説明

車両用スリップ抑制制御装置

【課題】トラクション制御機能を備えた車両において駆動力の制御に運転者の意思を極力反映させるようにする。
【解決手段】所定の開始条件が成立すると駆動輪の駆動力を減少させるトラクション制御を実行するトラクション制御部47と、運転者により操作されるスロットルグリップ7と、を備え、トラクション制御部47は、トラクション制御の実行中にスロットルグリップ7が閉操作されると、トラクション制御の強制終了制御を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車輪の路面に対するグリップ状況に応じて車輪の駆動力を制御する車両用スリップ抑制制御装置に関するものである。
【背景技術】
【0002】
従来、車両の駆動輪が路面に対してスリップしたときに、エンジンの駆動力を減少させて駆動輪の路面に対するグリップ力を回復させるトラクション制御装置が提案されている(例えば、特許文献1参照)。この装置によれば、監視値(例えば、エンジン回転数の上昇率)が所定のしきい値を超えた場合に、エンジンの点火時期を最適時期よりも遅角して駆動力を減少させるトラクション制御が実行され、スリップ防止が図られる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平7−103009号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、トラクション制御により駆動力を減少させた結果、監視値が所定の終了条件を満たすと、駆動輪の路面に対するグリップ力が回復したと判断され、トラクション制御は自動的に終了して通常制御状態に戻ることとなる。つまり、トラクション制御はバックグラウンド処理として実行され、その開始及び終了は、制御装置が監視値に基づいて自動的に判断して行われる。このように、トラクション制御は、運転者のスロットル操作等よりも優先して自動的に駆動力を制御するものであるため、状況が許せば運転者の意思が反映される通常制御状態へと早く戻したいものである。
【0005】
そこで本発明は、トラクション制御機能を備えた車両において駆動力の制御に運転者の意思を極力反映させるようにすることを目的としている。
【課題を解決するための手段】
【0006】
本発明は上述のような事情に鑑みてなされたものであり、本発明に係る車両用スリップ抑制制御装置は、所定の開始条件が成立すると駆動輪の駆動力を減少させるトラクション制御を実行する制御手段と、運転者により操作される入力手段と、を備え、前記制御手段は、前記トラクション制御の実行中に前記入力手段に所定の入力がなされると、前記トラクション制御の強制終了制御を行うことを特徴とする。
【0007】
前記構成によれば、運転者による入力手段の操作状態に応じてトラクション制御が強制終了されるので、駆動力の制御に運転者の意思を極力反映させるようにすることができる。なお、強制終了とは、駆動輪のスリップ状態にかかわらず、トラクション制御を終了して通常制御状態に移行することを意味する。
【0008】
前記入力手段は、前記トラクション制御の実行/非実行にかかわらず、車両の走行状態を変化させることが可能な手段であってもよい。
【0009】
前記構成によれば、トラクション制御に関係なく車両の走行状態を変化させる入力手段がトラクション制御を強制終了させるか否かの判断に利用されるので、運転者に強制終了のためだけの操作を強いることなく、トラクション制御を好適に強制終了させることができる。
【0010】
前記入力手段は、前記トラクション制御の実行/非実行にかかわらず、駆動輪の駆動力に対応するパラメータを変化させることが可能な手段であり、前記制御手段は、前記トラクション制御の実行中に前記入力手段に対して前記パラメータが所定値以下となるような入力がなされると、前記強制終了制御を行ってもよい。
【0011】
前記構成によれば、運転者が駆動力を減少させるように入力手段を操作したときに、トラクション制御が強制終了されるので、トラクション制御から通常制御状態へ移行する際の駆動力の変動が小さく、強制終了時における運転フィーリングを良好に保つことができる。
【0012】
エンジンの吸気量を制御するスロットルバルブを操作するためのスロットル入力手段と、前記スロットル入力手段の開度を検出可能なスロットル操作量検出手段と、を備え、前記入力手段は、前記スロットル入力手段であり、前記制御手段は、前記トラクション制御の実行中に前記スロットル操作量検出手段で検出された開度が所定開度以下であることを前記スロットル開度検出手段が検出すると、前記強制終了制御を行ってもよい。
【0013】
前記構成によれば、トラクション制御を強制終了させたときに、運転者のスロットル操作も駆動力を減少させる状態となっているため、トラクション制御から通常制御状態へ移行する際の駆動力の変動が小さく、運転フィーリングを良好に保つことができる。
【0014】
エンジンから駆動輪までの動力伝達を遮断/接続するクラッチと、運転者が前記クラッチを操作するためのクラッチ入力手段と、前記クラッチ入力手段が操作されたことを検出可能なクラッチ検出手段と、を備え、前記入力手段は、前記クラッチ入力手段であり、前記制御手段は、前記トラクション制御の実行中に前記動力伝達を遮断するように前記クラッチ入力手段が操作されたことを前記クラッチ検出手段が検出すると、前記強制終了制御を行ってもよい。
【0015】
前記構成によれば、エンジン出力制御によるトラクション制御は、エンジン出力が駆動輪に伝達されている場合に有効であるので、動力伝達を遮断するようにクラッチ操作がなされたときにはトラクション制御を終了することで、エンジンに車軸からの負荷が掛かっていない状態での出力低下を防止することができる。
【0016】
前記強制終了制御は、前記駆動力を時間経過に伴って徐々に増加させてから前記トラクション制御を終了させるテーリング制御を含んでおり、前記テーリング制御は、予め定められる第1のエンジン回転数のときに比べて前記第1のエンジン回転数よりも小さい第2のエンジン回転数のときの方が、前記駆動力の単位時間当たりの増加率が大きくなるように設定されていてもよい。
【0017】
前記構成によれば、エンジン回転数が小さいときにトラクションの制御の強制終了を行う場合において、トラクション制御により減少していた駆動力が速やかに増加するので、エンジン回転数が小さいときに生じやすいエンジンストールを好適に防止することができる。
【0018】
前記強制終了制御は、前記駆動力を時間経過に伴って徐々に増加させて、一旦前記トラクション制御の非実行時の駆動力を超えた値にしてから、前記トラクション制御の非実行時の駆動力に戻して前記トラクション制御を終了させるオーバーラン制御を含んでいてもよい。
【0019】
前記構成によれば、トラクション制御の強制終了時に、駆動力がトラクション制御の非実行時の駆動力を超えた値にまで増加する。よって、それまでのトラクション制御による駆動力減少でエンジンストールが発生しやすい状況となっていた場合であっても、エンジンストールを好適に防止することができる。
【0020】
前記オーバーラン制御は、前記駆動力を前記トラクション制御の非実行時の駆動力を超えた値から、前記トラクション制御の非実行時の駆動力に戻す際に、前記駆動力を時間経過に伴って徐々に減少させてもよい。
【0021】
前記構成によれば、トラクション制御状態から通常制御状態への移行がスムーズに行われ、運転フィーリングを良好に保つことができる。
【0022】
前記オーバーラン制御は、点火時期を変化させることにより行われてもよい。
【0023】
駆動力の制御するパラメータとしては、点火時期、スロットル開度および燃料噴射量などが挙げられるが、その中でも点火時期は、吸気量や燃料供給量などに比べて素早く変化させることができる。よって、点火時期を制御することによりオーバーラン制御を実施することで、速やかにエンジンストールを防止することができる。
【発明の効果】
【0024】
以上の説明から明らかなように、本発明によれば、運転者による入力手段の操作状態に応じてトラクション制御が強制終了されるので、駆動力の制御に運転者の意思を極力反映させるようにすることができる。
【図面の簡単な説明】
【0025】
【図1】本発明の第1実施形態に係るスリップ抑制機能付きの自動二輪車の左側面図である。
【図2】図1に示す自動二輪車に搭載されたスリップ抑制制御装置を示す全体ブロック図である。
【図3】図2に示すスリップ抑制制御装置の主にエンジンECUを説明する要部ブロック図である。
【図4】図3に示すエンジンECUのメイン処理を説明するフローチャートである。
【図5】図4に示す初期トラクション制御処理のフローチャートである。
【図6】図4に示す継続トラクション制御処理の前半部分のフローチャートである。
【図7】図4に示す継続トラクション制御処理の後半部分のフローチャートである。
【図8】連続的なスリップが生じた場合における初期トラクション制御及び継続トラクション制御を説明するグラフ及びタイミングチャートである。
【図9】図8に示す第1スリップしきい値を決定するためのマップである。
【図10】車体傾斜角と監視値との関係を説明するグラフである。
【図11】図8に示す第1スリップしきい値を補正するための補正マップである。
【図12】オーバーシュート防止の変形例を示すグラフ及びタイミングチャートである。
【図13】瞬間的なスリップが生じた場合における初期トラクション制御及び継続トラクション制御を説明するグラフ及びタイミングチャートである。
【図14】図4に示す発進制御処理のフローチャートである。
【図15】発進制御処理を説明するグラフ及びタイミングチャートである。
【図16】図4に示す強制終了制御処理のフローチャートである。
【図17】強制終了制御処理を説明するグラフ及びタイミングチャートである。
【図18】図4に示す触媒保護制御処理のフローチャートである。
【図19】触媒保護制御処理を説明するためのグラフである。
【図20】スイッチオフ制御処理のフローチャートである。
【図21】本発明の第2実施形態に係るスイッチオフ制御処理のフローチャートである。
【図22】本発明の第3実施形態に係るスイッチオフ制御処理のフローチャートである。
【図23】本発明の第4実施形態に係る初期トラクション制御処理のフローチャートである。
【図24】瞬間的なスリップが生じた場合における初期トラクション制御を説明するグラフ及びタイミングチャートである。
