説明

磁気抵抗効果素子と、それを用いた磁気ヘッド、磁気記録再生ヘッドおよび磁気記憶装置

【課題】 磁気抵抗効果素子の再生フリンジやバルクハウゼンノイズを抑制した上で、接触抵抗の低減、絶縁不良の抑制、良好な線形応答性等を実現する。
【解決手段】 基板(11)の主表面上に、順に積層された第1の反強磁性膜(15))、第1の強磁性膜(16)、非磁性膜(17)および第2の強磁性膜(18)を少なくとも含む巨大磁気抵抗効果を示す磁性多層膜を有し、かつ前記第2の強磁性膜が磁界検出部と前記磁界検出部の両端にそれぞれ設けられ前記磁界検出部より薄い膜厚(t)を有する外側部とを有する磁気抵抗効果膜と、前記第2の強磁性膜の外側部の上にそれぞれ積層された一対のバイアス磁界付与膜(37)と、前記磁気抵抗効果膜に電流を供給する一対の電極(21)と、を備えたことを特徴とする磁気抵抗効果素子を提供する。

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、巨大磁気抵抗効果を示す磁性多層膜を有する磁気抵抗効果素子と、それを用いた磁気ヘッド、磁気記録再生ヘッドおよび磁気記憶装置に関する。
【0002】
【従来の技術】HDD等の磁気記録装置では、記録密度の向上を図るために記録トラック幅を縮小する方向に進んでいる。この記録トラック幅の縮小に伴う再生出力の低下を補うために、高感度な磁気抵抗効果素子(MR素子)を適用した磁気ヘッド(MRヘッド)が必要となりつつある。特に、信号磁界に応じて磁化回転する強磁性膜(以下、磁化フリー層と記す)、非磁性膜、反強磁性膜からのバイアス磁界で磁化が固着された強磁性膜(以下、磁化固着層と記す)、および磁化固着層の磁化を固着するための反強磁性膜を順に積層した磁性多層膜からなる、巨大磁気抵抗効果を示すスピンバルブ膜を用いたMRヘッドが、次世代のMRヘッドとして有望視されている。
【0003】スピンバルブ膜を用いたMRヘッドでは、磁化フリー層の磁壁に起因するバルクハウゼンノイズや、再生トラックの両端部近傍での再生フリンジが実用化の上で大きな課題となっている。このような課題を解決するために、例えば図12の媒体対向面側より観察した断面図に示すように、スピンバルブ膜1の記録トラック幅から外れた両端部1a、1a外側をエッチングして取り除き、そこに硬質磁性膜2をそれぞれ配置した、いわゆるアバットジャンクション方式のMRヘッドが提案されている。
【0004】なお、図12に示すスピンバルブ膜1は基板3側から、上述したように磁化フリー層4、非磁性膜5、磁化固着層6および反強磁性膜7が順に積層されて構成されている。また、硬質磁性膜2上にはそれぞれスピンバルブ膜1にセンス電流を流すための一対の電極(再生電極)8が形成されている。
【0005】図12に示すアバットジャンクション方式のMRヘッドでは、硬質磁性膜2からのバイアス磁界で磁化フリー層4の磁区が消失してバルクハウゼンノイズが抑制される。また、記録トラック幅以外の部分は硬質磁性膜2に置き換っているため、記録トラックからの記録情報のみを読み取ることができる。よって、再生フリンジを著しく小さくすることができる。
【0006】しかし、スピンバルブ膜1に上記したアバットジャンクション方式を適用したMRヘッドでは、以下に示すような問題が発生している。まず第1に、スピンバルブ膜1の下側には、図示を省略したが、アルミナ等の非磁性絶縁体からなるギャップ膜が存在している。このため、再生電極8や硬質磁性膜2とスピンバルブ膜1との接触が、主としてエッチング等で除去したスピンバルブ膜1の壁面となる。従って、接触抵抗が増大したり、あるいは不安定になりやすいという問題がある。
【0007】第2に、スピンバルブ膜1の両端部で磁化フリー層4をエッチングにより除去する際に、磁化フリー層4が最下部に存在しているため、どうしてもギャップ膜をオーバーエッチングしやい。このため、ギャップ膜の下側に存在する磁気シールド層との間で絶縁不良が生じやすいという問題がある。
【0008】第3に、スピンバルブ膜1のエッチングにおいては、スピンバルブ膜1の上部に比べて下部ほどテーパが緩やかになりやすい。このため、テーパ部で硬質磁性膜2と磁化フリー層4とが交換結合した領域が増大する。このようなテーパ部領域では交換バイアス力が不安定となるため、バルクハウゼンノイズが発生しやすくなる。
【0009】第4に、硬質磁性膜2の壁面と磁化固着層6の壁面とが必然的に接することになるため、磁化固着層6にも硬質磁性膜2からのバイアス磁界が加わる。このため、本来スピンバルブ膜1の幅方向(信号磁界流入方向)に固着されるべき磁化固着層6の磁化が、硬質磁性膜2のバイアス方向(スピンバルブ膜1の長手方向)に傾いてしまい、信号磁界に対する良好な線形応答が得られなくなるという問題を抱えている。
【0010】一方、硬質磁性膜や反強磁性膜等のバイアス磁界付与膜を、MR膜のエッジ部と直接積層して交換結合させ、これによりバルクハウゼンノイズを取り除くようにしたMRヘッドも提案されている。しかし、磁化フリー層上に磁化固着層等が存在する現行のスピンバルブ膜では、硬質磁性膜や反強磁性膜等を基板側に設ける必要があり、これらのパターニングによりスピンバルブ膜を形成する下地の表面性が劣化する等の問題ある。
【0011】特に、安定した交換結合を得る上で硬質磁性膜や反強磁性膜を厚くする必要があるが、これらが厚い場合にはスピンバルブ膜の下地の表面状態を劣化させないで、パターン形成することは非常に困難である。さらに、反強磁性膜では強い交換バイアスが得難く、硬質磁性膜では磁化フリー層からの反作用により保磁力が低下しやすいことから、トラック幅端部での安定した磁化固着が難しい。よって、再生フリンジの低減やバルクハウゼンノイズの抑制が不十分になりやすいという問題がある。
【0012】
【発明が解決しようとする課題】上述したように、従来のスピンバルブ膜を用いたMRヘッドにおいて、アバットジャンクション方式ではその形状に由来して、接触抵抗の増大や不安定化、絶縁不良、硬質磁性膜と磁化フリー層との交換結合の不安定化等が生じやすいという問題がある。さらに、磁化固着層の磁化の傾きにより、信号磁界に対する良好な線形応答が得られないというような問題がある。
【0013】一方、硬質磁性膜や反強磁性膜等のバイアス磁界付与膜をスピンバルブ膜と直接積層して交換結合させたMRヘッドでは、スピンバルブ膜の下地の表面状態が劣化したり、トラック幅端部での安定した磁化固着が難しいことから、再生フリンジの低減やバルクハウゼンノイズの抑制が不十分になるという問題がある。
【0014】さらに、スピンバルブ膜は磁気抵抗効果メモリ(MRAM)等の磁気記憶装置に適用することも検討されており、このような場合においても十分なバイアス力が求められている。
【0015】本発明はこのような課題に対処するためになされたもので、再生フリンジやバルクハウゼンノイズを抑制した上で、接触抵抗の低減、絶縁不良の抑制、良好な線形応答性等を実現した磁気抵抗効果素子、さらにはそのような磁気抵抗効果素子を用いることによって、特性を向上させた磁気ヘッド、磁気記録再生ヘッドおよび磁気記憶装置を提供することを目的としている。
【0016】
