説明

膜測定方法

【課題】高スループットかつ高精度な膜測定を安価で容易に行なう膜測定方法を得ること。
【解決手段】第1の基板上に形成されたサンプル膜Aに光を照射して膜質測定した場合の膜質情報3Aと、第2の基板上に形成されサンプル膜Aと同じ種類の膜材であるサンプル膜Bに光を照射して膜質測定した場合の膜質情報3Bと、を比較し、膜質測定結果の差が所定値よりも小さくなる波長の光を、膜厚測定に用いる波長領域の光として選択し、サンプル膜A,Bと同じ種類の膜材である測定対象膜に、選択した波長領域の光を照射して、測定対象膜の膜厚を測定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、膜測定方法に関する。
【背景技術】
【0002】
基板上に半導体装置を形成する際の検査工程の1つとして、基板上に成膜した材料の膜質、膜厚等を光学的手法によって膜測定する工程がある。この光学的手法は、大きく分けて2つの方法に分類される。光学的手法による膜測定の1つは、分光反射率計測と呼ばれる方法であり、この方法では単純にサンプルからの反射強度のみを計測して膜測定している。光学的手法による膜測定のもう一方は、分光エリプソメトリと呼ばれる方法であり、この方法では光を偏光させ、厳密に光の変化の様子を捉えて膜測定している(例えば、非特許文献1参照)。
【0003】
分光エリプソメトリは、膜測定の精度面では非常に優れており、特に膜質等の解析には必須な技術といえる。一方、分光反射率計測は、装置構成が簡易で安価であるが、膜測定の精度は分光エリプソメトリよりも劣るので、単純な膜測定にのみ使用されることが一般的である。このため、高精度な膜測定が要求される場合には、分光エリプソメトリが用いられる。
【0004】
しかしながら、分光エリプソメトリは、光を偏光させる必要があるので装置構成が複雑になり、その結果、装置コストが高くなる。また、偏光子を回転させる必要などがあるので、分光反射率計測よりも膜測定に長時間を要し、スループットが低くなる。さらには、膜に照射する光を斜めに照射する必要があるので、膜へ照射する光のスポットサイズを小さくすることが困難である。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】Nadine BLAYO, PhD Jobin Yvon S. A.著,「技術情報誌”Readout”」,'分光エリプソメトリによる屈折率計測'(Full Automatic Spectroscopic Ellipsometer UT-300 Part 2 Basic Principles of Ellipsometry and PEM),Readout No.21 September 2000,HORIBA Technical Reports
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上記に鑑みてなされたものであって、高スループットかつ高精度な膜測定を安価で容易に行なうことができる膜測定方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本願発明の一態様によれば、第1の基板上に形成された第1のサンプル膜に光を照射して膜質測定した場合の第1の膜質と、第2の基板上に形成され前記第1のサンプル膜と同じ種類の膜材である第2のサンプル膜に前記光を照射して膜質測定した場合の第2の膜質と、で膜質測定結果の差が所定値よりも小さくなる波長の光を、膜厚測定に用いる波長領域の光として選択する波長選択ステップと、前記第1および前記第2のサンプル膜と同じ種類の膜材である測定対象膜に、選択した前記波長領域の光を照射して、前記測定対象膜の膜厚を測定する膜厚測定ステップと、を含むことを特徴とする膜測定方法が提供される。
【発明の効果】
【0008】
本発明によれば、高スループットかつ高精度な膜測定を安価で容易に行なうことが可能になるという効果を奏する。
【図面の簡単な説明】
【0009】
【図1】図1は、第1の実施の形態に係る分光反射率計測装置の構成を示す図である。
【図2】図2は、分光エリプソメトリの構成を示す図である。
【図3】図3は、分光反射率計測装置や分光エリプソメトリが測定する膜を説明するための図である。
【図4】図4は、第1の実施の形態に係る膜厚測定方法の処理手順を示すフローチャートである。
【図5】図5は、サンプル膜から得られる反射光の特性例を示す図である。
【図6】図6は、反射光の特性から算出された膜質を示す図である。
【図7】図7は、サンプル膜の比較処理を説明するための図である。
【図8】図8は、従来の方法でサンプル膜の膜厚を測定した場合の膜厚測定結果を示す図である。
【図9】図9は、第1の実施の形態に係る膜厚測定方法でサンプル膜を測定した場合の膜厚測定結果を示す図である。
【図10】図10は、第2の実施の形態に係る膜厚測定方法の処理手順を示すフローチャートである。
【図11】図11は、分光反射率計測で得られる光強度を示す図である。
【図12】図12は、分光反射率計測装置で測定した膜厚の測定結果を示す図である。