【図25】連続的なスリップが生じた場合における初期トラクション制御及び継続トラクション制御を説明するグラフ及びタイミングチャートである。
【図26】図24及び25に示す初期トラクション制御における遅角量を決定するための点火時期基本量マップである。
【図27】図24及び25に示す第1スリップしきい値を決定するためのしきい値マップである。
【図28】本発明の第5実施形態に係る強制終了制御処理のエンジン回転数が低いときのグラフ及びタイミングチャートである。
【図29】本発明の第5実施形態に係る強制終了制御処理のエンジン回転数が高いときのグラフ及びタイミングチャートである。
【図30】本発明の第6実施形態に係る初期トラクション制御処理のフローチャートである。
【図31】本発明の第6実施形態に係る継続トラクション制御処理のフローチャートである。
【図32】図30及び31の制御処理を説明するグラフ及びタイミングチャートである。
【図33】第2スリップしきい値を決定するための三次元しきい値マップである。
【図34】点火時期の下限値を決定するための点火時期下限値マップである。
【発明を実施するための形態】
【0026】
以下、本発明に係る実施形態を図面を参照して説明する。なお、以下の説明で用いる方向の概念は、自動二輪車に騎乗した運転者から見た方向を基準とする。
【0027】
(第1実施形態)
図1は本発明の第1実施形態に係るスリップ抑制機能付きの自動二輪車1の左側面図である。図1に示すように、自動二輪車1(車両)は、路面R上を転動する前輪2及び後輪3を備えており、後輪3は駆動輪であり、前輪2は従動輪である。前輪2は略上下方向に延びるフロントフォーク4の下端部にて回転自在に支持され、該フロントフォーク4は、その上端部に設けられたアッパーブラケット(図示せず)と該アッパーブラケットの下方に設けられたアンダーブラケット(図示せず)とを介してステアリングシャフト(図示せず)に支持されている。該ステアリングシャフトはヘッドパイプ5によって回転自在に支持されている。該アッパーブラケットには左右へ延びるバー型のハンドル6が取り付けられている。
【0028】
ハンドル6の運転者の右手により把持されるスロットルグリップ7(図2参照)は、手首のひねりにより回転させることで後述するスロットル装置16を操作するためのスロットル入力手段である。ハンドル6の運転者の左手により把持されるグリップの前方にはクラッチレバー8(クラッチ入力手段)が設けられている。運転者はハンドル6を回動操作することにより、前記ステアリングシャフトを回転軸として前輪2を所望の方向へ転向させることができる。
【0029】
ヘッドパイプ5からは左右一対のメインフレーム9が若干下方に傾斜しながら後方へ延びており、このメインフレーム9の後部に左右一対のピボットフレーム10が接続されている。このピボットフレーム10には略前後方向に延びるスイングアーム11の前端部が枢支されており、このスイングアーム11の後端部に後輪3が回転自在に軸支されている。ハンドル6の後方には燃料タンク12が設けられており、この燃料タンク12の後方に運転者騎乗用のシート13が設けられている。
【0030】
前輪2と後輪3の間では、並列四気筒のエンジンEがメインフレーム9及びピボットフレーム10に支持された状態で搭載されている。エンジンEには変速装置14が接続されており、この変速装置14から出力される駆動力がチェーン15を介して後輪3に伝達される。エンジンEの吸気ポート(図示せず)にはメインフレーム9の内側に配置されたスロットル装置16が接続されている。スロットル装置16の上流側には燃料タンク12の下方に配置されたエアクリーナ19が接続されており、前方からの走行風圧を利用して外気を取り込む構成となっている。また、シート14の下方の内部空間には、スロットル装置16や点火装置26(図2参照)や燃料噴射装置(図示せず)などを制御するエンジン制御装置であるエンジンECU17(電子制御ユニット)が収容されている。
【0031】
図2は図1に示す自動二輪車1に搭載されたスリップ抑制制御装置18を示す全体ブロック図である。図2に示すように、スリップ抑制制御装置18は、エアクリーナ19とエンジンEとの間に設けられたスロットル装置16を有している。スロットル装置16は、吸気管20と、吸気管20の下流側に配置されたメインスロットルバルブ21と、吸気管20の上流側に配置されたサブスロットルバルブ22とを有している。メインスロットルバルブ21は、スロットルグリップ7とスロットルワイヤー23を介して接続されており、運転者によるスロットルグリップ7の操作に連動して開閉するよう構成されている。メインスロットルバルブ21には、メインスロットルバルブ21の開度を検出するスロットルポジションセンサ25(スロットル開度センサ)が設けられている。メインスロットルバルブ21はスロットルグリップ7に機械的に連動しているため、スロットルポジションセンサ25は、スロットルグリップ7の開度を間接的に検出可能なスロットル操作量検出手段の役目も果たす。
【0032】
サブスロットルバルブ22は、エンジンECU17で制御されるモータからなるバルブアクチュエータ24に接続されており、そのバルブアクチュエータ24により駆動されて開閉するよう構成されている。また、スロットル装置16には、その吸気通路に燃料を噴射するためのインジェクタ31が設けられている。エンジンEには、その4つの気筒内の混合気にそれぞれ点火を行う点火装置26が設けられている。エンジンEには、その動力を変速して後輪3に伝達する変速装置14が接続されている。変速装置14には、動力伝達を遮断/接続するためのクラッチ27が設けられている。
【0033】
クラッチ27は、運転者によりクラッチレバー8が把持されることにより、動力伝達が遮断されるよう構成されている。クラッチレバー8には、運転者によりクラッチレバー8が把持されたか否かを検出可能なクラッチスイッチ28(クラッチ検出手段)が設けられている。また、変速装置14には、その変速段を検出するためのギヤポジションセンサ29が設けられている。
【0034】
また、スリップ抑制制御装置18は、公知のコンバインドブレーキシステムに用いられるCBS用ECU33を有している。CBS用ECU33には、前輪2の回転数から車速を検出するための前輪車速センサ34と、後輪3の回転数から車速を検出するための後輪車速センサ35とが接続されている。また、CBS用ECU33には、前輪ブレーキ36を作動させるための前輪ブレーキアクチュエータ37と、後輪ブレーキ38を作動させるための後輪ブレーキアクチュエータ39とが接続されている。
【0035】
また、スリップ抑制制御装置18は、自動二輪車1の車体の進行方向に対する左右の傾斜角を検出する傾斜角センサ32を有している。また、スリップ抑制制御装置18は、運転者が後述するトラクション制御機能を手動でオンオフするためのトラクション制御オンオフスイッチ40を有している。つまり、トラクション制御オンオフスイッチ40は、トラクション制御の実行を許可する許可状態と該実行を許可しない不許可状態とを切り換えるためのスイッチである。このトラクション制御オンオフスイッチ40は、ハンドル6の左側部分に設けられ、ハンドル6の右側部分にあるスロットルグリップ7とは互いに離れた状態で車幅方向の反対側に位置している。
【0036】
トラクション制御オンオフスイッチ40は、例えば、押ボタン式で長押しされることでオンオフ入力指令を発生させる構成であるとよい。詳しくは、長押し時間(スイッチ40を押し始めてから離すまでの時間)が上限値及び下限値が設定される所定時間範囲(例えば、1〜3秒)に含まれる場合に限ってオンオフ指令を発生させるようにするとよい。なぜなら、長押し時間が前記所定時間範囲よりも短い場合には、誤って何かがスイッチ40に触れただけであることが考えられる一方、長押し時間が前記所定時間範囲よりも長い場合には、誤って何かがスイッチ40に当たり続けているだけであることが考えられるからである。
【0037】
そして、オンオフ入力指令が発生し、かつ、トラクション制御が実行状態であるとの条件を含む第1の条件が成立していない場合には、そのオンオフ入力指令の発生前のトラクション状態(許可状態または不許可状態)を切り換える。たとえば、オンオフ入力指令発生前に許可状態であれば不許可状態に切り換え、オンオフ入力指令発生前に不許可状態であれば許可状態に切り換える。また、後述する表示装置49は、トラクション状態に応じて表示形態を変化させる。これによって、運転者は表示状態を確認することで、現在のトラクション状態を確認することができる。
【0038】
スロットルポジションセンサ25、クラッチスイッチ28、ギヤポジションセンサ29、エンジン回転数センサ30、傾斜角センサ32、CBS用ECU33、及びトラクション制御オンオフスイッチ40、表示装置49は、それぞれECU17に接続されている。ECU17は、トラクション制御機能部41と、点火制御部42と、燃料制御部48と、スロットル制御部43と、ブレーキ制御部44とを有している。後述するように、トラクション制御機能部41は、各センサ25,29,30,32,33,40及びスイッチ28,40から入力される信号に基づいてトラクション制御に関する演算を行う。また、トラクション制御機能部41は、LEDランプ等からなる表示装置49に制御状態を運転者に対して表示するための信号を送信する。点火制御部42は、トラクション制御機能部41での演算結果に基づいて点火装置26を制御する。燃料制御部48は、トラクション制御機能部41での演算結果に基づいてインジェクタ31を制御する。スロットル制御部43は、トラクション制御機能部41での演算結果に基づいてバルブアクチュエータ24を駆動し、サブスロットルバルブ22の開度を制御する。ブレーキ制御部44は、トラクション制御機能部41での演算結果に基づいてCBS用ECU33にブレーキ作動信号を送信する。
【0039】
図3は図2に示すスリップ抑制制御装置18の主にエンジンECU17を説明する要部ブロック図である。図3に示すように、エンジンECU17は、前述したように、トラクション制御機能部41、点火制御部42、燃料制御部48、スロットル制御部43及びブレーキ制御部44を備えている。トラクション制御機能部41は、監視値演算部45、しきい値判定部46(しきい値判定手段)及びトラクション制御部47(トラクション制御手段)を有している。監視値演算部45は、CBS用ECU33から受信した情報に基づいて、前後輪2,3の回転数の差に対応する値であるスリップ率を監視値Mとして逐次演算する。具体的には、前輪車速センサ34により前輪回転数から得られた前輪車速(周速度)をVF、後輪車速センサ35により後輪回転数から得られた後輪車速(周速度)をVRとすると監視値Mは以下の数式1で算出される。