【課題を解決するための手段】上記目的を達成するため、本発明の第1の磁気抵抗効果素子は、基板と、前記基板の主表面上に、前記基板側から順に積層された第1の反強磁性膜、第1の強磁性膜、非磁性膜および第2の強磁性膜を少なくとも含む巨大磁気抵抗効果を示す磁性多層膜を有し、かつ前記第2の強磁性膜が磁界検出部と前記磁界検出部の両端にそれぞれ設けられ前記磁界検出部より薄い膜厚を有する外側部とを有する磁気抵抗効果膜と、前記第2の強磁性膜の前記外側部の上にそれぞれ積層された一対のバイアス磁界付与膜と、前記磁気抵抗効果膜に電流を供給する一対の電極と、を備えたことを特徴とする。
【0017】また、本発明の第2の磁気抵抗効果素子は、第1の反強磁性膜と、前記反強磁性膜の上に設けられた第1の強磁性膜と、前記第1の強磁性膜の上に設けられた非磁性膜と、前記非磁性膜の上に設けられた第2の強磁性膜と、を有し、かつ前記第2の強磁性膜が磁界検出部と前記磁界検出部の両端に設けられた外側部とを有し、前記外側部の膜厚は前記磁界検出部よりも薄く、さらに前記磁界検出部と前記外側部とは互いに平行な主面をそれぞれ有する、磁気抵抗効果膜と、前記第2の強磁性膜の前記外側部の主面とそれぞれ接触して設けられた一対の第2の反強磁性膜と、前記磁気抵抗効果膜に電流を供給する一対の電極と、を備えたことを特徴とする。
【0018】一方、本発明の磁気ヘッドは、上述のいずれかの磁気抵抗効果素子と、前記磁気抵抗効果素子の下に設けられた第1の再生磁気ギャップ層と、前記第1の再生磁気ギャップ層の下に設けられた第1の磁気シールド層と、前記磁気抵抗効果素子の上に設けられた第2の再生磁気ギャップ層と、前記第2の再生磁気ギャップ層の上に設けられた第2の磁気シールド層と、を備えたことを特徴とする。
【0019】また、本発明の磁気記録再生ヘッドは、上述の磁気ヘッドと、前記第2の磁気シールド層と共通化された第1の磁極と、前記第1の磁極の上に設けられた記録磁気ギャップと、前記記録磁気ギャップの上に設けられた第2の磁極と、を備え、前記第1の磁気シールド層から前記第2の磁気シールド層までの部分は、再生ヘッドとして作用し、前記第1の磁極から前記第2の磁極までの部分は、記録ヘッドとして作用することを特徴とする。
【0020】一方、本発明の磁気記憶装置は、上述のいずれかの磁気抵抗効果素子と、前記磁気抵抗効果素子の磁気抵抗効果膜に情報を記憶する書き込み電極と、前記磁気抵抗効果素子の前記電極からなる、前記磁気抵抗効果膜に記憶された情報を再生する読み出し電極と、を備えたことを特徴とする。
【0021】本発明によれば、基板側に反強磁性膜からバイアス磁界が印加されて磁化固着される第1の強磁性膜を配置し、基板とは反対側に磁化フリー層となる第2の強磁性膜を配置している。このため、磁界検出部の両端部外側の第2の強磁性膜を除去して、良好なオフトラック特性(低再生フリンジ)を得た上に、磁性多層膜中の導電性を有する膜の一部を磁界検出部(再生トラック)の両端部外側に残した構造が実現できる。これによって、安定した電気的接触を確保することが可能となる。
【0022】さらに、反強磁性膜と第2の強磁性膜との交換結合を不安定にするテーパ領域を小さくすることができるため、バルクハウゼンノイズを安定して抑制することが可能となる。加えて、磁化固着層となる第1の強磁性膜の端部壁面を、バイアス磁界付与膜と接触させることなく、第2の強磁性膜に対してバイアス磁界を付与することが可能となる。よって、バルクハウゼンノイズの発生を抑制した上で、良好な線形応答性を得ることができる。
【0023】また、本発明によれば、基板側に反強磁性膜からバイアス磁界が印加されて磁化固着される第1の強磁性膜を配置し、基板とは反対側に磁化フリー層となる第2の強磁性膜を配置している。このため、バイアス磁界付与膜のパターニングでスピンバルブ膜の下地表面を乱す心配がなくなり、安定したスピンバルブ膜特性が実現できる。
【0024】また、第2の強磁性膜の磁界検出部の両端部外側部分の膜厚を、磁界検出部よりも薄くしている。従って、反強磁性膜からなるバイアス磁界付与膜では交換バイアス力の増大が期待できる。一方、硬質磁性膜からなるバイアス磁界付与膜では保磁力の増大が期待できる。これらによって、第2の強磁性膜の磁界検出部の両端部外側部分での磁化固着がより安定化され、バルクハウゼンノイズを抑制した上で、良好なオフトラック特性(低再生フリンジ)を得ることができる。さらに、磁化固着層である第1の強磁性膜の磁化方向が乱されることがないため、良好な線形応答性が実現可能となる。
【0025】また、本発明によれば、基板側に反強磁性膜からバイアス磁界が印加されて磁化固着される第1の強磁性膜を配置し、基板とは反対側に磁化フリー層となる第2の強磁性膜を配置している。このため、バイアス磁界付与膜のパターニングでスピンバルブ膜の下地を乱す心配がなくなり、安定したスピンバルブ膜特性が実現できる。
【0026】また、第2の強磁性膜の膜厚を薄くすることによって、反強磁性膜からなるバイアス磁界付与膜では交換バイアス力の増大が期待できる。一方、硬質磁性膜からなるバイアス磁界付与膜では保磁力の増大が期待できる。これらによって、磁界検出部の両端部外側部分での第2の強磁性膜の磁化固着が安定化され、バルクハウゼンノイズを抑制した上で、良好なオフトラック特性(低再生フリンジ)を得ることができる。さらに、磁化固着層である第1の強磁性膜の磁化方向が乱されることがないため、良好な線形応答性が実現可能となる。
【0027】
【発明の実施の形態】以下、本発明を実施するための形態について説明する。
【0028】図1および図2は、本発明の第1の磁気抵抗効果素子を再生素子部に適用した録再分離型磁気ヘッドの一実施形態の構造を示す図である。図1は録再分離型磁気ヘッドを媒体対向面方向から見た断面図(x方向が記録トラック幅方向、y方向が記録トラックの進行方向で磁気抵抗効果素子の膜厚方向に対応)である。図2はその要部を拡大して示す断面図ある。
【0029】これらの図において、11は基板であり、この基板11としてはAl層を有するAl ・TiC基板等が用いられる。このような基板11の主表面上には、NiFe合金、FeSiAl合金、アモルファスCoZrNb合金等の軟磁性材料からなる下側磁気シールド層12が形成されている。下側磁気シールド層12上にはAlO 等の非磁性絶縁材料からなる下側再生磁気ギャップ13を介して巨大磁気抵抗効果を示す磁気抵抗効果膜(GMR膜)14が形成されている。
【0030】GMR膜14を構成する磁性多層膜は、図2R>2に示すように、下側再生磁気ギャップ13上に順に積層形成された、反強磁性膜15、第1の強磁性膜16、非磁性膜17および第2の強磁性膜18を少なくとも有している。このGMR膜14はいわゆるスピンバルブGMR膜である。スピンバルブGMR膜14を構成する磁性多層膜のうち、第1の強磁性膜16はその下側に形成された反強磁性膜15からのバイアス磁界で磁化が固着された磁化固着層である。一方、第2の強磁性膜18は信号磁界等の外部磁界に応じて磁化回転する磁化フリー層である。なお、図中19はTaやTi等からなる保護膜であり、必要に応じて形成される。