【図13】図13は、既知の膜厚を用いて算出した屈折率の算出結果を示す図である。
【図14】図14は、従来の分光反射率計測方法で測定した膜厚と屈折率の測定結果を示す図である。
【図15】図15は、分光エリプソメトリのみを用いて測定した膜質の測定結果を示す図である。
【図16】図16は、分光エリプソメトリのみを用いて測定した膜厚と屈折率の測定結果を示す図である。
【図17】図17は、第1の実施の形態に係る分光反射率計測装置が備える情報処理装置のハードウェア構成を示す図である。
【発明を実施するための形態】
【0010】
以下に添付図面を参照して、本発明の実施の形態に係る膜厚測定方法を詳細に説明する。なお、これらの実施の形態により本発明が限定されるものではない。
【0011】
(第1の実施の形態)
図1は、第1の実施の形態に係る分光反射率計測装置の構成を示す図である。本実施の形態では、後述する分光エリプソメトリ2を用いて、測定対象となる膜材(後述するサンプル膜A,B)の膜質を測定しておく。そして、分光反射率計測装置1は、分光エリプソメトリ2が測定した膜質を用いて、製品となる基板上などに形成された測定対象膜(被測定膜C)の膜厚を測定する際に用いる光の波長(以下、製品測定用波長という)を決定する。そして、分光反射率計測装置1は、決定した製品測定用波長を用いて、被測定膜Cの膜厚を測定する。分光エリプソメトリ2が測定する膜質は、光学定数であり、例えば屈折率や消衰係数などである。また、サンプル膜A,Bや被測定膜Cは、同一種類の膜材(例えばシリコン窒化膜)である。したがって、分光反射率計測装置1は、分光エリプソメトリ2が膜質を測定した膜材と同じ種類の膜材の膜厚を測定する。
【0012】
分光反射率計測装置1は、光学系10と情報処理装置20を備えている。光学系10は、被測定膜Cに光を照射して、被測定膜Cからの反射光を検出する機能を有している。被測定膜Cは、例えばウエハなどの半導体基板上に積層(成膜)された膜である。
【0013】
光学系10は、光源11、分光器15、検出器16を含んで構成されている。光源11は、白色光などの光を発する。光源11が発した白色光は、入射光12として被測定膜Cに送られ、被測定膜C上で反射される。被測定膜Cで反射した反射光14は、分光器15に送られる。
【0014】
分光器15は、反射光14を分光させて検出器16に送る。検出器16は、分光器15から送られてくる分光光を検出する装置である。検出器16は、検出した分光光に応じた検出信号を情報処理装置20に送る。
【0015】
情報処理装置20は、検出器16からの検出信号を用いて被測定膜Cの膜厚や膜質を算出するコンピュータなどの装置である。情報処理装置20は、制御部21、記憶部22、計算部23、入力部24、出力部25を備えている。
【0016】
入力部24は、分光エリプソメトリ2が測定したサンプル膜A,Bの膜質に関する情報(サンプル膜情報)、分光反射率計測装置1が測定する膜の種類に関する情報(被測定膜Cの膜材を指定する情報)などを入力し、計算部23に送る。記憶部22は、検出器16からの検出信号や計算部23の計算結果(被測定膜Cの膜厚)などを記憶するメモリなどである。
【0017】
制御部21は、光源11を制御するとともに、計算部23を制御する。制御部21は、膜厚測定に用いる膜厚測定レシピを記憶する。計算部23は、入力部24から送られてくるサンプル膜情報、記憶部22が記憶する検出信号、制御部21が記憶している膜厚測定レシピを用いて、被測定膜Cの膜厚を算出する。出力部25は、計算部23が算出した被測定膜Cの膜厚を、膜厚の測定結果として出力する。
【0018】
つぎに、サンプル膜A,Bの膜質を測定する分光エリプソメトリ2の構成について説明する。図2は、分光エリプソメトリの構成を示す図である。分光エリプソメトリ2は、光学系40と情報処理装置50を備えている。光学系40は、サンプル膜A,Bに光を照射して、サンプル膜A,Bからの反射光を検出する機能を有している。サンプル膜A,Bは、例えばウエハなどの半導体基板上に成膜された膜である。
【0019】
光学系40は、光源41、偏光子42、検光子45、検出器46を含んで構成されている。光源41は、白色光などの光を発する。偏光子42は、光源41が発した白色光を例えば直交する2方向に偏光し、振幅や波長を揃える。偏光子42を出た光は、入射光43として入射角度θでサンプル膜Aやサンプル膜Bに送られ、サンプル膜A,B上で反射される。サンプル膜A,Bで反射した反射光44は、検光子45に送られる。
【0020】
検光子45は、直交する2方向に偏光されてサンプル膜A,Bで反射された光の中から検光子45の配置方向に応じた振動成分を取り出して検出器46に送る。検出器46は、検光子45から送られてくる光の振動成分を検出する装置である。検出器46は、検出した振動成分に応じた検出信号を情報処理装置50に送る。
【0021】
情報処理装置50は、検出器46からの検出信号を用いてサンプル膜A,Bの膜質を算出するコンピュータなどの装置である。情報処理装置50は、制御部51、記憶部52、計算部53、入力部54、出力部55を備えている。