【0040】
[数1]
M=(VR−VF)/VF
即ち、前輪車速センサ34、後輪車速センサ35、CBS用ECU33及び監視値演算部45により、監視値Mを検出する検出手段が構成されている。なお、本実施形態では、監視値Mとしてスリップ率を用いたが、監視値Mは、前記数式1に限定されるものではなく、前後輪の回転数の差に応じて変化する値であればよい。例えば、監視値Mは、前後輪の車速差(VR−VF)であってもよいし、前後輪の回転数差であってもよいし、前後輪の回転数の差を前輪の回転数で割り算した絶対値であってもよい。
【0041】
しきい値判定部46は、監視値Mが、第1スリップしきい値M1を超えると、後輪3が路面Rに対してスリップしたと判定する。また、しきい値判定部46は、監視値Mが、第2スリップしきい値M2(=切換しきい値)未満となると、初期トラクション制御から継続トラクション制御に移行するときであると判定する。また、しきい値判定部46は、監視値Mが、第2スリップしきい値M2(=グリップしきい値)未満となると、後輪3が路面Rをグリップしたと判定する。ここで、第2スリップしきい値M2は、第1スリップしきい値M1未満の値である。また、しきい値判定部46は、監視値Mが、第2スリップしきい値M2を超えると、後輪3が路面Rに対してスリップしたと判定する。また、しきい値判定部46は、監視値Mが、発進スリップしきい値MSTを超えると、発進時に後輪3が路面Rに対してスリップしたと判定する。ここで、発進スリップしきい値MSTは、第1スリップしきい値M1未満で、かつ、第2スリップしきい値M2を超える値である。また、しきい値判定部46は、監視値Mが、ブレーキ解除しきい値MB未満となると、後述するブレーキ動作を解除するときであると判定する。ここで、ブレーキ解除しきい値MBは、第1スリップしきい値M1未満で、第2スリップしきい値M2を超え、かつ、発進スリップしきい値MSTを超える値である。
【0042】
なお、本実施形態では、第2スリップしきい値M2がグリップしきい値を兼ねているが、第2スリップしきい値M2未満である値を、別途、グリップしきい値として設定してもよい。また、本実施形態では、第2スリップしきい値M2が切換しきい値を兼ねているが、第1スリップしきい値M1未満で且つ第2スリップしきい値M2を超える値を、別途、切換しきい値として設定してもよい。
【0043】
また、本願明細書において「スリップ」とは、後輪3と路面Rとの接触箇所において、後輪3が路面Rに対して所定量以上に相対移動して空転した状態をいう。また、本願明細書において「グリップ」とは、後輪3と路面Rとの接触箇所において、後輪3の路面Rに対する相対移動が所定量未満となり、後輪3が路面Rを捉えた状態をいう。なお、前輪2の回転数と後輪3の回転数との間に差が生じていても、その差が少量である場合にはグリップ状態となっている。
【0044】
トラクション制御部47は、後述するように、判定部46における判定結果に基づいて、後輪3の駆動力を減少させる初期トラクション制御及びそれに連続して実行される継続トラクション制御を有するトラクション制御を実行する。具体的には、トラクション制御部47は、判定部46における判定結果に基づいて点火装置26、インジェクタ31、バルブアクチュエータ24及び後輪ブレーキアクチュエータ39を制御し、点火時期の遅角量、燃料噴射量、吸気の減少量及び後輪ブレーキ38の動作を決定する。点火制御部42は、トラクション制御部47からの指令に応じて点火装置26を制御し、燃料制御部48は、トラクション制御部47からの指令に応じてインジェクタ31を制御し、スロットル制御部43は、トラクション制御部47からの指令に応じてバルブアクチュエータ24を制御し、ブレーキ制御部44は、トラクション制御部47からの指令に応じて後輪ブレーキ38を制御する。
【0045】
次に、トラクション制御について詳しく説明する。図4は図3に示すエンジンECU17のメイン処理を説明するフローチャートである。図3及び4に示すように、自動二輪車1の主電源(図示せず)がオンされると、エンジンECU17は、後述するトラクション制御が実行されない通常制御を実施する(ステップS1)。次いで、エンジンECU17は、トラクション制御オンオフスイッチ40がオンされているか否かを判定する(ステップS2)。スイッチ40がオフの場合には、通常制御が継続される。スイッチ40がオンの場合には、CBS用ECU33から受信した前輪車速VFが前輪車速しきい値VT(図6参照)超えるか否かを判定する(ステップS3)。前輪車速しきい値VTは、例えば、0<VT(km/h)<10の値であり、前輪車速VFが前輪車速しきい値VTを超えていない場合は、発進前の状態であると判断され、後述する発進制御処理が実施される(ステップS4)。
【0046】
前輪車速VFが前輪車速しきい値VTを超える場合には、エンジンECU17のしきい値判定部46(図3)は、監視値Mが第1スリップしきい値M1を超えるか否かを判定する(ステップS5)。即ち、ステップS5では、トラクション制御の開始条件が成立するか否かを判定する。第1スリップしきい値M1は、後輪3が路面Rに対して空転せずに正常にグリップしているにも拘らず、エンジンECU17がスリップしていると誤検知するのを防ぐために、後述する第2スリップしきい値M2を超える値に設定されている。例えば、第1スリップしきい値M1は、第2スリップしきい値M2の2倍以上10倍以下に設定されている。この第1スリップしきい値M1の詳細については後述する。
【0047】
ステップS5において、監視値Mが第1スリップしきい値M1を超えていないと判定される場合には、ステップS3に戻る。一方、監視値Mが第1スリップしきい値M1を超えると判定される場合には、トラクション制御として、初期トラクション制御処理が実施された後(ステップS6)、継続トラクション制御処理が実施される(ステップS7)。なお、強制終了制御処理(ステップS8)及び触媒保護制御処理(ステップS9)は後述する。
【0048】
図5は図4に示す初期トラクション制御処理のフローチャートである。図8は連続的なスリップが生じた場合における初期トラクション制御及び継続トラクション制御を説明するグラフ及びタイミングチャートである。図8に示すように、監視値Mが第1スリップしきい値M1を超えると、トラクション制御部47は、後輪3の駆動力を減少させるために、初期トラクション制御処理を開始すべく、本実施形態では以下の制御が行われる。
【0049】
図5及び8に示すように、まず、初期トラクション制御処理では、駆動力減少制御が実施される(ステップS10)。具体的には、トラクション制御部47は、点火制御部42を介して点火装置26に指令し、遅角制御を実施する。この遅角制御は、ある一定の点火時期に遅角する制御である。それと同時に、トラクション制御部47は、スロットル制御部43を介してバルブアクチュエータ24に指令し、吸気量を減少させるようにサブスロットルバルブ22をアイドリング開度である略全閉位置に制御する(なお、図8中のサブスロットル開度のグラフにおいて、実線は指令値であり、一点鎖線は実開度である。以降の他のサブスロットル開度のグラフにおいても同様に実線は指令値を意味するものとする)。さらにそれと同時に、トラクション制御部47は、ブレーキ制御部44を介してCBS用ECU33に指令し、後輪ブレーキ38を作動させる。
【0050】
ここで、初期トラクション制御において監視値Mが第1スリップしきい値M1を超える場合の駆動力の低減量は、後述する継続トラクション制御において監視値Mが第2スリップしきい値M2を超える場合の駆動力の低減量よりも大きく設定されている。これにより、最初にスリップを検出した時点で短時間にグリップ力を回復させることができ、連続的にスリップは生じている状況では駆動力が長い時間にわたって過度に減少するのを抑えることができる。
【0051】
次いで、監視値Mが、駆動力減少抑制しきい値であるブレーキ解除しきい値MB未満であるか否かを判定する(ステップS11)。監視値Mがブレーキ解除しきい値MB未満でない場合には、ステップS11を繰り返す。監視値Mがブレーキ解除しきい値MB未満となった場合には、駆動力減少抑制制御が実施される(ステップS12)。具体的には、後輪ブレーキ38の作動を解除する。次いで、監視値Mが第2スリップしきい値M2未満であるか否かを判定する(ステップS13)。なお、ステップS13に用いるしきい値として、第2スリップしきい値M2を超え且つ第1スリップしきい値M1未満の値である切換しきい値を別途設けてもよい。
【0052】
監視値Mが第2スリップしきい値M2未満でない場合には、ステップS13を繰り返し、初期トラクション制御を続ける。監視値Mが第2スリップしきい値M2未満となった場合には、初期トラクション制御処理を終了して、図4のメイン処理に戻り、継続トラクション制御処理に移行する(ステップS7)。
【0053】
図6は図4に示す継続トラクション制御処理の前半部分のフローチャートである。図7は図4に示す継続トラクション制御処理の後半部分のフローチャートである。図8に示すように、継続トラクション制御処理では、監視値Mが第2スリップしきい値M2に近づくように点火時期フィードバック制御が実施される。つまり、第2スリップしきい値M2を監視値Mの目標値としてフィードバック制御がなされる。
【0054】
具体的には、図6及び8に示すように、まず、後輪3の駆動力を増加すべく、点火時期を所定量進角して通常制御状態に近づける(ステップS20)。なお、前記所定量は、一定幅でもよく、又は、監視値Mと第2スリップしきい値M2との偏差などに応じて変化する値でもよい。また、点火遅角量が通常制御状態と同じになった場合には、その点火時期を維持する。
【0055】
そして、監視値Mが第2スリップしきい値M2を超えるか否かを判定する(ステップS21)。監視値Mが第2スリップしきい値M2を超えていない場合には、点火時期が通常制御状態における点火時期と等しくなった一致時間が所定の復帰判定時間T1以上であるという復帰条件が成立したか否かを判定する(ステップS27)。前記一致時間が復帰判定時間T1以上でない場合には、ステップS20に戻って点火時期を所定量進角させる。一方、ステップS21において、監視値Mが第2スリップしきい値M2を超える場合には、後輪3の駆動力を減少させるべく、点火時期を所定量遅角する(ステップS22)。