【0031】第1の強磁性膜16の磁化は、反強磁性膜15により媒体対向面(紙面と平行)に対して概ね垂直方向(紙面に対して垂直方向)に固着することが好ましい。第2の強磁性膜18の磁化は、外部磁界が零の状態で概ねトラック幅方向に向いていることが好ましい。すなわち、第1の強磁性膜16の磁化方向と第2の強磁性膜18の磁化方向は略直交させることが好ましい。なお、第2の強磁性膜18は、後に詳述する一対の硬質磁性膜20からのバイアス磁界で、上記したように外部磁界が零の状態で概ねトラック幅方向に向いており、さらにこのバイアス磁界で磁区が消失している。
【0032】これら強磁性膜16、18には、Co、CoFe合金、CoFeB合金、NiFe合金、CoNi合金、NiFeCo合金等が用いられる。例えば、抵抗変化率の記録部形成プロセスでの耐熱性や長期信頼性を得るためには、CoFe等のCo系合金を用いることが好ましい。これら強磁性膜16、18の膜厚は、例えば第1の強磁性膜16は 0.5〜10nm程度とすることが、また第2の強磁性膜18は 1〜20nm程度とすることが好ましい。
【0033】第1および第2の強磁性膜16、18の間には、Cu、Au、Ag、およびそれらの合金等からなる非磁性膜17が介在されている。反強磁性膜15を含む各層15、16、17、18によって、スピンバルブGMR膜14の基本要素が構成されている。非磁性膜17の膜厚は例えば 0.5〜10nm程度とすることが好ましい。反強磁性膜15には、導電性のIrMn合金、RhMn合金、RuMn合金、PdPtMn合金、CrMnPt合金、FeMn合金、NiMn合金、PtMn合金等、あるいは絶縁性のNiOやCoO等が用いられる。
【0034】上記した磁性多層膜からなるスピンバルブGMR膜14は、少なくとも第2の強磁性膜18が信号磁界等の外部磁界を検出する磁界検出部(再生トラック)に応じた形状を有している。言い換えると、少なくとも第2の強磁性膜18はx方向の長さが所望のトラック幅となるように、記録トラック幅から外れた両端部外側が除去された形状とされている。その上で、再生トラックの両端部外側部分の最上部に磁性多層膜中の導電性を有する膜が存在するように、磁性多層膜の膜厚方向の除去範囲が設定されている。再生トラックの両端部外側部分の最上部に位置する導電膜としては、非磁性膜17や第1の強磁性膜16が挙げられる。また、反強磁性膜15として導電性を有するIrMn合金やFeMn合金を用いる場合には、反強磁性膜15が最上部に位置する導電膜であってもよい。
【0035】第2の強磁性膜18以外の導電膜を再生トラックの両端部外側部分にそれぞれ存在させるためには、スパッタ法等で成膜した磁性多層膜に対してレジストマスクを用いたイオンミリング等を行って、少なくとも第2の強磁性膜18を除去すればよい。図2は、非磁性膜17の一部が残るように、磁性多層膜をエッチングした状態を示している。再生トラックの両端部外側部分の最上部には、非磁性膜17の一部が残存している。
【0036】そして、少なくとも第2の強磁性膜18が除去され、かつ最上部に導電膜が存在する再生トラックの両端部外側部分には、それぞれ磁性多層膜中の導電膜上に一対の硬質磁性膜20がバイアス磁界付与膜として積層形成されている。すなわち、導電性を有する非磁性膜17は硬質磁性膜20と接している。一対の硬質磁性膜20には例えばCoPt合金、CoNiCr合金等の導電性を有する硬質磁性材料が用いられ、その厚さは10〜80nm程度とすることが好ましい。一対の硬質磁性膜20上には、それぞれCu、Au、Zr、Ta等からなる一対の電極21が形成されており、この一対の電極21によりスピンバルブGMR膜14にセンス電流が供給される。一対の電極21の間隔は一対の硬質磁性膜20の間隔より狭く設定してもよい。
【0037】上述したスピンバルブGMR膜14、一対の硬質磁性膜20および一対の電極21は、GMR再生素子22を構成している。GMR再生素子22上には、図1に示すように、下側再生磁気ギャップ13と同様な非磁性絶縁材料からなる上側再生磁気ギャップ23を介して、下側磁気シールド層12と同様な軟磁性材料からなる上側磁気シールド層24が形成されている。これらによって、再生ヘッドとしてのシールド型GMRヘッド25が構成されている。
【0038】バイアス磁界付与膜は硬質磁性膜20に限らず、例えば図3に示す第1の変形例のように、強磁性膜26上に反強磁性膜27を積層した積層膜28を適用することも可能である。強磁性膜26と反強磁性膜27との積層順は逆でもよい。強磁性膜26にはNiFe合金やCo系合金等が用いられる。反強磁性膜27にはNiMn合金、FeMn合金、IrMn合金、PtMn合金等が用いられる。反強磁性膜27からの強い一方向性の交換結合バイアス磁界により強磁性膜26の磁化がしっかりと固着されるため、積層膜28は硬質磁性膜20と同様なバイアス磁界付与膜として機能する。
【0039】バイアス磁界付与膜中の反強磁性膜27とスピンバルブGMR膜中の反強磁性膜15とは、バイアス磁界方向を概ね直交させることが望ましい。例えば、反強磁性膜27と反強磁性膜15とはブロッキング温度が異なるように選定し、磁界中熱処理を施すことにより、バイアス磁界方向を概ね直交させることができる。ブロッキング温度は材料、組成、成膜条件等で変えることができる。磁界中熱処理の条件の一例を以下に示す。
【0040】反強磁性膜27には、ブロッキング温度が503KのIrMn合金(膜厚5.5nm)を用い、反強磁性膜15にはブロッキング温度が653KのPtMn合金を用いる。まず、一方向磁界中(数10Oe 、方向は媒体対向面垂直方向)にて523Kで 5時間保持し、反強磁性膜15の磁化を媒体対向面垂直方向に固着する。次に、冷却過程において、反強磁性膜27と反強磁性膜15のブロッキング温度の中間の温度(〜513K)で、磁界方向をトラック幅方向に向けて略90°回転させる。すると、冷却過程で反強磁性膜27のバイアス磁界により強磁性膜26の磁化はトラック幅方向に固着される。
【0041】シールド型GMRヘッド25上には、図1に示すように、記録ヘッドとして薄膜磁気ヘッド29が形成されている。薄膜磁気ヘッド29の下側記録磁極は、上側磁気シールド層24と同一の磁性層により構成されている。すなわちシールド型MRヘッド25の上側磁気シールド層24は、薄膜磁気ヘッド29の下側記録磁極を兼ねている。この上側磁気シールド層を兼ねる下側記録磁極24上には、AlO等の非磁性絶縁材料からなる記録磁気ギャップ30と上側記録磁極31とが順に形成されている。図示を省略したが、媒体対向面より後方側には下側記録磁極24と上側記録磁極31に記録磁界を付与する記録コイルが形成されており、記録ヘッドとしての薄膜磁気ヘッド29が構成されている。
【0042】図2に要部を示したシールド型GMRヘッド25は、例えば以下のようにして作製される。
【0043】すなわち、まず下側再生磁気ギャップ13まで形成した基板11の主表面上に、スピンバルブGMR膜14を構成する各膜を順次スパッタ法等で成膜する。次いで、フォトレジストマスクを形成してイオンミリング等でスピンバルブGMR膜14を所定形状にエッチングする。このエッチングは少なくとも第2の強磁性膜18までを除去し、スピンバルブGMR膜14を構成する磁性多層膜中の導電性を有するユニット膜の一部を残す。