【0022】
入力部54は、分光エリプソメトリ2が測定する膜の種類に関する情報(サンプル膜A,Bの膜材を指定する情報)などを入力し、計算部53に送る。記憶部52は、検出器46からの検出信号や計算部53の計算結果(サンプル膜A,Bの膜質)などを記憶するメモリなどである。
【0023】
制御部51は、光源41を制御するとともに、計算部53を制御する。制御部51は、膜質測定に用いる膜質測定レシピを記憶する。計算部53は、入力部54から送られてくるサンプル膜A,Bの膜材を指定する情報、記憶部52が記憶する検出信号、制御部51が記憶している膜質測定レシピを用いて、サンプル膜A,Bの膜質を算出する。出力部55は、計算部53が算出したサンプル膜A,Bの膜質を、膜質の測定結果として出力する。
【0024】
ここで、分光反射率計測装置1や分光エリプソメトリ2が測定する膜(サンプル膜A,Bや被測定膜C)について説明する。図3は、分光反射率計測装置や分光エリプソメトリが測定する膜を説明するための図である。図3では、分光反射率計測装置1や分光エリプソメトリ2によって測定される膜の断面構成を示している。分光反射率計測装置1や分光エリプソメトリ2が測定する膜は、サンプル膜A,Bや被測定膜Cであり、例えばシリコン31上に形成された膜(図3では測定膜32として図示)である。例えば、サンプル膜Aは第1の基板上に成膜され、サンプル膜Bは第2の基板上に成膜され、被測定膜Cは、製品基板(第3の基板)上に成膜される。
【0025】
サンプル膜A,Bや被測定膜Cは、例えばシリコン窒化膜(SiN)などの同一の膜材で成膜されている。サンプル膜Aは、例えばプロセス条件の許容上限値で作製された膜であり、サンプル膜Bは、例えばプロセス条件の許容下限値で作製された膜である。これにより、プロセス条件の許容上限値から許容下限値で形成された膜の膜質(サンプル膜情報)を用いて、被測定膜Cの膜厚が測定されることとなる。なお、本実施の形態では、膜質の測定に用いるサンプル膜がサンプル膜A,Bの2種類である場合について説明するが、サンプル膜は3種類以上であってもよい。また、サンプル膜A,Bは、異なるプロセス条件で成膜させる場合に限らず、異なる装置で成膜させてもよい。
【0026】
つぎに、第1の実施の形態に係る膜厚測定方法の処理手順について説明する。図4は、第1の実施の形態に係る膜厚測定方法の処理手順を示すフローチャートである。まず、分光エリプソメトリ2によってサンプル膜A,Bの膜質を測定する。具体的には、まず分光エリプソメトリ2にサンプル膜A,Bをセットし、サンプル膜A,Bからの反射光44の特性を測定する。
【0027】
図5は、サンプル膜から得られる反射光の特性例を示す図である。サンプル膜A,Bに入射光43を照射すると、情報処理装置50へは、反射光44に応じた検出信号が送られる。この検出信号は、計算部53によって反射光44の特性を示す情報に変換される。図5の(a)は、入射光43の波長と、反射光44の直交する光の強度比を示す情報(強度比情報)と、の対応関係(特性情報101)を示している。また、図5の(b)は、入射光43の波長と、反射光44の直交する光の位相差と、の対応関係(特性情報102)を示している。
【0028】
図5の(a)に示す特性情報101は、横軸が入射光43の波長であり、縦軸が強度比情報である。また、図5の(b)に示す特性情報102は、横軸が入射光43の波長であり、縦軸が位相差である。特性情報101の強度比情報や特性情報102の位相差は、偏光された後の入射光43がサンプル膜A,Bへの照射前後でどのように変化したかを規格化したものである。
【0029】
計算部53は、図5に示した特性情報101の波形や特性情報102の波形を解析し、サンプル膜A,Bの膜質が算出される。図6は、反射光の特性から算出された膜質を示す図である。計算部53は、サンプル膜A,Bの膜質を定義するためのモデルとして、例えばハーモニックオシレータを用いる。なお、計算部53は、サンプル膜A,Bの膜質を定義するためのモデルとして、ハーモニックオシレータ以外の他のモデルを用いてもよい。このように、計算部53は、ハーモニックオシレータを用いてサンプル膜A,Bの特性を解析し、サンプル膜A,Bの膜質を算出(定義)する。
【0030】
図6の(a)は、入射光43の波長と屈折率との対応関係(屈折率情報201)を示している。また、図6の(b)は、入射光43の波長と消衰係数との対応関係(屈折率情報201)を示している。なお、本実施の形態では、膜質が屈折率と消衰係数である場合について説明するが、膜質は屈折率だけで定義してもよいし、屈折率や消衰係数以外の要素を用いて定義してもよい。
【0031】
図6の(a)に示す屈折率情報201は、横軸が入射光43の波長であり、縦軸が屈折率である。また、図6の(b)に示す消衰係数情報202は、横軸が入射光43の波長であり、縦軸が消衰係数である。計算部53は、特性情報101の波形や特性情報102を用い、制御部51内の膜質測定レシピにリンクすることによって、屈折率情報201、消衰係数情報202を算出する。計算部53は、サンプル膜A,Bの膜質として、サンプル膜A,B毎に屈折率情報201、消衰係数情報202を算出する(ステップS10)。