【0056】
ステップS22の後は、監視値Mがオーバーシュートしきい値Moを超えるか否かが判定される(ステップS23)。ステップS23において、監視値Mがオーバーシュートしきい値Mo未満である場合には、ステップS21に戻って点火時期フィードバック制御が継続される。つまり、点火時期フィードバック制御において、たとえば後輪3が路面Rに対して連続的に滑る場合には、点火時期が進角(ステップS20)と遅角(ステップS22)とを小刻みに繰り返しながら徐々に通常制御状態に近づくこととなる。
【0057】
一方、ステップS23において、監視値Mがオーバーシュートしきい値Moを超える場合には、点火時期フィードバック制御を中断し、ステップS22における遅角量より大きく遅角されたオーバーシュート遅角値に点火時期を設定する(ステップS24)。これは、ステップS22で所定量遅角させた場合に減少する駆動力の減少幅よりも、大きな幅で駆動力を減少させるためである。そして、監視値Mがオーバーシュートしきい値Moを超えた状態が続く限り、ステップS24の点火時期が維持される(ステップS25)。
【0058】
次いで、監視値Mがオーバーシュートしきい値Mo未満となると(ステップS25)、中断していた点火時期フィードバック制御を再開し(ステップS26)、前述したステップS21に戻る。なお、この点火時期フィードバック制御の再開時における点火時期の初期値は、先のステップS23でYESと判定された時点の直前の点火時期に設定される。
【0059】
そして、ステップS21において、監視値Mが第2スリップしきい値M2未満であると判定されると、点火時期が通常制御状態における点火時期と等しくなった一致時間が所定の復帰判定時間T1以上であるという復帰条件が成立したか否かを判定する(ステップS27)。前記一致時間が復帰判定時間T1以上となった場合には、点火時期フィードバック制御が終了し、点火時期は通常制御状態となる(ステップS28)。
【0060】
次いで、図7に示すように、サブスロットルフィードバック制御が実施される。具体的には、まず、サブスロットル開度を所定量増加させて通常制御状態に近づける(ステップS29)。次いで、監視値Mが第2スリップしきい値M2を超えるか否かを判定する(ステップS30)。監視値Mが第2スリップしきい値M2を超えた場合には、サブスロットル開度を減少させ(ステップS31)、ステップS30に戻る。監視値Mが第2スリップしきい値M2を超えていない場合には、サブスロットル開度が、略通常制御状態の開度、詳しくは、通常制御状態の開度に若干の付加開度を加算した開度より大きくなった時間が復帰判定時間T1以上であるか否かが判定される(ステップS32)。
【0061】
なお、前記付加開度を加算する理由は、通常制御ではサブスロットル開度が全閉となる状態において(エンジン低回転時など)、サブスロットルフィードバック制御が継続されるべきであるにもかかわらず、サブスロットル開度が全閉状態となるだけで当該制御の終了条件が成立してしまうのを防ぐためである。
【0062】
サブスロットル開度が通常制御状態に付加開度分加算した開度より小さい場合には、ステップS29に戻り、サブスロットル開度を所定量開いて通常制御状態に近づける。サブスロットル開度が通常制御状態に付加開度分加算した開度より大きい時間が復帰判定時間T1以上となった場合には、復帰条件が成立したと判断され、サブスロットルフィードバック制御が終了し、サブスロットル開度は通常制御状態となり(ステップS33)、図4のメイン処理に戻る。これにより、後輪3の駆動力は、トラクション制御をしない通常制御状態に戻る。
【0063】
ここで、トラクション制御における後輪3の駆動力の低減には、ブレーキ作動、点火遅角、スロットル開度減少をこの順に行うことで実現している。これは、この順に駆動力減少の応答性が良いからであり、最初にスリップを検出した時点で応答良くグリップ力を回復させることができ、駆動力が長い時間にわたって過度に減少するのを抑えることができる。また、ブレーキに対応する第1駆動力減少手段、点火遅角に対応する第2駆動力減少手段、サブスロットル開度に対応する第3駆動力減少手段とを順番に始動させ、順番に終了させることで、駆動力を段階的に制御しているので、スムーズに駆動力が減少し、運転者に与えるフィーリングが良好に保たれる。
【0064】
なお、本実施形態では、エンジンEの出力を増減させるエンジン出力調節手段として、遅角制御及び吸気量制御を実施しているが、エンジンが複数の気筒を有する場合には、エンジンの複数の気筒のうち一部の気筒に対する点火を休止させることで、エンジン出力を低下させてもよい。又は、エンジンの気筒に対する点火を間欠的に休止させることで、エンジン出力を減少させてもよい。又は、燃料噴射量を制御することでエンジン出力を制御してもよい。
【0065】
図9は図8に示す第1スリップしきい値M1を決定するためのマップである。図9に示すように、第1スリップしきい値M1は、ギヤポジションセンサ29で検出される変速段が高くなるにつれて、即ち、減速比が低くなるにつれて小さくなるように設定されている。なお、前記マップは、少なくともある変速段における第1スリップしきい値M1が、それより低い変速段における第1スリップしきい値M1よりも小さくなる設定を含んでいればよい。例えば、前記マップは、2速における第1スリップしきい値M1が、1速における第1スリップしきい値M1よりも小さく且つ3速における第1スリップしきい値M1と同一である設定であってもよい。
【0066】
また、第1スリップしきい値M1は、自動二輪車1の走行速度又はエンジン回転数が大きくなるにつれて、小さくなるように設定されている。ここで、前輪2は非駆動輪であるため、自動二輪車1の走行速度は、CBS用ECU33から得られる前輪車速VFと同じとみなすことができる。なお、前記マップは、少なくともある走行速度又はエンジン回転数における第1スリップしきい値M1が、それより低い走行速度又はエンジン回転数における第1スリップしきい値M1よりも小さくなる設定を含んでいればよい。例えば、前記マップは、エンジン回転数が4000rpmであるときの第1スリップしきい値M1が、エンジン回転数が1000rpmであるときの第1スリップしきい値M1よりも小さく、且つ、エンジン回転数が6000rpmであるときの第1スリップしきい値M1と同一である設定であってもよい。また、第1スリップしきい値M1は、マップではなく演算式などを用いて設定されてもよい。また、第2スリップしきい値M2についても、第1スリップしきい値M1と同様に、変速段や走行速度又はエンジン回転数などの走行条件に応じて変更されるようにしてもよい。
【0067】
さらに、第1スリップしきい値M1及び第2スリップしきい値M2の少なくとも一方は、スロットルポジションセンサ25で検出されるスロットル開度、即ち、運転者によるスロットル操作量に応じて変更してもよい。例えば、第2スリップしきい値M2は、スロットル開度が開く方向の操作量が大きくなるにつれて大きくなるように設定してもよい。この際のスロットル操作量は、トラクション制御開始時のものであっても、トラクション制御中のものであってもよい。
【0068】
図10は車体傾斜角θと監視値Mとの関係を説明するグラフである。図11は図10に示す第1スリップしきい値M1を補正するための補正マップである。なお、図10の横軸において、右領域は車体が右側に傾斜した状態を意味し、左領域は車体が左側に傾斜した状態を意味し、右領域と左領域の両方とも傾斜角θを正の値で表すものとする。図10に示すように、後輪3が路面Rに対してスリップを開始する際の監視値Mは、車体の進行方向に対する左右の傾斜角θが所定角θ1以上(例えば、10°以上)の領域において、傾斜角θが大きくなるにつれて大きくなる傾向にあることが分かっている。つまり、車体を傾斜させて走行しているときには、後輪3が路面Rをグリップしていても前輪車速VFと後輪車速VRとの差が大きくなる傾向にある。但し、傾斜角θが所定角θ未満(例えば、10°未満)の領域である直進走行状態においては、大きな加速を許容するためにスリップ開始とみなす監視値Mを大きめに設定する。そこで、図10に示すような補正係数Cが用意されている。補正係数Cは、傾斜角θが所定角θ以上(例えば、10°以上)の領域において、傾斜角センサ32で検出される傾斜角θが大きくなるにつれて大きくなるように設定されている。また、補正係数Cは、傾斜角θが所定角θ未満(例えば、10°未満)の領域では、傾斜角θが小さくなるにつれて大きくなるように設定されている。
【0069】
本実施形態では、第1スリップしきい値M1は、図9のマップで設定されている値に図10の補正係数Cを乗じて求める。よって、第1スリップしきい値M1は、傾斜角θが大きくなるにつれて大きくなるように設定される。なお、第2スリップしきい値M2(グリップしきい値)についても、第1スリップしきい値M1と同様に、車体の傾斜角θが大きくなるにつれて大きくなるように設定してもよい。このような第1スリップしきい値M1及び第2スリップしきい値M2の決定法は一例であって、速度、ギヤ比、傾斜角にかかわらず一定であってもよい。
【0070】
なお、図8では、オーバーシュートしきい値Moを1つだけ設けているが、複数設けてもよい。図12はオーバーシュート防止の変形例を示すグラフ及びタイミングチャートである。例えば、図12に示すように、オーバーシュートしきい値MOH、MOM、MOLを段階的に複数設定し、監視値Mが夫々のオーバーシュートしきい値MOH、MOM、MOLを超える場合に制御される点火時期L,M,Hも、そのオーバーシュートしきい値MOH、MOM、MOLが大きくなるほど遅角量が大きくなるように段階的に設定してもよい。
【0071】
図13は瞬間的なスリップが生じた場合における初期トラクション制御及び継続トラクション制御を説明するグラフ及びタイミングチャートである。図13に示すような後輪3が路面Rに対して瞬間的に滑る場合、例えば濡れたマンホールの上を通過する場合などにも、前述した図13の連続的な滑りの場合と同様に、図4〜6のフローチャートに従って処理される。図13に示すように、後輪3の路面Rに対する滑りが瞬間的なものであって第1スリップしきい値M1に達した後で速やかに滑りが解消する場合には、監視値Mが第2スリップしきい値M2未満であり続ける状態が速やかに到来し、初期トラクション制御の後に連続して実施される継続トラクション制御は速やか終了することとなる。