【0044】次に、スピンバルブGMR膜14のエッチングに使用したフォトレジストを利用して、スピンバルブGMR膜14の再生トラックの両端部外側部分に一対の硬質磁性膜20および電極21等をスパッタ法等により成膜する。フォトレジストはアセトン等の溶剤を用いて除去する。
【0045】次いで、硬質磁性膜20および電極21の形状に応じたフォトレジストマスクを形成し、これらを用いてイオンミリングする。これによって、例えば図4に示すようなパターンを形成する。硬質磁性膜20および電極21の下側には、スピンバルブGMR膜14を構成する磁性多層膜中の導電膜が存在する。この後、上側再生磁気ギャップ23および上側磁気シールド層24を形成することにより、シールド型GMRヘッド25が完成する。
【0046】さらに、シールド型GMRヘッド25上に記録ヘッドとしての薄膜磁気ヘッド29を形成した後、スライダー形状への機械加工、ヘッドジンバルアッセンブリを行うことによって、録再分離型磁気ヘッドが完成する。
【0047】上述した実施形態のGMRヘッド25においては、基板11とは反対側の上側に磁化フリー層、すなわち第2の強磁性膜18を存在させている。このため、第1に良好なオフトラック特性(低再生フリンジ)を得る上で必要とされる、再生トラックから外れた両端部外側部分の磁化フリー層の除去を、スピンバルブGMR膜14を全面的に削除することなく実施できる。その上で、導電膜の一部を両端部外側部分に残した構造が実現できる。その結果、残存させた導電膜を介して安定した電気的接触が確保され、安定して小さな接触抵抗が実現可能となる。よって、GMR再生素子22全体の抵抗が低減でき、再生感度をアップするために大きなセンス電流を投入しても、サーマルノイズの影響を受けにくくなる。
【0048】第2に、少なくとも磁化フリー層である第2の強磁性膜18のみをエッチングすればよいため、エッチング量を少なくでき、エッチングの精度向上が期待できる。第3に、エッチングが進行する下部では、スピンバルブGMR膜14のテーパが緩やかになりやすいのに比べて、エッチング進行の初期に当たる第2の強磁性膜18ではテーパが急俊になる。従って、バルクハウゼンノイズの発生要因となるテーパ領域を小さくすることができる。その結果として、バルクハウゼンノイズを安定して抑制することが可能となる。
【0049】第4に、磁化固着層である第1の強磁性膜16の端部壁面を硬質磁性膜20と接触させることなく、第2の強磁性膜18に対して硬質磁性膜20からバイアス磁界を付与することができる。従って、バルクハウゼンノイズの発生を抑制した上で、硬質磁性膜20から磁化固着層に加わる漏洩磁界を抑制することができる。これにより、第1の強磁性膜16の磁化が硬質磁性膜20の漏洩磁界方向に傾いてしまうという問題が回避できる。第1の強磁性膜16の磁化方向はスピンバルブGMR膜14の幅方向(信号磁界の流入方向)に安定して固着され、良好な線形応答性が得られる。
【0050】この実施形態のGMRヘッド25ば、オフトラック特性が良好で再生フリンジが小さい、バルクハウゼンノイズやサーマルノイズが少ない、線形応答性が良好である、等の特徴を有することから、S/N比の良好な再生特性を実現することができる。
【0051】上述した実施形態では、スピンバルブGMR膜14を反強磁性膜15、第1の強磁性膜16、非磁性膜17および第2の強磁性膜18からなる基本的な磁性多層膜で構成した場合について説明した。スピンバルブGMR膜14を構成する磁性多層膜には、各層の構成材料等に応じて、さらに他の層を追加することができる。
【0052】例えば、磁化フリー層、非磁性膜、磁化固着層および反強磁性膜を順に積層形成した従来のスピンバルブ構造に比べて、積層構造を逆転させた本発明のスピンバルブ構成では、IrMn合金やFeMn合金等の金属系の反強磁性膜15を単に用いると、第1の強磁性膜16への反強磁性膜15からのバイアス磁界が弱まるおそれがある。そこで、例えば図5に示すように、反強磁性膜15の fcc相の安定性や (111)結晶配向性、さらに強磁性膜16の fcc相の安定性を高めるために、反強磁性膜15の下地膜32を設けることが好ましい。下地膜32としては、Ta、Zr、Nb、Hf等を用いてもよいが、特に fcc相を有するNiFe合金、NiFeX合金(X:Cr、Nb、Ta、Zr、Hf、W、Mo、V、Ti、Rh、Ir、Cu、Au、Ag、Mn、Re、Ruから選ばれる少なくとも 1種の元素)、CuNi合金等が望ましい。この下地膜32の膜厚は 1〜20nm程度とすることが好ましい。
【0053】特に、上記した下地膜32を介して形成した、Irを 5〜40重量% の範囲で含有するIrMn合金からなる反強磁性膜15は、バイアス磁界が消失するブロッキング温度T が473K以上と耐熱性に優れると共に、高いバイアス磁界が得られることから望ましい。IrMn合金からなる反強磁性膜15の膜厚は 3〜30nm程度とすることが好ましい。これ以上薄いと十分なバイアス磁界が得られず、またこれ以上厚いと反強磁性膜15へのセンス電流の分流が増大して、抵抗変化率が低下するおそれが大きい。
【0054】反強磁性膜15にIrMn合金やFeMn合金等の導電材料を用いる場合には図5に示す第2の変形例のように、スピンバルブGMR膜14の再生トラックの両端部外側部分を反強磁性膜15の少なくとも一部が残る状態までエッチング除去し、硬質磁性膜20を導電性を有する反強磁性膜15上に積層してもよい。反強磁性膜15にまで達するエッチングを施しても、導電膜が消失するおそれがないため、安定して導電膜を残すことができる。従って、硬質磁性膜20を含む電極21とスピンバルブGMR膜14との接触抵抗を再現性よく低減することができる。
【0055】一方、反強磁性膜15に絶縁性のNiO等を用いる場合には、図1に示したように、硬質磁性膜20の下側にスピンバルブGMR膜14中の導電膜として、第1の強磁性膜16および非磁性膜17の両方、あるいは第1の強磁性膜16のみを存在させればよい。これによって、従来の壁面による電気的接触に比べて、硬質磁性膜20を含む電極21とスピンバルブGMR膜14とを良好に電気的に接触させることができる。
【0056】また、図5に示したように、例えばCoPt合金等からなる硬質磁性膜20の下側には、そのc軸を膜面内方向になるべく傾けて高保磁力化を図るために、厚さ 1〜20nm程度のCr、V、CrV合金、FeCo合金等からなる下地膜33を設けることが望ましい。
【0057】反強磁性膜15と磁化固着層である第1の強磁性膜16との界面には、反強磁性膜15から第1の強磁性膜16への交換バイアス磁界を増大させるために、これらの中間の格子定数を有する磁性膜を挿入してもよい。このような磁性膜としては、例えば反強磁性膜15がFeMn合金で、第1の強磁性膜16がCoFe合金である場合にはCoFePd合金等が挙げられる。第1の強磁性膜16や第2の強磁性膜18にCoFe合金やCoFeB合金等のCo系合金を用いる場合には、反強磁性膜15との間に例えば 0.5〜 3nm程度の厚さのNiFe系の極薄層を挿入してもよい。NiFe系の極薄層はCo系合金の fcc相を安定化させ、Co系合金の保磁力を低下させる。従って、バルクハウゼンノイズのない高感度な再生出力が得やすくなる。