【0032】
本実施の形態では、算出したサンプル膜Aの膜質とサンプル膜Bの膜質を比較することによって、被測定膜Cの膜厚を測定する際に用いる製品測定用波長を算出する。製品測定用波長は、分光エリプソメトリ2、分光反射率計測装置1、これら以外の他の装置の何れが算出してもよい。本実施の形態では、分光反射率計測装置1が製品測定用波長を算出する場合について説明する。計算部53が算出したサンプル膜A,B毎の屈折率情報201、消衰係数情報202は、出力部55から出力され、分光反射率計測装置1の入力部24に入力される。
【0033】
サンプル膜A,B毎の屈折率情報201、消衰係数情報202は、記憶部22によって記憶される。計算部23は、サンプル膜Aの膜質とサンプル膜Bの膜質を比較する。図7は、サンプル膜の比較処理を説明するための図である。図7の(a)では、サンプル膜Aの膜質を膜質情報3Aで示し、図7の(b)では、サンプル膜Bの膜質を膜質情報3Bで示している。また、図7の(c)では、サンプル膜A,Bの比較結果(波形の重ね合わせ)を比較情報3Xで示している。
【0034】
膜質情報3Aは、サンプル膜Aの屈折率情報301Aと消衰係数情報302Aを有している。膜質情報3Bは、サンプル膜Bの屈折率情報301Bと消衰係数情報302Bを有している。また、比較情報3Xは、屈折率情報301Aと屈折率情報301Bとの比較結果を示す屈折率比較情報301Xと、消衰係数情報302Aと消衰係数情報302Bとの比較結果を示す消衰係数比較情報302Xと、を有している。
【0035】
屈折率情報301A,301Bは、屈折率情報201と同様に、入射光43の波長と屈折率との対応関係を示す情報であり、横軸が入射光43の波長で縦軸が屈折率である。消衰係数情報302A,302Bは、消衰係数情報202と同様に、入射光43の波長と消衰係数との対応関係を示す情報であり、横軸が入射光43の波長で縦軸が消衰係数である。
【0036】
計算部53は、サンプル膜Aとサンプル膜Bの屈折率の比較処理として、屈折率情報301Aと屈折率情報301Bとを用いて屈折率比較情報301Xを算出する(ステップS20)。また、計算部53は、サンプル膜Aとサンプル膜Bの消衰係数の比較処理として、消衰係数情報302Aと消衰係数情報302Bを用いて消衰係数比較情報302Xを算出する(ステップS30)。
【0037】
屈折率比較情報301Xに示すように、屈折率情報301Aの波形と屈折率情報301Bの波形を重ね合わせると、同一の波長で同一の屈折率を示す箇所(クロスポイントP1など)がある。また、消衰係数比較情報302Xに示すように、消衰係数情報302Aの波形と消衰係数情報302Bの波形を重ね合わせると、同一の波長で同一の消衰係数を示す箇所(クロスポイントP2など)がある。
【0038】
略同一の波長で略同一の屈折率を示す波長帯であって、且つ略同一の波長で略同一の消衰係数を示す波長帯で、サンプル膜A,Bの膜質を測定した場合、サンプル膜A,Bの膜質に光学的な違いは存在していないこととなる。従って、この波長帯の光学定数を用いて被測定膜Cの膜厚を測定すれば、被測定膜Cは膜質の変化の影響を受けることなく正確に膜厚が測定される。
【0039】
本実施の形態では、略同一の波長で略同一の屈折率を示す波長であって、且つ略同一の波長で略同一の消衰係数を示す波長が、被測定膜Cの測定波長である製品測定用波長に決定される。換言すると、屈折率比較情報301X内の測定波長のうちサンプル膜Aを測定した場合の屈折率とサンプル膜Bを測定した場合の屈折率との差が所定値よりも小さくなる測定波長であって、且つ、消衰係数比較情報302X内の測定波長のうちサンプル膜Aを測定した場合の消衰係数とサンプル膜Bを測定した場合の消衰係数との差が所定値よりも小さくなる測定波長を、製品測定用波長とする。
【0040】
これにより、計算部53は、クロスポイントP1とクロスポイントP2の両方に近い波長(波長領域)を製品測定用波長に決定する(ステップS40)。例えば、被測定膜Cがシリコン窒化膜である場合、計算部53は、製品測定用波長を500nm〜600nmに決定する。なお、計算部53は、製品測定用波長を500nm〜600nmを含む波長領域としてもよい。
【0041】
この後、分光反射率計測装置1には、サンプル膜A,Bの膜質、シリコン31の膜質が入力される。分光反射率計測装置1は、製品測定用波長(膜厚測定用の波長領域)、サンプル膜A,Bの膜質、シリコン31の膜質を用いて、被測定膜Cの膜厚を測定する(ステップS50)。なお、サンプル膜A,Bの膜質やシリコン31の膜質は、分光エリプソメトリ2が測定した値を用いてもよいし、文献値などであってもよい。
【0042】
つぎに、計算部53が決定した製品測定用波長の光を用いてサンプル膜A,Bの膜厚を測定した場合の膜厚測定結果と、従来の方法でサンプル膜A,Bの膜厚を測定した場合の膜厚測定結果との違いについて説明する。図8は、従来の方法でサンプル膜の膜厚を測定した場合の膜厚測定結果を示す図であり、図9は、第1の実施の形態に係る膜厚測定方法でサンプル膜を測定した場合の膜厚測定結果を示す図である。図8および図9では、サンプル膜A,Bがシリコン窒化膜である場合の膜厚測定結果を示している。