【0072】
図14は図4に示す発進制御処理のフローチャートである。図15は発進制御処理を説明するグラフ及びタイミングチャートである。図14及び15に示すように、発進制御処理では、エンジンECU17は、監視値Mが発進スリップしきい値MSTを超えるか否かを判定する(ステップS40)。なお、発進スリップしきい値MSTは一定である。監視値Mが発進スリップしきい値MSTを超える場合には、後輪3の駆動力を減少させる制御を行う(ステップS41)。具体的には、点火時期を所定量だけ遅角させる遅角制御が実施され、所定の行程数だけ点火が停止され、後輪ブレーキ38が強制作動される。なお、ステップS41では、サブスロットル開度は通常制御状態のままとしているが、図8と同様に略全閉とするように制御してもよい。
【0073】
次いで、エンジンECU17は、監視値Mが、駆動力減少抑制しきい値MB未満、つまり、ブレーキ解除しきい値MB未満であるか否かを判定する(ステップS42)。監視値Mがブレーキ解除しきい値MB未満でない場合は、後輪ブレーキ38が作動された状態が維持される。監視値Mがブレーキ解除しきい値MB未満である場合には、駆動力減少抑制制御が実施される(ステップS43)。具体的には、後輪ブレーキ38の作動が解除される。
【0074】
次いで、エンジンECU17は、監視値Mが発進スリップしきい値MST未満となったか否かを判定する(ステップS44)。監視値Mが発進スリップしきい値MST未満となっていない場合には、ステップS44を繰り返す。監視値Mが発進スリップしきい値MST未満となった場合には、点火時期の遅角量を徐々に減少させる、即ち、点火時期を徐々に進角させる点火時期テーリング制御を実施する(ステップS45)。そして、点火時期が通常制御状態における点火時期と等しくなった一致時間が所定の復帰判定時間T1以上であるという復帰条件が成立したか否かを判定する(ステップS46)。
【0075】
前記一致時間が所定の復帰判定時間T1以上でない場合には、点火時期テーリング制御を継続する。前記一致時間が復帰判定時間T1以上となった場合には、通常制御処理に戻って(ステップS47)、ステップS40に戻る。そして、監視値Mが発進スリップしきい値MSTを超えてなければ、前輪車速VFが前輪車速しきい値VTを超えるか否かが判定される(ステップS48)。前輪車速VFが前輪車速しきい値VTを超えていない場合には、ステップS40に戻る。前輪車速VFが前輪車速しきい値VTを超える場合には、発進制御処理を終了して、図4のメイン処理に戻る。
【0076】
次に、強制終了制御処理と触媒保護制御処理について説明する。図4のステップS5において、監視値Mが第1スリップしきい値M1を超えると判定される場合には、初期トラクション制御処理及び継続トラクション制御処理と並行して強制終了制御処理(ステップS8)及び触媒保護制御処理(ステップS9)が実施されている。
【0077】
図16は図4に示す強制終了制御処理のフローチャートである。図17は強制終了制御処理を説明するグラフ及びタイミングチャートである。図16及び17に示すように、エンジンECU17は、トラクション制御が実行中であるか否かを判定する(ステップS50)。トラクション制御が実行中で無い場合には、強制終了制御処理を終了する。トラクション制御が実行中である場合には、スロットルポジションセンサ25で検出されるスロットル開度がアイドリング開度又はその近傍の値である閉しきい値THC以下であるか否かが判定される(ステップS51)。即ち、スロットル開度が閉しきい値THC以下である場合には、サブスロットル開度を通常制御状態に戻し(ステップS52)、かつ、点火遅角量を所定の割合で徐々に減少させて通常制御状態になった状態で終了する点火時期テーリング制御を実施する(ステップS53)。つまり、運転者がスロットルグリップ7を閉操作した場合には、スロットル開度がアイドリング開度となり、通常制御状態であっても後輪3の駆動力は減少することになるので、トラクション制御を強制終了させるようになっている。
【0078】
また、ステップS51において、スロットル開度が閉しきい値THC以下でない場合には、クラッチ27が遮断されているか否か、より具体的には、運転者によりクラッチレバー8が把持されたか否かが判定される(ステップS54)。クラッチレバー8が把持されていない場合には、ステップS50に戻る。クラッチレバー8が把持されている場合には、ステップS52,S53に進み、トラクション制御を強制終了する。つまり、運転者はスリップ中にはクラッチレバー8を操作しないことが通常であるので、クラッチレバー8が操作された場合にトラクション制御を終了することで、運転フィーリングを良好に保つようにする。また、エンジン出力制御によるトラクション制御は、エンジン出力が駆動輪に伝達されている場合に有効であるので、スロットル開度にかかわらず、動力伝達を遮断するようにクラッチ操作がなされたときにはトラクション制御を終了することで、エンジンEに車軸からの負荷が掛かっていない状態での出力低下を防止することができる。
【0079】
図18は図4に示す触媒保護制御処理のフローチャートである。図19は触媒保護制御処理を説明するためのグラフである。図18に示すように、まず、トラクション制御が終了したか否かを判定する(ステップS60)。トラクション制御が終了してなければ、トラクション制御時の点火時期の移動平均値と、同条件における通常制御時の点火時期の移動平均値との差が所定値α以上である状態が時間T2以上続いたか否かが判定される(ステップS61)。これは、図19に示すように、前記差の時系列的な積算値が、ある一定値以上になると、排ガス浄化用の触媒の負担が大きくなるためである。なお、ステップS61では前記積算値が一定値以上になったか否かを判定してもよい。また、移動平均とは、時系列データを時間的に平均する公知の平滑化手法である。
【0080】
前記差が所定値α以上である状態が設定時間T2以上続いた場合には、設定時間T2中におけるエンジン回転数の平均値が第1所定値β1以上か否かが判定される(ステップS62)。エンジン回転数が第1所定値β1以上である場合には、n気筒あるエンジンEがn−1気筒で運転する(ステップS63)。なお、nは自然数である。つまり、エンジンEが高回転数で運転しているときに点火時期を大きく遅角する状態を維持すると、その際の排ガスによりエンジンEの排気系に設けられた触媒に負担が掛かるので、一部の気筒に対するインジェクタ31からの燃料供給を一時的に休止させることで、触媒を保護する。なお、α、T2、β1の関係は、エンジン回転数がβ1のときに、トラクション制御時の点火時期の移動平均値と、同条件における通常制御時の点火時期の移動平均値との差が所定値α以上である状態が時間T2以上続いた場合に、触媒に負担が掛かる関係にある。
【0081】
そして、エンジン回転数が第1所定値β2未満であるか否かが判定される(ステップS64)。第2所定値β2は、第1所定値β1未満の値である。エンジン回転数が所定値β2未満である場合には、トラクション制御が終了したか否かが判定される(ステップS65)。トラクション制御が終了していない場合には、ステップS64に戻る。一方、エンジン回転数が所定値β2未満でなくなった場合には、n気筒運転に戻り(ステップS66)、トラクション制御が終了しているか否かが判定される(ステップS60)。ステップS60又はステップS65でトラクション制御が終了した判定された場合には、触媒保護制御が終了する。なお、エンジン回転数のしきい値は、誤検知防止のためにβ1,β2の2値が用いられているが、1値のみを用いてもよい。
【0082】
なお、前記した形態では、ステップS61において、トラクション制御時の点火時期の移動平均値と、同条件における通常制御時の点火時期の移動平均値との差が所定値α以上である状態が時間T2以上続いたか否かを判定しているが、単に遅角している時間が所定時間以上続いたときに休筒制御を実施してもよい。
【0083】
また、このような触媒保護制御は、本実施形態のような第1スリップしきい値M1及び第2スリップしきい値M2を用いて行うトラクション制御に限定されるものではない。即ち、この触媒保護制御は、点火時期を遅角する制御を有するものであれば、あらゆる車両に適用できる。例えば、この触媒保護制御は、所定の開始条件が成立すると点火時期を遅角して駆動輪の駆動力を減少させて路面に対するグリップ力の回復を図る一般的なトラクション制御機能を有する車両等に広く適用することができる。
【0084】
図20はスイッチオフ制御処理のフローチャートである。このスイッチオフ制御処理は、自動二輪車1の主電源(図示せず)がオンされている間に実施されている。図20に示すように、運転者によりトラクション制御オンオフスイッチ40がオフ操作されたか否かが判定される(ステップS70)。ここで、トラクション制御オンオフスイッチ40のオフ操作はトラクション制御の実行を不許可(無効)とする指令であり、オン操作はトラクション制御の実行を許可(有効)とする指令である。トラクション制御オンオフスイッチ40がオフ操作(実行許可指令)された場合には、トラクション制御が実行中であるか否かが判定される(ステップS71)。トラクション制御が実行中でない場合には、トラクション制御機能が実行不許可に設定される(ステップS75)。つまり、監視値Mが第1スリップしきい値M1や発進スリップしきい値MSTを超えても、トラクション制御を実行しないように設定される。
【0085】
一方、トラクション制御が実行中である場合には、スロットルポジションセンサ25で検出されるスロットル開度が閉しきい値THC以下であるか否かが判定される(ステップS72)。スロットル開度が閉しきい値THC以下でない場合には、ステップS71に戻る。つまり、この段階では、トラクション制御を強制的に終了すると、トラクション制御から通常制御状態へ移行することにより走行速度の変動が生じるため、トラクション制御機能を実行不可にせず保留する。なお、このとき、トラクション制御部47から表示装置49に信号が送信され、その信号を受信した表示装置49は運転者に保留状態を知らせる表示(例えば、LEDランプの点滅等)を行うとよい。
【0086】