【0058】さらに、例えば図6に示す第3の変形例のように、反強磁性膜15と第1の強磁性膜16との間にNiやNi系合金等からなる厚さ 0.5〜 5nm程度の磁性層34を挿入して、第1の強磁性膜16と磁性層34との間に拡散バリヤ層35を設けてもよい。拡散バリヤ層35は第1の強磁性膜16や非磁性膜17の膜成長を緻密化させる。これによって、大きな抵抗変化率を得るために不可欠な第1の強磁性膜16と非磁性膜17との間に熱的に安定な界面が実現できる。拡散バリヤ層35は磁性層34をスパッタ法等で成膜した後、例えばスパッタ雰囲気中に一旦僅かな酸素(1〜10SCCM程度)を導入(1〜 300秒程度)して、磁性層34の表面を交換結合が働く 3nm以下の厚さで酸化処理することにより形成することができる。拡散バリヤ層35を形成するための処理は、窒化処理、フッ化処理、炭化処理等であってもよい。あるいは、磁性層34を成膜した後に一旦大気開放し、その後成膜してもよい。
【0059】なお、第1の強磁性膜16や第2の強磁性膜18にNiFe合金等のNiを多く含む合金を用い、かつ非磁性膜17にCuを用いる場合には、非磁性膜17と接する界面に例えば 1.5nm以下程度の極薄いCoまたはCo系合金膜を挿入することが好ましい。これにより、NiとCuとの間の拡散を防ぐことができ、抵抗変化率や耐熱性を確保することができる。
【0060】第2の強磁性膜18上には、図5に示したように、必要に応じて軟磁性アシスト膜36が形成される。磁化フリー層である第2の強磁性膜18に軟磁性の良好なNiを多く含む合金を用いる場合には、軟磁性アシスト層36は必ずしも必要ではない。CoFe合金等のCo系合金を用いる場合には、NiFe合金、NiFeX(X:Cr、Nb、Ta、Zr、Hf、W、Mo、V、Ti、Rh、Ir、Cu、Au、Ag、Mn、Re、Ruから選ばれる少なくとも 1種の元素)合金等の結晶質磁性合金、CoZrNb系、CoFeRe系、CoFeAlO系等のアモルファス磁性合金、FeZrN、CoFeTaN等の窒化微結晶合金、CoNbC、FeTaV等の炭化微結晶合金、あるいはこれらの積層膜等からなる軟磁性アシスト膜36を形成することが望ましい。
【0061】軟磁性アシスト膜36はCo系合金からなる第2の強磁性膜18の軟磁性の向上に効果を発揮する。軟磁性アシスト膜36の膜厚は 1〜15nm程度とすることが好ましい。軟磁性アシスト膜36には、センス電流の分流を抑制して高い抵抗変化率を維持する上で、高抵抗の磁性膜を用いることが望ましい。具体的には50μΩcm以上の磁性膜を用いることが好ましい。
【0062】硬質磁性膜20と電極21の形状に関して、例えば以下に示すような場合には一対の硬質磁性膜20の間隔と一対の電極21の間隔はおおよそ一致する。これは、スピンバルブGMR膜14のパターニングに使用したレジストマスクをそのまま利用して、硬質磁性膜20および電極21を連続して成膜し、このレジストマスクを除去した(いわゆるリフトオフ)後、電極形状に合せたレジストマスクを形成してイオンミリング等によりエッチングした場合である。この際、上記した間隔がほぼ再生トラック幅となる。
【0063】一方、一対の硬質磁性膜20の間隔よりも電極21の間隔を広くして、スピンバルブGMR膜14近傍では硬質磁性膜20を電極の一部として利用することもできる。例えば、硬質磁性膜20と電極21の形成を分離して行うことによって、図7に示すように、一対の電極21の間隔を一対の硬質磁性膜20の間隔よりも広くして、一対の電極21を媒体対向面から後退させてもよい。
【0064】このような構成によれば、電極21が媒体対向面から後退した箇所に形成されているため、スピンバルブGMR膜14を媒体対向面に露出させる機械加工工程に直接電極21が晒されることがない。CuやAu等の柔らかい低抵抗材料を電極21に用いていも、研磨により電極21の媒体対向面(ABS)側の形状が広がって、磁気シールド層12、24との絶縁不良を引き起こす等の電極劣化を回避することができる。この場合、スピンバルブGMR膜14近傍では硬質磁性膜20が電極も兼ねるので、硬質磁性膜20の抵抗を極力下げるため、その膜厚を増大することが好ましい。硬質磁性膜20の膜厚は40〜 100nm程度が望ましい。次に、本発明の第2の磁気抵抗効果素子を適用したGMRヘッドの実施形態について、図8を参照して説明する。図8はこの実施形態のGMRヘッドの要部を示す断面図である。なお、GMRヘッド25の全体構造は図1に示した通りである。さらに、本発明の第2の磁気抵抗効果素子を再生素子部に適用して録再分離型磁気ヘッドを構成する場合、その全体構造は図1と同様となる。
【0065】図8に要部を示すGMRヘッドにおいて、スピンバルブGMR膜14は前述と同様に、基板側から順に積層された下地膜32、反強磁性膜15、第1の強磁性膜16、非磁性膜17、第2の強磁性膜18、軟磁性アシスト膜36および保護膜19を有する磁性多層膜により構成されている。なおこれらのうち、下地膜32、軟磁性アシスト膜36、保護膜19等は必要に応じて形成される。さらに、前述した実施形態と同様に、これら以外の層を介在させることも可能である。
【0066】この実施形態のGMRヘッドにおいて、第2の強磁性膜18は磁界検出部(再生トラック)に相当する部分の膜厚t に比べて、再生トラックの両端部外側部分の膜厚t が薄く設定されている。バイアス磁界付与膜37は、第2の強磁性膜18の膜厚t の部分、すなわち膜厚t を有する再生トラックの両端部外側部分の上に積層形成されている。言い換えると、第2の強磁性膜18は磁界検出部に相当する部分の膜厚t に比べて、バイアス磁界付与膜37の下側にあたる部分の膜厚t が薄く設定されている。電極21はバイアス磁界付与膜37上に積層形成されている。
【0067】磁化フリー層を第2の強磁性膜18と軟磁性アシスト膜36との積層膜で構成する場合には、この積層膜の厚さをバイアス磁界付与膜37の下側にあたる再生トラックの両端部外側部分が磁界検出部に相当する部分に比べて薄くなるようにしてもよい。なお、スピンバルブGMR膜14以外の構成については、前述した実施形態と同一構成とされている。
【0068】この実施形態のGMRヘッドでは、再生トラックの両端部外側部分を磁化フリー層である第2の強磁性膜18の一部までしかエッチングしないため、エッチング量が僅かとなる。従って、エッチングにはイオンミリングに限らず、より簡単な逆スパッタエッチを適用してもよい。
【0069】バイアス磁界付与膜37には、例えばNiMn合金、FeMn合金、IrMn合金、PdPtMn合金、RhMn合金、RuMn合金、PtMn合金、CrMnPt合金等の導電性を有する反強磁性膜、あるいはCoPt合金等の導電性を有する硬質磁性膜が用いられる。さらに、図3に示した構造と同様に、強磁性膜26と反強磁性膜27との積層膜28を、バイアス磁界付与膜37に適用することも可能である。
【0070】バイアス磁界付与膜37に反強磁性膜を適用する場合、その膜厚は 3〜70nmとすることが好ましい。より具体的にはNiMn合金の場合には25nm以上とすることが、FeMn合金の場合には 5nm以上、IrMn合金の場合には 3nm以上、PdPtMn合金の場合には 5nm以上とすることが、安定した交換バイアスを得る上で望ましい。