【0043】
まず、サンプル膜A,Bをウエハ上に成膜し、成膜したサンプル膜A,Bの断面をSEM(Scanning Electron Microscope)などで観察する。例えば、サンプル膜A,Bのウエハ断面をそれぞれ面内で4箇所ずつ観察して、サンプル膜A,Bの膜厚を測定する。また、従来方法での膜厚測定として、サンプル膜A,Bをウエハ面内で4箇所ずつ、分光反射率計測装置1を用いて種々の波長で測定する。また、第1の実施の形態に係る膜厚測定方法として、サンプル膜A,Bをウエハ面内で4箇所ずつ、分光反射率計測装置1を用いて製品測定用波長(520nm〜525nm)で測定する。
【0044】
図8に示すように、従来の方法でサンプル膜A,Bの膜厚を測定した場合、断面観察から求めた膜厚と、分光反射率計測装置1を用いて測定した膜厚と、の膜厚差(△)は、サンプル膜Aとサンプル膜Bとで、大きな違いが生じている。具体的には、サンプル膜Bでは△は約10Aであり、この値は膜厚の約3%であるので膜厚の管理としては許容することはできない。このような膜厚のばらつきは、例えば図7の(c)に示したように、サンプル膜Aとサンプル膜Bとで、膜厚を測定する波長によって測定される膜質間に変化が生じるからである。換言すると、膜厚を測定する波長によっては、サンプル膜Aとサンプル膜Bとで、異なる膜質が測定されてしまう。この膜質の違いは、プロセスの安定性等によるものと推測される。
【0045】
一方、第1の実施の形態に係る膜厚測定方法でサンプル膜A,Bの膜厚を測定した場合、断面観察から求めた膜厚と、分光反射率計測装置1を用いて測定した膜厚と、の膜厚差(△)は、サンプル膜Aとサンプル膜Bとで、小さな違いしか生じていない。具体的には、第1の実施の形態に係る膜厚測定方法でサンプル膜A,Bの膜厚を測定した場合、サンプル膜A,Bの全ての測定点において△は膜厚の1%以下となっている。このように、第1の実施の形態に係る膜厚測定方法でサンプル膜A,Bを測定した膜厚と、断面観察から求めた実際の膜厚との差が小さくなっており、膜厚の計測が正確に実行されていることが確認できた。
【0046】
このように、簡易な分光反射率計測手法においても高精度な膜厚測定を実現できるよう、膜質と光の波長との関係を予め調べ、膜厚測定の際の波長領域を適切に選択することによって高精度な膜厚測定を行なっている。すなわち、被測定膜Cの膜質に着目し、膜質を測定した場合に光学的に変化の少ない波長領域を選択して膜厚測定を実行している。これにより、安価な分光反射率計測装置1であっても、膜質変化の影響を受けること無く高精度な膜厚測定を実現することが可能となる。
【0047】
第1の実施の形態に係る膜厚測定方法で測定された被測定膜Cの膜厚値は、予め設定しておいた膜厚許容値と比較される。そして、被測定膜Cの膜厚値が膜厚許容値の範囲内であれば、被測定膜Cが成膜されているウエハは次の工程での処理が行なわれる。これにより、被測定膜Cを用いて半導体デバイスなどの半導体装置(半導体集積回路)が製造される。具体的には、露光装置がウエハの露光処理を行い、その後、ウエハの現像処理、エッチング処理を行う。換言すると、リソグラフィ工程で転写により形成したレジストパターンでマスク材を加工し、さらにパターンニングされたマスク材を使用して被加工膜(被測定膜Cなど)をエッチングによりパターンニングする。半導体装置を製造する際には、上述した被測定膜Cの成膜処理、被測定膜Cの膜厚測定処理、露光処理、現像処理、エッチング処理などがレイヤ毎に繰り返される。
【0048】
なお、本実施の形態では、サンプル膜A,Bの膜質を分光エリプソメトリ2によって測定したが、サンプル膜A,Bの膜質は分光エリプソメトリ2以外の装置によって測定してもよい。また、被測定膜Cの膜厚は、分光反射率計測装置1以外の装置によって測定してもよい。また、製品測定用波長によって測定する膜は被測定膜Cに限らず、サンプル膜A,Bと同種の膜材であれば何れの膜を測定してもよい。また、分光エリプソメトリ2によって測定したサンプル膜A,Bの膜質を用いて製品測定用波長を算出したが、サンプル膜A,Bの膜質として文献値を用いて製品測定用波長を算出してもよい。
【0049】
このように第1の実施の形態によれば、サンプル膜A,Bで膜質測定を行なった場合に、サンプル膜A,Bで膜質の測定結果に差が生じにくい製品測定用波長を選択し、この製品測定用波長で被測定膜Cの膜厚を測定するので、分光反射率計測装置1を用いて高精度に被測定膜Cの膜厚を測定することが可能となる。また、分光反射率計測装置1を用いて被測定膜Cの膜厚を測定できるので、高スループットな膜厚測定を安価で容易に行なうことができる。
【0050】
また、被測定膜Cがシリコン窒化膜である場合に、被測定膜Cを500nm〜600nmの製品測定用波長で膜厚測定するので、被測定膜Cの膜厚を精度良く測定することが可能となる。