その保留後に第2の条件を満足する場合、即ち、スロットル開度が閉しきい値THC以下である場合には、通常制御状態に戻しても走行速度の変動が増加することがないと判断し、サブスロットル開度を通常制御状態に戻し(ステップS73)、かつ、点火遅角量を所定の割合で徐々に減少させて通常制御状態になった状態で終了する点火時期テーリング制御を実施する(ステップS74)。そして、サブスロットル開度及び点火時期が通常制御状態となった後、トラクション制御機能が実行不許可に設定される(ステップS75)。こうすれば、スロットルグリップ7が閉操作されるまで、又は、トラクション制御が自発的に終了するまで、トラクション制御の終了が保留されるので、走行速度の変動が増加することがない。
【0087】
なお、スイッチオフ制御処理の変形例として、トラクション制御オンオフスイッチ40がオフ操作されたときに、トラクション制御中である場合には、第2の条件を満足した場合、例えば、スロットルポジションセンサ25で検出されるスロットル開度が閉しきい値THC以下である場合のみトラクション制御を終了してトラクション制御機能を実行不許可に設定し、前記保留は行わないようにしてもよい。また、別の変形例として、トラクション制御オンオフスイッチ40がオフ操作されたとき、トラクション制御中でない場合のみトラクション制御を終了してトラクション制御機能を実行不許可に設定し、トラクション制御中である場合にはトラクションオフ指令を無効として当該制御を継続させるようにしてもよい。また、別の変形例として、トラクション制御オンオフスイッチ40がオフ操作されたときにトラクション制御が実行中であれば、トラクションオフ指令を保留し、保留中にトラクション制御が非実行となると、トラクション制御機能を実行不許可に設定してもよい。
【0088】
なお、このようなトラクション制御オンオフスイッチ40によるトラクション制御機能の無効化動作は、本実施形態のような第1スリップしきい値M1及び第2スリップしきい値M2を用いて行うトラクション制御に限定されるものではなく、駆動輪のスリップ状態を検出すると駆動輪の駆動力を減少させて路面に対するグリップ力の回復を図る一般的なトラクション制御に広く適用することもできる。
【0089】
以上に説明した構成によれば、監視値Mが、比較的大きい値である第1スリップしきい値M1を超える場合に、ブレーキ作動、点火遅角及び吸気量低減により後輪3の駆動力を減少させる初期トラクション制御が開始するので、スリップ以外の何らかの理由により監視値Mが大きくなっても、後輪3が路面Rに対してスリップしたと誤検知しにくくなる。しかも、初期トラクション制御が一旦開始すると、自動二輪車1はスリップしやすい状況下にあると考えられるので、第1スリップしきい値M1未満の値である第2スリップしきい値M2を基準にしてスリップの有無を判断する継続トラクション制御に移行することで、スリップの検出漏れが防がれ、後輪3の路面Rに対するグリップ力を維持することができる。以上より、後輪3の路面Rに対するスリップの判定精度を向上させることが可能となる。
【0090】
また、第1スリップしきい値M1は、スリップが発生しやすい状況であると考えられる変速装置14の変速段の減速比が低い場合には、その減速比が高い場合よりも、小さくなるように設定されているので、スリップの検出漏れをより好適に防ぐことができる。かつ、第1スリップしきい値M1は、スリップが発生しやすい状況であると考えられる走行速度が大きい場合には、その走行速度が小さい場合よりも、小さくなるように設定されているので、スリップの検出漏れをより好適に防ぐことができる。さらに、第1スリップしきい値M1は、車体傾斜角θが所定角θ1以上の領域において、車体傾斜角θが大きくなるにつれて大きくなるよう補正されるので、カーブ走行時に後輪3が前輪2よりも外側を通過する等して前後輪の回転数に差が生じた場合に、スリップであると誤検知するのを防ぐことができる。
【0091】
また、図6のステップS25のような終了条件が成立した場合、後輪3の駆動力がトラクション制御をしない通常制御状態に徐々に近づくようにサブスロットル開度を徐々に増加させているので、後輪3の駆動力が急に通常制御状態に戻ることはなく、運転者に与えるフィーリングを良好に保つことができる。
【0092】
なお、前記実施形態では、後輪ブレーキ38の制御にCBS(コンバインドブレーキシステム)用のECU33が利用されているが、ABS(アンチロックブレーキシステム)搭載車である場合には、CBS用ECU33に代えてABS用ECUを利用してもよい。また、エンジンECU17で実施されるトラクション制御の演算の一部をCBS/ABS用ECU側に肩代わりさせてもよい。また、自動二輪車1がCBS搭載車でない場合は、前輪車速センサ34及び後輪車速センサ35を直接的にエンジンECU17に接続し、トラクション制御にブレーキ制御を用いなくてもよい。
【0093】
また、前記実施形態では、トラクション制御における吸気量の制御にサブスロットルバルブ22を用いているが、メインスロットルバルブをアクチュエータで駆動する電子制御スロットル装置が搭載された自動二輪車の場合には、メインスロットルバルブの開度を調節することでトラクション制御を行ってもよい。
【0094】
また、前記実施形態では、図6のステップS25のような条件でトラクション制御の終了判定がなされているが、それに代えて、継続トラクション制御において監視値Mが所定時間にわたって第2スリップしきい値M2よりも低い値を維持した場合に、トラクション制御を終了するようにしてもよい。
【0095】
また、第2スリップしきい値M2は、トラクション制御中における後輪3の駆動力が、トラクション制御をしない通常制御状態から減少した量の予め定められた期間における累積平均値が減少するにつれて、小さくなるように設定されてもよい。具体的には、第2スリップしきい値M2は、トラクション制御中における点火遅角量の累積平均値が減少するにつれて、小さくなるように設定されてもよい。つまり、点火時期の通常制御状態からの遅角量の累積平均値が減少するにつれ、後輪3の路面Rに対するグリップ力が回復しつつあると考えられるので、第2スリップしきい値M2を小さくなるように可変設定することで、より好適にスリップ抑制を図ることができる。
【0096】
また、前記実施形態では、後輪3の駆動力を減少させる手段として、点火遅角、吸気量低減及びブレーキ作動を用いているが、エンジンEの複数の気筒のうち一部の気筒に対する点火を休止させることで、後輪3の駆動力を減少させてもよい。また、エンジンEの気筒に対する点火を間欠的に休止させる点火間引きを行うことで、後輪3の駆動力を減少させてもよい。また、エンジンEの気筒に供給する燃料を適宜カットすることで、後輪3の駆動力を減少させてもよい。例えば、点火遅角、点火休止及び点火間引きの3つを組み合わせて駆動力を減少させてもよいし、点火遅角だけで駆動力を減少させてもよいし、点火遅角及びスロットル開度低下の2つを組み合わせて駆動力を減少させてもよい。
【0097】
また、スロットル装置16前記実施形態に限定されず、例えば、メインスロットルバルブの開度が電子的に制御される電子制御スロットル装置を用いてもよい。その場合、通常制御状態におけるメインスロットルバルブの開度から、前記実施形態のサブスロットルバルブの開度減少量を引いた値を、メインスロットルバルブの開度として指令するようにすればよい。
【0098】
また、前記実施形態では、継続トラクション制御において、監視値Mが第2スリップしきい値M2に近づくように駆動力を制御したが、これに限定されない。例えば、継続トラクション制御の開始時点の駆動力から、通常制御状態での駆動力に達するまでに、時間経過に伴って駆動力を徐々に増加させる第1動作と、当該増加動作中に監視値Mが第2スリップしきい値M2に達すると駆動力を所定量急減させる第2動作とを交互に繰り返して、駆動力を全体として鋸状に増減するようにしてもよい。また、監視値が第2スリップしきい値M2を超えないように、駆動力を少しずつ増加させるフィードフォワード制御をしてもよい。
【0099】
本実施形態は、監視値Mが第2スリップしきい値M2を超えるのを抑制して安定走行を可能としているが、監視値Mが第2スリップしきい値M2未満となるのを許容しながらグリップ力を維持して走行するようにしてもよい。例えば、モータスポーツ施設として設けられる路面を走行する場合に、ある程度のスリップを許容した走行を運転者が好む場合がある。このような場合には、前述するトラクション制御において設定される第2スリップしきい値M2は、グリップ力を維持しながらも運転者がスリップとして明確に認識する監視値を超える値を用いてもよい。また、運転者の操作によって、第2スリップしきい値M2を可変にするか一定にするか選択できる入力手段があるとよい。
【0100】
また、本実施形態のスイッチオフ制御処理(図20参照)では、トラクション制御オンオフスイッチ40のオフ操作のみをもってトラクション制御の実行を不許可状態とする指令としたが、スイッチ40と当該スイッチ40以外の操作部とが同時に操作された場合に前記指令が入力されたと判断されるようにしてもよい。例えば、スイッチ40以外の操作部をスロットルグリップ7とし、トラクション制御部47は、スロットルポジションセンサ25で検出されるスロットルグリップ7の開度(操作量)が所定値以下で且つスイッチ40がオフ操作された場合に、前記指令が入力されたと判断するようにしてもよい。
【0101】
(第2実施形態)
図21は本発明の第2実施形態に係るスイッチオフ制御処理のフローチャートである。本実施形態では、スイッチオフ制御処理において、図20のようなトラクション制御の終了の保留は行われない。図21に示すように、運転者によりトラクション制御オンオフスイッチ40がオフ操作されたか否かが判定される(ステップS80)。トラクション制御オンオフスイッチ40がオフ操作された場合には、トラクション制御が実行中であるか否かが判定される(ステップS81)。トラクション制御が実行中でない場合には、トラクション制御機能が実行不可に設定される(ステップS84)。
【0102】
一方、トラクション制御が実行中である場合には、スロットルポジションセンサ25で検出されるスロットル開度が閉しきい値THC以下であるか否かが判定される(ステップS82)。スロットル開度が閉しきい値THC以下でない場合には、通常制御状態に戻すと駆動力が増加して走行速度が変動すると判断して、運転者のオフ操作による指令を無効にし、トラクション制御機能を実行不可にはしない。一方、スロットル開度が閉しきい値THC以下である場合には、傾斜角センサ32で検出される車体の傾斜角が所定値未満であるか否かが判定される(ステップS83)。