【0071】ここで、図9にIrMn合金を例にとって、反強磁性膜で交換バイアスを付与する磁性膜の厚さと交換バイアスとの関係を示す。図9から、磁性膜の厚さが減少すると、急激に交換バイアスが向上することが分かる。他の反強磁性膜も同様である。従って、バイアス磁界付与膜37としての反強磁性膜の下側に存在する磁化フリー層、すなわち第2の強磁性膜18あるいは第2の強磁性膜18と軟磁性アシスト膜36との積層膜の膜厚を、再生トラックの両端部外側部分において薄くすることによって、交換バイアスを増大させることができる。
【0072】具体的には、バイアス磁界付与膜37としての反強磁性膜の下側の磁化フリー層の厚さは 2〜 5nm程度とすることが好ましい。その結果、媒体からの信号磁界による反強磁性膜(37)直下の磁化変化を概ね零にすることができ、再生フリンジの低減を実現することが可能となる。また、磁化フリー層としての第2の強磁性膜18には、適度なバイアス磁界が付与されて、バルクハウゼンノイズを安定して抑制することができる。
【0073】バイアス磁界付与膜37として反強磁性膜を用いる場合、この反強磁性膜と第2の強磁性膜18あるいは軟磁性アシスト膜36との間には、格子定数がこれらの中間の強磁性膜または反強磁性膜を挿入することが、交換バイアスの強度を増大させる上で望ましい。例えば、第2の強磁性膜18にCoFe合金を用い、かつバイアス磁界付与膜37としての反強磁性膜にFeMn合金を用いる場合には、CoFeにPd等の添加元素を加えて格子定数をFeMn合金に近付けた中間強磁性膜を介挿することが望ましい。
【0074】一方、バイアス磁界付与膜37に硬質磁性膜を適用する場合には、硬質磁性膜とその下側に存在する磁化フリー層(第2の強磁性膜18、あるいは第2の強磁性膜18と軟磁性アシスト膜36との積層膜)とを合せた磁気的膜厚(残留磁化Mrと膜厚tの積(Mr×t))が、硬質磁性膜の下側に存在する磁化フリー層の磁気的膜厚の 2倍以上であることが好ましい。これは磁化フリー層の磁気的膜厚が相対的に増大すると、磁化フリー層からの反作用により硬質磁性膜の磁化が不安定化(具体的には保磁力の低下)し、硬質磁性膜との交換結合による磁化フリー層の磁化の安定化が不十分となるためである。言い換えると、バイアス磁界付与膜37としての硬質磁性膜の下側に存在する磁化フリー層の膜厚を薄くすることによって、その部分での磁化フリー層の磁化が十分に安定化され、再生フリンジを低減することができる。バイアス磁界付与膜37が強磁性膜26と反強磁性膜27との積層膜28である場合も同様である。
【0075】例えば、バイアス磁界付与膜37としてCoPt合金(Mr=1T)を用い、かつ第2の強磁性膜18としてCoFe合金(Mr=1.8T)を用いた場合を例にとると、CoPt合金膜の膜厚が18nm、CoFe合金膜の膜厚が10nmの場合にはMr×tの値が両者ほぼ同一となる。CoPt単層膜での保磁力1500Oe がCoFe合金膜と積層することにより 700Oe と約 1/2にまで低下するが、CoFe合金膜の膜厚をMr×t=2となる 4nmとすると(CoPt厚は同様)、CoFe合金膜と積層した場合の保磁力は1050Oe であり、保磁力の低下はそれ程顕著ではない。バイアス磁界付与膜37としては、図3に示したように、反強磁性膜と強磁性膜との積層膜を用いてもよい。
【0076】バイアス磁界付与膜37として硬質磁性膜を用いる場合、第2の強磁性膜18からのエピタキシャル的な結晶成長によりCo系硬質磁性膜のc軸が膜面垂直方向に配向してしまい、硬質磁性膜の保磁力が低下するおそれがある。この場合、第2の強磁性膜18とバイアス磁界付与膜37としての硬質磁性膜との中間に膜厚が 1〜10nm程度のアモルファス的な層を挿入して、硬質磁性膜の保磁力の低下を抑制することが好ましい。この層は例えば膜厚 5nm程度のCr膜である。このCr膜のうち、厚さ 2nm程度の初期層はアモルファスであり、その上の 3nm程度は結晶層となる。
【0077】上述した第2の実施形態のGMRヘッドにおいては、磁化フリー層が基板側に存在する従来のスピンバルブ膜で問題となっていたバイアス磁界付与膜のパターニングに基くスピンバルブ膜の下地表面の乱れを防ぐことができる。よって、安定したスピンバルブ膜特性が実現できる。
【0078】また、再生トラックの両端部外側部分における交換結合領域の磁化フリー層の膜厚を磁界検出部よりも薄くすることによって、反強磁性膜からなるバイアス磁化付与膜では交換バイアス力の増大が、硬質磁性膜からなるバイアス磁化付与膜では保磁力の増大が期待できる。従って、目的とするトラック端部での磁化フリー層の磁化固着がより安定化され、バルクハウゼンノイズの抑制が容易となる。さらに、硬質磁性膜によるバイアス磁界の付与においても、磁化固着層との直接的な壁面での接触がないために、硬質磁性膜からの漏洩磁界により磁化固着層の磁化方向が乱されるといった悪影響が少なくなる。その結果、バルクハウゼンノイズがなく、線形応答性に優れた再生が実現できる。
【0079】次に、本発明の第3の磁気抵抗効果素子を適用したGMRヘッドの実施形態について、図10を参照して説明する。図10はこの実施形態のGMRヘッドの要部を示す断面図である。なお、GMRヘッド25の全体構造は図1に示した通りである。さらに、本発明の第3の磁気抵抗効果素子を再生素子部に適用して録再分離型磁気ヘッドを構成する場合、その全体構造は図1と同様となる。
【0080】図10に要部を示すGMRヘッドにおいて、スピンバルブGMR膜14は前述した実施形態と同様に、基板側から順に積層された反強磁性膜15、第1の強磁性膜16、非磁性膜17、第2の強磁性膜18および保護膜19を有する磁性多層膜により構成されている。なお、前述した実施形態と同様に、これら以外の層を介在させることも可能である。
【0081】スピンバルブGMR膜14上の磁界検出部(再生トラック)から外れた両外側部分において、第2の強磁性膜18上には一対のバイアス磁界付与膜37として反強磁性膜が設けられている。バイアス磁界付与膜37には、反強磁性膜15とはブロッキング温度が異なる反強磁性膜を用いる。バイアス磁界付与膜37が積層形成される部分は、前述した第2の実施形態と同様に、再生トラックの両端部外側部分を第2の強磁性膜18の一部までエッチングし、この膜厚が減少した分をバイアス磁界付与膜37の下地膜として第2の強磁性膜18と同一の強磁性膜を形成してもよい。
【0082】第2の強磁性膜18の膜厚は、前述した第2の実施形態と同様に、バイアス磁界付与膜37からの交換バイアスを増大させることができるような厚さに設定することが好ましい。具体的には、第2の強磁性膜18の膜厚は 2〜10nm程度とすることが好ましい。また、バイアス磁界付与膜37としての反強磁性膜の膜厚についても、第2の実施形態と同様とすることが好ましい。