【0051】
また、分光エリプソメトリ2を用いてサンプル膜A,Bの膜質を測定しておくので、サンプル膜A,Bの膜質を正確に測定することが可能となる。したがって、被測定膜Cの膜厚を精度良く測定できる製品測定用波長を正確に決定することが可能となる。
【0052】
(第2の実施の形態)
つぎに、図10〜図17を用いてこの発明の第2の実施の形態について説明する。第2の実施の形態では、第1の実施の形態で算出した膜厚を用いて、分光反射率計測装置1が被測定膜Cの膜質を算出する。
【0053】
図10は、第2の実施の形態に係る膜厚測定方法の処理手順を示すフローチャートである。本実施の形態でも、第1の実施の形態と同様に、分光反射率計測装置1内に被測定膜Cと同じ材質で作製されたサンプル膜A,Bの膜質(サンプル膜情報)を入力しておく。なお、分光反射率計測装置1内に入力しておくサンプル膜A,Bの膜質は、暫定的なものであり、最終的には膜質そのものがパラメータ化されて変化することになる。この点が膜厚のみを測定する場合との大きな違いである。本実施の形態では、安価な分光反射率計測装置1を用いて高精度な膜厚測定と高精度な膜質測定を同時に行なう。
【0054】
まず、第1の実施の形態の膜厚測定方法と同じ方法で被測定膜Cの膜厚を測定する。具体的には、分光エリプソメトリ2が、サンプル膜A,Bの膜質を算出し、この膜質を用いて製品測定用波長を決定する。そして、分光反射率計測装置1が製品測定用波長で被測定膜Cの膜厚を測定する(ステップS110)。例えば、本実施の形態では、545nm〜555nmの波長帯を選択して被測定膜Cの膜厚を測定する。具体的には、545nm〜555nmの波長を有した光を被測定膜Cに照射し、図11に示す反射信号の情報(光の強度比)を取得する。
【0055】
図11は、分光反射率計測で得られる光強度を示す図である。図11では、横軸が測定波長を示し、縦軸がサンプル膜A,Bと基準サンプルとの光の強度比を示している。基準サンプルは、例えば分光反射率計測装置1にセットされているベアシリコンなどである。サンプル膜A,Bを測定する際には、基準サンプルの光強度を測定しておき、基準サンプルの光強度をベースとしてサンプル膜A,Bと基準サンプルとの強度比が測定される。図11に示すように、分光反射率計測で得られる情報は、測定波長と光の強度比との対応関係(以下、強度比波形という)である。計算部23は、545nm〜555nmの波長帯で測定した被測定膜Cの強度比波形を、シミュレーション生成された他の強度比波形とフィッテングさせる。具体的には、545nm〜555nmの波長帯で測定した場合の膜質を用いて、種々の膜厚毎に545nm〜555nmの波長帯での強度比波形をシミュレーション予測しておく。これにより、種々の強度比波形は、それぞれ膜厚に対応付けされる。そして、種々の膜厚毎にシミュレーション予測された強度比波形の中から、被測定膜Cを用いて測定した強度比波形と略同じ波形を有する強度比波形を抽出する。抽出した強度比波形に対応する膜厚が、被測定膜Cの膜厚となる。
【0056】
そして、分光反射率計測装置1は、測定した膜厚を用いて被測定膜Cの膜質を算出する(ステップS120)。図12は、分光反射率計測装置で測定した膜厚の測定結果を示す図である。図12では、選択した製品測定用波長で膜厚のみを測定した場合の測定結果を示している。図12の横軸は被測定膜Cのウエハ面内での膜厚測定ポイントであり、縦軸は被測定膜Cの膜厚測定結果である。この膜厚測定結果(膜厚T1の波形)は、後述する従来の膜厚測定結果(従来の分光反射率計測方法での測定結果)と比べて各膜厚測定ポイントで安定した値を示している。
【0057】
次いで、分光反射率計測装置1の計算部23は、測定した膜厚を既知の値に設定し、この膜厚の値を用いて、被測定膜Cの全波長帯(本実施の形態のでは200nm〜840nm)での膜質(屈折率などの光学定数)を算出(定義)する。図13は、既知の膜厚を用いて算出した屈折率の算出結果を示す図である。図13では、633nmの製品測定用波長で被測定膜Cの膜質を測定(算出)した場合の屈折率を示している。図13の横軸は被測定膜Cのウエハ面内での膜質測定ポイントであり、縦軸は被測定膜Cの屈折率算出結果である。この膜質測定結果(膜質N1の波形)は、後述する分光エリプソメトリ2のみを用いた膜質測定結果と同様に各膜質測定ポイントで安定した値を示している。
【0058】
このように、本実施の形態では、第1の実施の形態と同様に、膜質測定結果がサンプル膜A,Bの膜質によって変化しないかまたは変化が少ない波長帯を用いて被測定膜Cの膜厚を測定する。そして、この膜厚を用いて、種々の波長で膜質を測定した場合の膜質を算出する。このように、被測定膜Cの膜厚、膜質を測定する場合に、膜厚測定と膜質測定の2段階で測定を行なっているので、装置構成が簡易な分光反射型計測装置1であっても高精度な膜厚、膜質測定が可能となる。
【0059】
