむらが0%以上10%以下であることを特徴とする請求項1〜4の何れか1に記載の熱可塑性樹脂フィルムの製造方法。
【請求項6】
前記熱可塑性樹脂は、飽和ノルボルネン系樹脂であることを特徴とする請求項1〜5の何れか1に記載の熱可塑性樹脂フィルムの製造方法。
【請求項7】
前記熱可塑性樹脂フィルムは、
平均粒子径が0.1μm以上3.0μm以下の微粒子を1ppm以上10000ppm以下含むことを特徴とする請求項6に記載の熱可塑性樹脂フィルムの製造方法。
【請求項8】
前記熱処理を、未延伸の熱可塑性樹脂フィルムについて行うことを特徴とする請求項1〜7のいずれか1に記載の熱可塑性樹脂フィルムの製造方法。
【請求項9】
前記熱処理を、延伸した後の熱可塑性樹脂フィルムについて行うことを特徴とする請求項1〜7のいずれか1に記載の熱可塑性樹脂フィルムの製造方法。
【請求項10】
請求項8に記載の製造方法で製造された未延伸の熱可塑性樹脂フィルムを少なくとも1層積層したことを特徴とする偏光板。
【請求項11】
請求項8に記載の製造方法で製造された未延伸の熱可塑性樹脂フィルムを基材に用いたことを特徴とする液晶表示板用光学補償フィルム。
【請求項12】
請求項8に記載の製造方法で製造された未延伸の熱可塑性樹脂フィルムを基材に用いたことを特徴とする反射防止フィルム。
【請求項13】
請求項9に記載の製造方法で製造された延伸熱可塑性樹脂フィルムを少なくとも1層積層したことを特徴とする偏光板。
【請求項14】
請求項9に記載の製造方法で製造された延伸熱可塑性樹脂フィルムを基材に用いたことを特徴とする液晶表示板用光学補償フィルム。
【請求項15】
請求項9に記載の製造方法で製造された延伸熱可塑性樹脂フィルムを基材に用いたことを特徴とする反射防止フィルム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2006−341394(P2006−341394A)
【公開日】平成18年12月21日(2006.12.21)
【国際特許分類】
【出願番号】特願2005−166984(P2005−166984)
【出願日】平成17年6月7日(2005.6.7)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.テフロン
【出願人】(000005201)富士フイルムホールディングス株式会社 (7,609)
【Fターム(参考)】