【0083】スピンバルブGMR膜14およびバイアス磁界付与膜37上には、Ti等からなる高抵抗保護膜38が形成されている、高抵抗保護膜38上には、一対の電極21が形成されている。一対の電極21の間隔は、一対のバイアス磁界付与膜37の間隔より狭くなるようにパターニングされている。この電極21のイオンミリングやRIE等によるパターニングにおいて、高抵抗保護膜38はエッチングストッパとして機能する。これにより、スピンバルブGMR膜14のオーバーエッチを防ぐことができる。
【0084】一対の電極21の間隔を一対のバイアス磁界付与膜37の間隔より狭くした場合、一対の電極21の間隔でトラック幅が規定される。このような構造においては、バイアス磁界付与膜37近傍の低感度領域が除かれるため、狭トラック幅で高感度な再生出力を得ることができる。なお、バイアス磁界付与膜37の成膜と同時に電極21を成膜し、これらをリフトオフパターニングしてもよい。この場合、一対のバイアス磁界付与膜37と一対の電極21の間隔はほぼ等しくなる。上述した第3の実施形態のGMRヘッドにおいては、磁化フリー層が基板側に存在する従来のスピンバルブ膜で問題となっていたバイアス磁界付与膜のパターニングに基くスピンバルブ膜の下地の乱れを防ぐことができる。さらに、電極21をパターニングする際のスピンバルブGMR膜14のオーバーエッチ等は、高抵抗保護膜38により防ぐことができる。よって、安定したスピンバルブ膜特性が実現できる。
【0085】また、磁化フリー層である第2の強磁性膜18の膜厚を薄くすることによって、反強磁性膜からなるバイアス磁化付与膜37からの交換バイアス力を増大させることができる。従って、磁化フリー層の磁化が安定化され、バルクハウゼンノイズが抑制される。その結果、バルクハウゼンノイズがなく、線形応答性に優れた再生が実現できる。
【0086】なお、上述した各実施形態では本発明の磁気抵抗効果素子を録再分離型磁気ヘッドの再生素子部に適用する場合について説明したが、本発明の磁気抵抗効果素子はこれに限られるものではない。例えば、一対の磁気ヨークを記録ヘッドと再生ヘッドで共有する録再一体型磁気ヘッド等の他のヘッド構造についても、本発明の磁気抵抗効果素子は適用可能である。
【0087】次に、本発明の磁気抵抗効果素子を磁気抵抗効果メモリ(MRAM)等の磁気記憶装置に適用した実施形態、すなわち本発明の磁気記憶装置の実施形態について説明する。
【0088】図11は巨大磁気抵抗効果(GMR)を利用したMRAMの一実施形態の構成を示す図である。同図に示すMRAM40は、ガラス基板やSi基板等の基板41上に形成されたスピンバルブGMR膜42を有している。スピンバルブGMR膜42は、前述した各実施形態のGMRヘッドと同様に反転積層構造を有し、その再生トラックの両端部外側部分の上に形成された一対のバイアス磁界付与膜43を有している。スピンバルブGMR膜42とバイアス磁界付与膜43との積層構造等は、図2、図3、図5、図6、図8、図9等に示した構造と同様とされている。
【0089】スピンバルブGMR膜42の上部には、絶縁層44を介して書き込み電極45が設けられている。また、スピンバルブGMR膜42の両端部には、一対の読み出し電極46が設けられており、この一対の読み出し電極46からスピンバルブGMR膜42にセンス電流が供給される。なお、図中47は読み出し補助電極である。
【0090】上記したMRAM40における情報の書き込みおよび読み出しは、例えば以下のようにして行われる。まず、情報の書き込みは、書き込み電極45に電流を流して外部磁界を印加し、磁化固着層の磁化方向を“1”または“0”に対応する方向とすることにより行われる。
【0091】記憶情報の読み出しは、読み出し電極46からセンス電流を流した状態で、書き込み電極45に正負のパルス電流を流し、その電流磁界により磁化フリー層の磁化方向を反転させる。書き込み電極45の正負に対して、磁化フリー層の磁化方向は磁化固着層の“1”、“0”にかかわらず一定である。一方、“1”または“0”として記憶された磁化固着層50の磁化方向によって、書き込み電極45のパルス電流が正のときにスピンバルブGMR膜42の上下強磁性層の磁化方向が平行で負のときに反平行か、もしくは書き込み電極45のパルス電流が負のときに磁化方向が平行で正のときに反平行かが決まる。従って、書き込み電極45に例えば正→負のパルス電流を流したとき、センス電流の抵抗が大→小か、小→大かによって、磁化固着層の“1”または“0”が判別される。
【0092】MRAM40におけるバイアス磁界付与膜43は、書き込み電極45に正負のパルス電流を流したときの磁化フリー層の磁化反転が生じる磁界の大きさを制御したり、また磁区が形成された状態での不規則な磁化反転に伴うノイズを抑制するものである。ここで、バイアス磁化付与膜については、高集積化に対応してより薄い膜で、微小セルサイズに伴う反磁界の増大を抑制するのに十分なバイアス力を得ることが重要である。前述した各実施形態で詳細に述べたように、本発明によるバイアス磁界付与膜によれば十分なバイアス力が得られるため、MRAM40は高集積化を実現可能とするものである。
【0093】
【発明の効果】以上説明したように、本発明の磁気抵抗効果素子によれば、再生フリンジやバルクハウゼンノイズを抑制した上で、接触抵抗の低減、絶縁不良の抑制、良好な線形応答性等が実現可能となる。従って、そのような磁気抵抗効果素子を用いた本発明の磁気ヘッド、磁気記録再生ヘッドおよび磁気記憶装置によれば、良好な動作特性等を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の磁気抵抗効果素子を再生素子部に適用した録再分離型磁気ヘッドの一実施形態の構造を示す断面図である。
【図2】図1に示す録再分離型磁気ヘッドの要部である磁気抵抗効果素子部を拡大して示す断面図である。
【図3】図2に示す磁気抵抗効果素子の第1の変形例を示す断面図である。
【図4】図1に示す録再分離型磁気ヘッドの要部である磁気抵抗効果素子の平面図である。
【図5】図2に示す磁気抵抗効果素子の第2の変形例を示す断面図である。
【図6】図2に示す磁気抵抗効果素子の第3の変形例を示す断面図である。
【図7】図2に示す磁気抵抗効果素子の第4の変形例を示す平面図である。
【図8】本発明の第2の磁気抵抗効果素子を適用した磁気抵抗効果ヘッドの一実施形態の要部構造を示す断面図である。
【図9】反強磁性膜で交換バイアスを付与する磁性膜の厚さと交換バイアスとの関係の一例を示す図である。
【図10】本発明の第3の磁気抵抗効果素子を適用した磁気抵抗効果ヘッドの一実施形態の要部構造を示す断面図である。
【図11】本発明の磁気抵抗効果素子を適用した磁気記憶装置の一実施形態の要部構造を示す断面図である。
【図12】従来の磁気抵抗効果ヘッドの一構成例を示す断面図である。
【符号の説明】
11 基板
12、24 磁気シールド層
13、23 再生磁気ギャップ
14 磁気抵抗効果膜(GMR膜)
15 反強磁性膜
16 第1の強磁性膜
17 非磁性膜
18 第2の強磁性膜
20 一対の硬質磁性膜
21 一対の電極
22 GMR再生素子
25 シールド型GMRヘッド
29 薄膜磁気ヘッド
30 記録磁気ギャップ
31 磁極
37 一対のバイアス磁界付与膜
40 MRAM
42 スピンバルブGMR膜
43 バイアス磁界付与膜
45 書き込み電極
46 一対の読み出し電極