ここで、従来の分光反射率計測方法での膜厚および膜質の測定結果と、従来のように分光エリプソメトリ2のみを用いた場合の膜質測定結果について説明する。図14は、従来の分光反射率計測方法で測定した膜厚と屈折率の測定結果を示す図である。従来の分光反射率計測方法では、例えば分光反射率計測装置1が、被測定膜Cの膜厚と膜質とを同時に測定する。図14の横軸は被測定膜Cのウエハ面内での膜厚測定ポイントである。また、左側の縦軸は被測定膜Cの膜厚測定結果であり、右側の縦軸は被測定膜Cの膜質測定結果である。膜厚測定結果(膜厚T2の波形)は、図12に示した本実施の形態の膜厚測定方法で測定した膜厚と比べてばらつきが大きい。また、膜質測定結果(膜質N2の波形)は、図13に示した本実施の形態の膜質測定方法で算出した膜質と比べてばらつきが大きい。
【0060】
このように、従来の方法で膜厚や膜質を測定した場合に測定結果がばらつく原因としては、分光反射率計測の場合、サンプル膜A,Bに照射した光の強度比(基準サンプルから得られる強度と比べた値)のみを検出しているにすぎないからである。
【0061】
図15は、分光エリプソメトリのみを用いて測定した膜質の測定結果を示す図である。図15の(a)では、横軸が測定波長を示し、縦軸が屈折率を示している。また、図15の(b)では、横軸が測定波長を示し、縦軸が消衰係数を示している。図15に示すように分光エリプソメトリ2を用いた測定で得られる情報は、測定波長と屈折率の対応関係と、測定波長と消衰係数との対応関係と、の2つである。この2つの対応関係は、分光エリプソメトリ2によって測定された図5の特性情報101,102を解析することによって得ることができる。このように、分光反射率計測で得られる情報は、図14に示した1つのグラフであるのに対し、分光エリプソメトリ2を用いた測定で得られる情報は、図5(図15)に示した2つのグラフである。したがって、分光反射率計測で得られる情報量と分光エリプソメトリ2を用いた測定で得られる情報量とでは、2倍の情報量差があり、この情報量の差が測定精度の差としてあらわれる。
【0062】
分光エリプソメトリ2のみを用いて被測定膜Cの膜厚および膜質を測定する場合には、図15に示した膜質を記憶部52に入力し、膜厚を制御部51内の膜厚測定レシピ、膜質測定レシピとリンクさせて膜厚測定、膜質測定を実行する。その際、パラメータ(測定対象)には、膜厚に加えて膜質を定義している関数も加える。このようにして、被測定膜Cの膜厚と膜質を測定すると、図16に示す測定結果を得ることができる。
【0063】
本実施の形態では、製品測定用波長で測定した被測定膜Cの膜厚を用いて、被測定膜Cの全波長帯での膜質を算出することによって、図15に示す分光エリプソメトリ2による膜質測定結果と同様の測定結果を得ることができる。
【0064】
図16は、分光エリプソメトリのみを用いて測定した膜厚と屈折率の測定結果を示す図である。図16では、膜質として633nmの波長で測定された屈折率の値を膜質の代表値として図示している。なお、他の波長を用いて測定した屈折率を算出して表示することもできる。
【0065】
分光エリプソメトリ2を用いた膜厚や膜質の測定では、例えば分光エリプソメトリ2が、被測定膜Cの膜厚と膜質とを同時に測定する。図16の横軸は被測定膜Cのウエハ面内での膜厚測定ポイントである。また、左側の縦軸は被測定膜Cの膜厚測定結果であり、右側の縦軸は被測定膜Cの膜質測定結果(屈折率)である。膜厚測定結果(膜厚T3の波形)は、図12に示した本実施の形態の膜厚測定方法で測定した膜厚とほぼ同様に各膜厚測定ポイントで安定した値を示している。また、屈折率(膜質N3の波形)は、図13に示した本実施の形態の膜質測定方法で算出した屈折率とほぼ同様に各膜質測定ポイントで安定した値を示している。
【0066】
換言すると、本実施の形態の膜厚測定方法で測定した膜厚は、分光エリプソメトリ2のみを用いて測定した膜厚と同様に、各膜厚測定ポイントで安定した値として測定することができる。また、本実施の形態の膜質測定方法で測定した膜質は、分光エリプソメトリ2のみを用いて測定した膜質と同様に、各膜質測定ポイントで安定した値として測定することができる。このように、本実施の形態では、分光反射型計測装置1を用いて被測定膜Cの膜厚、膜質を測定するので、簡易な構成の装置で膜厚、膜質の同時計測を精度良く行える。したがって、装置コストの大幅削減が可能となる。
【0067】
図12、図13、図15のような膜厚測定結果、膜質測定結果を得た後、膜厚測定結果、膜質測定結果をこれまでに得た測定結果などと比較して、被測定膜Cの膜厚判定や膜質判定が行われる。例えば、図12や図13に示す測定結果や測定結果のばらつきが許容範囲内の値であるか否かなどに基づいて被測定膜Cの膜厚判定や膜質判定が行われる。また、図15のような被測定膜Cの波形を、これまでに得た波形などと比較して、被測定膜Cの膜質が所望の膜質を有しているか否かが判定される。そして、被測定膜Cの膜厚や膜質が許容範囲内であれば、被測定膜Cが成膜されているウエハは次の工程での処理が行なわれる。これにより、被測定膜Cを用いて半導体デバイスなどの半導体装置が製造される。
【0068】