【0103】
傾斜角が所定値未満でない場合(傾斜角が所定角度以上である場合)には、運転者のオフ操作による指令を無効にし、トラクション制御機能を実行不可にはしない。一方、傾斜角が所定値未満である場合には、通常制御状態に戻しても運転フィーリングに影響しないと判断し、トラクション制御機能が実行不可に設定され(ステップS86)、実行されていたトラクション制御は強制終了される。なお、本実施形態では、ステップS83でYESと判定されたときに、ステップS84でトラクション制御を直ぐに強制終了させているが、図20のステップS73,S74のようにサブスロットル開度及び点火時期を徐々に通常制御状態に戻したうえで、通常制御状態に戻してもよい。なお、ステップS82及びS83でNOと判定された場合には、トラクション制御部47から表示装置49に信号が送信され、その信号を受信した表示装置49が運転者のオフ操作による指令を無効にした旨を知らせる表示(例えば、LEDランプの点滅等)を行うとよい。
【0104】
(第3実施形態)
図22は本発明の第3実施形態に係るスイッチオフ制御処理のフローチャートである。図22に示すように、運転者によりトラクション制御オンオフスイッチ40がオフ操作されたか否かが判定される(ステップS90)。トラクション制御オンオフスイッチ40がオフ操作された場合には、トラクション制御が実行中であるか否かが判定される(ステップS91)。
【0105】
トラクション制御が実行中でない場合には、トラクション制御機能が実行不可に設定される(ステップS94)。一方、トラクション制御が実行中である場合には、トラクション制御により減少していた駆動力を徐々に増加させる(ステップS92)。具体的には、トラクション制御により変更されていた第1のパラメータである点火時期及びサブスロットル開度を徐々に通常制御状態に近づける。次いで、点火時期及びサブスロットル開度について、現在値と通常制御状態(トラクション制御を非実行状態)としたときの値との差が所定値以下であるか否かが判定される(ステップS93)。ステップS93でNOの場合には、ステップS92が継続される。ステップS93でYESの場合には、通常制御状態に戻しても運転フィーリングに影響しないとして第2の条件を満足したと判断し、トラクション制御機能が実行不可に設定される(ステップS94)。なお、本実施形態では、燃料噴射量は吸気量の増減に連動して増減するように予め設定されているので、前記第1のパラメータには実質的に燃料噴射量も含まれることとなる。
【0106】
(第4実施形態)
図23は本発明の第4実施形態に係る初期トラクション制御処理のフローチャートである。図24は瞬間的なスリップが生じた場合における初期トラクション制御を説明するグラフ及びタイミングチャートである。図25は連続的なスリップが生じた場合における初期トラクション制御及び継続トラクション制御を説明するグラフ及びタイミングチャートである。図23〜25に示すように、監視値Mが第1スリップしきい値M1を超えると初期トラクション制御を開始するとともに、監視値Mが第1スリップしきい値M1を超えた時点から時間tをカウント開始する(ステップS100)。そして、トラクション制御部47は、後輪3の駆動力を減少させるために、遅角制御を開始するとともに(ステップS101)、サブスロットル開度が全閉状態に制御される(ステップS102)。
【0107】
ステップS101の遅角制御は、監視値Mと複数のしきい値M1、M1a、M1b、M1c(M1<M1a<M1b<M1c)との間の大小関係に応じて点火時期を階段状に変化させる従量制御である。この遅角制御(従量制御)は、初期トラクション制御においてトラクション制御の開始直後から実行されることとなる。この遅角制御における点火時期は、以下の数式2で求められる。
【0108】
[数2]
点火時期=点火時期基本量+オフセット量α
点火時期基本量は、図26に示す点火時期基本量マップ50に基づいて決定される。点火時期基本量マップ50はトラクション制御部47に予め記憶されている。点火時期基本量は、エンジン回転数に応じて変わるように設定されている。なお、点火時期は、クランク角で表現され、燃料行程におけるエンジンEのピストン上死点でのクランク角をゼロとしている。具体的には、点火時期基本量は、エンジン回転数が増加するにつれて、一旦徐々に小さくなった後に徐々に大きくなるように設定されている。言い換えると、その点火遅角量は、エンジン回転数が増加するにつれて、一旦徐々に大きくなった後に徐々に小さくなるように設定されている。エンジン回転数が低い領域で点火時期基本量が進角側に大きくなっているのは、遅角しすぎてエンジンストールが発生するのを防止するためである。エンジン回転数が高い領域で点火時期基本量が大きくなっているのは、高速走行時に遅角しすぎて走行速度に変動が生じ、運転フィーリングが損なわれることとを防止するためである。
【0109】
オフセット量αは、監視値Mと各しきい値M1、M1a、M1b、M1cとの大小関係に基づいて決定される。具体的には、監視値Mがしきい値M1未満である場合にはオフセット量αは第1オフセット値α1であり、監視値Mがしきい値M1を超え且つしきい値M2以下である場合にはオフセット量αは第1オフセット値α1よりも小さい第2オフセット値α2であり、監視値Mがしきい値M2を超え且つしきい値M3以下である場合にはオフセット量αは第2オフセット値α2よりも小さい第3オフセット値α3であり、監視値Mがしきい値M3を超え且つしきい値M4以下である場合にはオフセット量αは第3オフセット値α3よりも小さい第4オフセット値α4であり、監視値Mがしきい値M4を超えた場合にはオフセット量αはゼロである(α1>α2>α3>α4>0)。そして、監視値Mと各しきい値M1、M1a、M1b、M1cとの大小関係が変わらない状態が続く期間では、点火時期は一定値となるように制御されている。
【0110】
以上のような従量制御を行うことにより、監視値Mの第1スリップしきい値M1を超えた量が小さい場合には、遅角量も小さくなるので、出力抑制量が小さくトラクション制御開始時における走行速度の変動を抑制することができる。なお、数式2では、点火時期基本量を遅角制御時における点火時期最小値(最大遅角値)として設定し、それからオフセット量αを足し算することで点火時期を求めたが、点火時期基本量を遅角制御時における点火時期最大値(最小遅角値)として設定し、それからオフセット量αを引き算することで点火時期を求めてもよい。また、本実施形態では、点火時期を従量制御のパラメータとしているが、サブスロットル開度や燃料噴射量を初期トラクション制御における従量制御のパラメータとしてもよい。また、点火時期基本量は、スロットルポジションセンサ25やギヤポジションセンサ29で検出される情報に基づいて変えてもよい。
【0111】
また、第1スリップしきい値M1は、図27に示すしきい値マップ52に基づいて決定される。しきい値マップ52は、しきい値判定部46に予め記憶されている。第1スリップしきい値M1は、前輪車速センサ34で検出される前輪車速(車体速度)と、ギヤポジションセンサ29で検出される変速段とに応じて変わるように設定されている。
【0112】
また、車体が左右に傾斜(バンク)している時は、概ねパワーバンドを含む中速域を用いた運転となるが、タイヤのグリップ性能特性上、実際にはスリップが発生していなくても、前輪2と後輪3との間に回転数の差が生じやすく監視値Mが大きくなりやすい。さらに、エンジンEのパワーバンドにおいては、駆動輪である後輪3が路面に強く押し付けられて歪むことで後輪3の外径が小さくなり、スリップが発生していなくても、前記数式1の(VR−VF)の値が大きくなることがあり、即ち、監視値Mが大きくなりやすい。そこで、パワーバンドに対応する条件における第1スリップしきい値M1を大きくして、非スリップ時にトラクション制御が開始されないように工夫する。なお、パワーバンドとは、エンジンが最も効率良く力を発揮できる回転域のことで、一般にエンジンの最大トルク発生回転数から最大馬力発生回転数の間のことを意味する。
【0113】
具体的には、しきい値マップ52では、所定値以下(例えば、3速以下)の変速段において、前輪車速が増加するにつれて、第1スリップしきい値M1が徐々に増加してピークを形成した後に徐々に減少するように設定されている。つまり、第1スリップしきい値M1は、中速域においてトラクション制御が開始しにくくなるように設定されている。その傾向は1速において特に顕著である。これは、エンジンEのトルクのピークが中速域で形成され、スリップが発生していなくても、車体バンクやタイヤ変形により前記数式1の(VR−VF)の値が大きくなって監視値Mが大きくなりやすいからである。
【0114】
また、しきい値マップ52は、所定値以下の変速段(例えば、1速)において第1スリップしきい値M1のピークに対応する前輪車速が、それよりも高い変速段である2,3速において第1スリップしきい値M1のピークに対応する前輪車速よりも低速となるように設定されている。これは、エンジンEの特性上、最低段である1速においてトルクピークが発生する車速が2,3速においてトルクピークが発生する車速よりも低速であり、トルクピークに合わせて第1スリップしきい値M1のピークを設定したためである。
【0115】
また、しきい値マップ52は、1速のときの第1スリップしきい値M1のピーク値が、2速以上のときの第1スリップしきい値M1のピーク値よりも大きくなるよう設定されている。これは、1速のトルクのピーク値が他の変速段のトルクのピーク値よりも大きく、それに合わせて第1スリップしきい値M1のピークを設定したためである。
【0116】
また、しきい値マップ52は、所定値よりも低い(例えば、5速以下)の変速段において、前輪車速が低速である領域では低い変速段の方が高い変速段よりも第1スリップしきい値M1が大きく、前輪車速が高速である領域では高い変速段の方が低い変速段よりも第1スリップしきい値M1が大きくなるよう設定されている。これは、トルク特性が同様の傾向を呈するため、トルクの大きさに対応するように第1スリップしきい値M1の大きさを設定したためである。なお、図27のしきい値マップ52では横軸を前輪車速としたが、代わりにエンジン回転数または走行速度を用いてもよく、その場合も同様の傾向となるように第1スリップしきい値M1を設定するとよい。
【0117】