【特許請求の範囲】
【請求項1】基板と、前記基板の主表面上に、前記基板側から順に積層された第1の反強磁性膜、第1の強磁性膜、非磁性膜および第2の強磁性膜を少なくとも含む巨大磁気抵抗効果を示す磁性多層膜を有し、かつ前記第2の強磁性膜が磁界検出部と前記磁界検出部の両端にそれぞれ設けられ前記磁界検出部より薄い膜厚を有する外側部とを有する磁気抵抗効果膜と、前記第2の強磁性膜の前記外側部の上にそれぞれ積層された一対のバイアス磁界付与膜と、前記磁気抵抗効果膜に電流を供給する一対の電極と、を備えたことを特徴とする磁気抵抗効果素子。
【請求項2】前記バイアス磁界付与膜は、第2の反強磁性膜、硬質磁性膜および強磁性膜と反強磁性膜との積層膜から選ばれる1種であることを特徴とする請求項1記載の磁気抵抗効果素子。
【請求項3】前記バイアス磁界付与膜は、硬質磁性膜または強磁性膜と反強磁性膜との積層膜であり、かつ前記バイアス磁界付与膜と前記第2の強磁性膜の前記外側部とを合わせた磁気的膜厚が前記第2の強磁性膜の前記外側部の磁気的膜厚の2倍以上であることを特徴とする請求項1記載の磁気抵抗効果素子。
【請求項4】第1の反強磁性膜と、前記反強磁性膜の上に設けられた第1の強磁性膜と、前記第1の強磁性膜の上に設けられた非磁性膜と、前記非磁性膜の上に設けられた第2の強磁性膜と、を有し、かつ前記第2の強磁性膜が磁界検出部と前記磁界検出部の両端に設けられた外側部とを有し、前記外側部の膜厚は前記磁界検出部よりも薄く、さらに前記磁界検出部と前記外側部とは互いに平行な主面をそれぞれ有する、磁気抵抗効果膜と、前記第2の強磁性膜の前記外側部の主面とそれぞれ接触して設けられた一対の第2の反強磁性膜と、前記磁気抵抗効果膜に電流を供給する一対の電極と、を備えたことを特徴とする磁気抵抗効果素子。
【請求項5】基板の上に順次、前記第1の反強磁性膜、前記第1の強磁性膜、前記非磁性膜、前記第2の強磁性膜が積層されたことを特徴とする請求項4記載の磁気抵抗効果素子。
【請求項6】前記第1の強磁性膜は、前記第1の反強磁性膜と接触した第1の主面と、前記第1の主面の反対側で前記非磁性膜の第1の主面と接触した第2の主面と、を有し、前記非磁性膜は、前記非磁性膜の第1の主面の反対側で前記第2の強磁性膜と接触した第2の主面を有することを特徴とする請求項4または5に記載の磁気抵抗効果素子。
【請求項7】前記第2の強磁性膜の前記外側部の膜厚は、2nm以上5nm以下であることを特徴とする請求項1〜6のいずれ1つに記載の磁気抵抗効果素子。
【請求項8】前記第1及び第2の反強磁性膜の少なくともいずれかは、IrMn合金、RhMn合金、RuMn合金、PdPtMn合金、CrMnPt合金、FeMn合金、NiMn合金およびPtMn合金から選ばれる少なくともいずれか1種の金属系反強磁性材料からなることを特徴とする請求項2〜6のいずれか1つに記載の磁気抵抗効果素子。
【請求項9】前記第1の反強磁性膜の下側に、fcc相を有する金属膜が下地膜として設けられたことを特徴とする請求項1〜8のいずれか1つに記載の磁気抵抗効果素子。
【請求項10】前記第1の強磁性膜および前記第2の強磁性膜の少なくともいずれかは、CoFe合金からなることを特徴とする請求項1〜9のいずれか1つに記載の磁気抵抗効果素子。
【請求項11】前記第1の反強磁性膜と前記第1の強磁性膜との間に磁性膜が挿入され、かつ前記第1の強磁性膜と前記磁性膜との間に拡散バリア層が設けられてなることを特徴とする請求項1〜10のいずれか1つに記載の磁気抵抗効果素子。
【請求項12】前記一対の電極の間隔は、前記一対のバイアス磁界付与膜または前記一対の第2の反強磁性膜の間隔よりも狭いものとして構成されたことを特徴とする請求項1〜11のいずれか1つに記載の磁気抵抗効果素子。
【請求項13】前記第1の反強磁性膜からみて前記第1の強磁性膜とは反対側において前記第1の反強磁性膜に隣接して設けられ、NiFeX(Xは、Cr、Nb、Zr、Hf、W、Mo、V、Ti、Rh、Ir、Cu、Au、Ag、Mn、ReおよびRuよりなる群から選ばれた少なくともいずれかの元素である)からなる層が設けられたことを特徴とする請求項1〜12のいずれか1つに記載の磁気抵抗効果素子。
【請求項14】請求項1〜13のいずれか1つに記載の磁気抵抗効果素子と、前記磁気抵抗効果素子の下に設けられた第1の再生磁気ギャップ層と、前記第1の再生磁気ギャップ層の下に設けられた第1の磁気シールド層と、前記磁気抵抗効果素子の上に設けられた第2の再生磁気ギャップ層と、前記第2の再生磁気ギャップ層の上に設けられた第2の磁気シールド層と、を備えたことを特徴とする磁気ヘッド。
【請求項15】請求項14記載の磁気ヘッドと、前記第2の磁気シールド層と共通化された第1の磁極と、前記第1の磁極の上に設けられた記録磁気ギャップと、前記記録磁気ギャップの上に設けられた第2の磁極と、を備え、前記第1の磁気シールド層から前記第2の磁気シールド層までの部分は、再生ヘッドとして作用し、前記第1の磁極から前記第2の磁極までの部分は、記録ヘッドとして作用することを特徴とする磁気記録再生ヘッド。
【請求項16】請求項1〜13のいずれか1つに記載の磁気抵抗効果素子と、前記磁気抵抗効果素子の磁気抵抗効果膜に情報を記憶する書き込み電極と、前記磁気抵抗効果素子の前記電極からなる、前記磁気抵抗効果膜に記憶された情報を再生する読み出し電極と、を備えたことを特徴とする磁気記憶装置。

【図1】
image rotate


【図2】
image rotate


【図3】
image rotate


【図4】
image rotate


【図5】
image rotate


【図6】
image rotate


【図7】
image rotate


【図8】
image rotate


【図9】
image rotate


【図10】
image rotate


【図12】
image rotate


【図11】
image rotate


【公開番号】特開2002−57383(P2002−57383A)
【公開日】平成14年2月22日(2002.2.22)
【国際特許分類】
【出願番号】特願2001−171234(P2001−171234)
【分割の表示】特願平9−229736の分割
【出願日】平成9年8月26日(1997.8.26)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】