図17は、第1の実施の形態に係る分光反射率計測装置が備える情報処理装置のハードウェア構成を示す図である。情報処理装置20は、被測定膜Cの膜厚測定に用いる製品測定用波長を算出するとともに、製品測定用波長を用いて測定した被測定膜Cの膜厚を用いて被測定膜Cの膜質を算出するコンピュータなどの装置であり、CPU(Central Processing Unit)91、ROM(Read Only Memory)92、RAM(Random Access Memory)93、表示部94、入力部95を有している。情報処理装置20では、これらのCPU91、ROM92、RAM93、表示部94、入力部95がバスラインを介して接続されている。
【0069】
CPU91は、製品測定用波長を決定するコンピュータプログラムである測定波長算出プログラム97Aを用いて、被測定膜Cの膜厚測定に用いる製品測定用波長を算出する。また、CPU91は、コンピュータプログラムである膜質算出プログラム97Bと、被測定膜Cの膜厚測定結果を用いて被測定膜Cの膜質を算出する。
【0070】
表示部94は、液晶モニタなどの表示装置であり、CPU91からの指示に基づいて、サンプル膜A,Bの膜質の測定結果、サンプル膜A,Bの比較結果、製品測定用波長(測定波長の算出結果)、被測定膜Cの膜厚測定結果、被測定膜Cの膜質測定結果などを表示する。入力部95は、マウスやキーボードを備えて構成され、使用者から外部入力される指示情報(製品測定用波長の算出に必要なパラメータ、被測定膜Cの膜質の算出に必要なパラメータ等)を入力する。入力部95へ入力された指示情報は、CPU91へ送られる。
【0071】
測定波長算出プログラム97A、膜質算出プログラム97Bは、ROM92内に格納されており、バスラインを介してRAM93へロードされる。CPU91はRAM93内にロードされた測定波長算出プログラム97A、膜質算出プログラム97Bを実行する。具体的には、情報処理装置20では、使用者による入力部95からの指示入力に従って、CPU91がROM92内から測定波長算出プログラム97A、膜質算出プログラム97Bを読み出してRAM93内のプログラム格納領域に展開して各種処理を実行する。CPU91は、この各種処理に際して生じる各種データをRAM93内に形成されるデータ格納領域に一時的に記憶させておく。
【0072】
このように第2の実施の形態によれば、製品測定用波長で被測定膜Cの膜厚を測定するとともに、この測定結果である膜厚を用いて被測定膜Cの膜質を算出するので被測定膜Cの膜質を高精度に測定することが可能となる。また、分光反射率計測装置1を用いて被測定膜Cの膜厚を測定できるので、高スループットな膜質測定を安価で容易に行なうことができる。
【0073】
また、被測定膜Cがシリコン窒化膜である場合に、被測定膜Cを500nm〜600nmの製品測定用波長で膜厚測定、膜質測定するので、被測定膜Cの膜質を精度良く測定することが可能となる。
【符号の説明】
【0074】
1 分光反射率計測装置、2 分光エリプソメトリ、3A,3B 膜質情報、3X 比較情報、20 情報処理装置、23 計算部、32 測定膜、A,B サンプル膜、C 被測定膜。

【特許請求の範囲】
【請求項1】
第1の基板上に形成された第1のサンプル膜に光を照射して膜質測定した場合の第1の膜質と、第2の基板上に形成され前記第1のサンプル膜と同じ種類の膜材である第2のサンプル膜に前記光を照射して膜質測定した場合の第2の膜質と、で膜質測定結果の差が所定値よりも小さくなる波長の光を、膜厚測定に用いる波長領域の光として選択する波長選択ステップと、
前記第1および前記第2のサンプル膜と同じ種類の膜材である測定対象膜に、選択した前記波長領域の光を照射して、前記測定対象膜の膜厚を測定する膜厚測定ステップと、
を含むことを特徴とする膜測定方法。
【請求項2】
測定された前記測定対象膜の膜厚を用いて、選択した前記波長領域以外の波長領域における前記測定対象膜の膜質を算出することを特徴とする請求項1に記載の膜測定方法。
【請求項3】
前記第1のサンプル膜、前記第2のサンプル膜および前記測定対象膜の膜材は、シリコン窒化膜であり、選択する前記波長領域は、500nmから600nmであることを特徴とする請求項1または2に記載の膜測定方法。
【請求項4】
前記測定対象膜の膜厚は分光反射率計測装置によって測定し、前記測定対象膜の膜質は分光反射率計測装置によって算出することを特徴とする請求項1〜3のいずれか1つに記載の膜測定方法。
【請求項5】
前記第1のサンプル膜の第1の膜質および前記第2のサンプル膜の第2の膜質は、それぞれ分光反射率計測装置によって測定することを特徴とする請求項1〜4のいずれか1つに記載の膜測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2011−17675(P2011−17675A)
【公開日】平成23年1月27日(2011.1.27)
【国際特許分類】
【出願番号】特願2009−163949(P2009−163949)
【出願日】平成21年7月10日(2009.7.10)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】