なお、このように変速段に応じて開始スリップしきい値M1を変化させる構成は、本実施形態のようなトラクション制御に限定されるものではなく、駆動輪のスリップ状態を検出すると、駆動輪の駆動力を減少させて路面に対するグリップ力の回復を図る一般的なトラクション制御に広く適用することもできる。
【0118】
図23に戻って、ステップS101及びS102の後は、監視値Mが第1スリップしきい値M1未満となったか否かを判定する(ステップS103)。監視値Mが第1スリップしきい値M1未満となった場合には、この時点の時間tが、所定時間T以上であるか否かを判定する(ステップS104)。つまり、監視値Mが第1スリップしきい値M1を超えてから第1スリップしきい値M1未満となるまでの戻り時間tの長さを判定する。なお、戻り時間tの終点を特定するためのしきい値は第1スリップしきい値M1と同じでなくてもよく、別途異なるしきい値を設けてもよい。
【0119】
また、所定時間Tは、ギヤポジションセンサ29で検出される変速段ごとに個別に設定されてもよい。例えば、第1の変速段における所定時間Tに比べて、第1の変速段より高い第2の変速段における所定時間Tの方が短くなるようにしてもよい。また、所定時間Tは、前輪車速センサ34で検出される車体速度ごとに個別に設定されてもよい。例えば、第1の車速における所定時間Tに比べて、第1の車速より速い第2の車速における所定時間Tの方が短くなるようにしてもよい。そうすれば、戻り時間tにおける走行距離を考慮してトラクション制御の続行/制御が判断されることとなる。また、所定時間Tは、走行時のエンジンEの出力特性に応じて設定されてもよい。
【0120】
そして、図24に示すように、戻り時間tが所定時間T未満である場合には、濡れたマンホールや路面のギャップの上を走行したときのような瞬間的なスリップが発生しただけであり、トラクション制御を終了すべきと判定し、継続トラクション制御を行うことなく、トラクション制御の終了制御を行う。具体的には、終了制御として、点火時期を徐々に大きく(進角)して通常制御状態にスムーズに移行させる点火時期テーリング制御(ステップS105)と、サブスロットル開度を徐々に増加させて通常制御状態にスムーズに移行させるサブスロットルテーリング制御(ステップS106)を行う。なお、ステップS105及びS106では、車体速度(前輪車速)、変速段及び車体傾斜角のうち少なくとも1つの情報に応じて、点火時期及びスロットル開度の単位時間の増加率を変える等してもよい。
【0121】
そして、戻り時間tが所定時間T未満であると判定された時点から所定の設定時間内は、第1スリップしきい値M1をそれまでの値よりも小さくする(ステップS107)。つまり、設定時間内における第1スリップしきい値M1は、設定時間外における第1スリップしきい値M1よりも小さくなるように設定する。これにより、発生したスリップが瞬間的なものでないときにステップS104でNOと誤判定されてしまった場合でも、再びトラクション制御が開始されやすくなり、駆動輪の路面に対するグリップ力を速やかに回復することができる。
【0122】
一方、図25に示すように、戻り時間tが所定時間T以上である場合には、終了制御は実施せず、監視値Mが第2スリップしきい値M2未満であるか否かを判定する(ステップS108)。監視値Mが第2スリップしきい値M2未満でない場合には、ステップS108を繰り返す。監視値Mが第2スリップしきい値M2未満となった場合には、初期トラクション制御処理を終了して、図4のメイン処理に戻り、継続トラクション制御処理に移行する(ステップS7)。
【0123】
なお、前記した形態では、戻り時間tのみに基づいてトラクション制御の終了判定を行っているが、戻り時間tに現在の車速を乗じて得られる走行距離が所定値未満である場合にトラクション制御を終了し、当該走行距離が所定値以上でる場合にトラクション制御を続行するようにしてもよい。
【0124】
また、本実施形態の継続トラクション制御では、その点火時期フィードバック制御におけるフィードバックゲインがエンジン回転数及びスロットル開度に応じて変化している。即ち、トラクション制御部47は、エンジン回転数センサ29及びスロットルポジションセンサ25で検出される情報に応じてフィードバックゲインを補正している。具体的には、点火時期フィードバックゲインGは、以下の数式3で求められる。なお、G0はゲイン基本量、Crpmはエンジン回転数補正係数、Cthはスロットル補正係数である。
【0125】
[数3]
G=G0・Crpm・Cth
ゲイン基本量G0は、監視値Mと第2スリップしきい値M2(目標値)との偏差に応じて決定され、当該偏差が大きいと点火時期の単位時間あたりの変化率の絶対値が大きくなるように設定されている。スロットル補正係数Cthは、スロットル開度が大きくなるにつれて大きくなるように設定され、運転者のスロットルグリップ7の操作に応じてフィードバックゲインGが変わるようになっている。エンジン回転数補正係数Crpmは、エンジン特性に応じて適宜設定されている。
【0126】
(第5実施形態)
図28は本発明の第5実施形態に係る強制終了制御処理のエンジン回転数が低いときのグラフ及びタイミングチャートである。図29は本発明の第5実施形態に係る強制終了制御処理のエンジン回転数が高いときのグラフ及びタイミングチャートである。本実施形態は、強制終了制御により点火時期を通常制御状態に戻す際のやり方をエンジン回転数に応じて異ならせている。即ち、本実施形態は、図16と比べてステップ53の内容が相違する。なお、初期トラクション制御及び継続トラクション制御の内容は第4実施形態と同様である。
【0127】
図28に示すように、エンジン回転数が所定値未満の低回転数である場合には、トラクション制御の実行中にスロットルポジションセンサ25で検出されるスロットル開度が閉しきい値THC以下であると判定されると、強制終了制御として点火時期を時間経過に伴って徐々に増加(進角)させるテーリング制御が実行される。このとき、点火時期の単位時間当たりの進角量の増加率は、エンジン回転数が所定値以上となる図29の場合よりも大きくなるように設定されている。
【0128】
そして、テーリング制御により点火時期が通常制御状態に戻った後もそのまま点火時期を増加させ、一旦、点火時期を通常制御時を超えて進角させた値にしてから、通常制御時の点火時期に戻してトラクション制御を終了させるオーバーラン制御が実行される。このオーバーラン制御の際には、点火時期を通常制御時の点火時期を超えた値から、通常制御時の点火時期に戻す際に、点火時期を時間経過に伴って徐々に減少(遅角)させている。このように、エンジン回転数が低回転数であるときには、前記のようなテーリング制御及びオーバーラン制御を実施することで、速やかに駆動力が増加し、エンジンストールの発生が防止される。
【0129】
一方、 図29に示すように、エンジン回転数が所定値以上の高回転数である場合には、点火時期について、オーバーラン制御は実行されずにテーリング制御のみが実行される。しかも、このときの点火時期の単位時間当たりの進角量の増加率は、エンジン回転数が所定値未満となる図28の場合よりも小さくなるように設定されているので、走行速度の変動が抑制されて運転フィーリングが良好に保たれる。
【0130】
(第6実施形態)
図30は本発明の第6実施形態に係る初期トラクション制御処理のフローチャートである。図31は本発明の第6実施形態に係る継続トラクション制御処理のフローチャートである。図32は図30及び31の制御処理を説明するグラフ及びタイミングチャートである。本実施形態では、サブスロットル開度を積極的に制御してトラクション制御を実施している。図30及び32に示すように、初期トラクション制御処理では、駆動力を減少すべく遅角制御が実行される(ステップS110)。この遅角制御は、第4実施形態のステップS101の遅角制御と同様である。また、それと同時に、駆動力を減少すべく吸気量制御も実行される(ステップS111)。
【0131】
この吸気量制御は、第4実施形態のステップS101の遅角制御と同じ原理で、監視値Mと複数のしきい値M1、M1a、M1b、M1cとの間の大小関係に応じてスロットル開度を階段状に変化させる従量制御である。このとき、監視値Mとしきい値M1、M1a、M1b、M1cとの大小関係から決定されるサブスロットル開度は、エンジン回転数、メインスロットル開度、変速段、前輪車速などに応じて変わるように設定してもよい。例えば、エンジン回転数、メインスロットル開度、変速段、前輪車速が大きくなると、サブスロットル開度が大きくなるようにして、高速走行時における速度変動を抑制するようにしてもよい。
【0132】
次いで、監視値Mが第1スリップしきい値未満であるか否かを判定する(ステップS112)。監視値Mが第1スリップしきい値未満でない場合には、ステップS112を繰り返し、遅角制御(ステップS110)及び吸気量制御(ステップS111)を続ける。監視値Mが第1スリップしきい値未満となった場合には、遅角制御を終了する(ステップS113)。この遅角制御の終了時には、点火時期を徐々に進角させて通常制御状態に移行するテーリング制御が実施される。そして、監視値Mが第2スリップしきい値M2未満であるか否かを判定する(ステップS114)。監視値Mが第2スリップしきい値M2未満でない場合には、ステップS114を繰り返す。監視値Mが第2スリップしきい値M2未満となった場合には、初期トラクション制御処理を終了して、継続トラクション制御処理に移行する。
【0133】
図31に示すように、継続トラクション制御では、サブスロットル開度のフィードバック制御が実施される。具体的には、まず、サブスロットル開度を増加させて通常制御状態に近づける(ステップS120)。次いで、監視値Mが第2スリップしきい値M2を超えるか否かを判定する(ステップS121)。監視値Mが第2スリップしきい値M2を超えた場合には、サブスロットル開度を減少させ(ステップS122)、ステップS121に戻る。
【0134】
監視値Mが第2スリップしきい値M2を超えていない場合には、サブスロットル開度が、略通常制御状態の開度より大きいか否かが判定される(ステップS123)。サブスロットル開度が略通常制御状態の開度以下である場合には、ステップS120に戻り、通常制御状態に向かってサブスロットル開度を増加させる。サブスロットル開度が通常制御状態の開度より大きい場合には、メイン処理(図4参照)に戻ってトラクション制御が終了する。
【0135】
以上のようにすれば、トラクション制御開始直後の初期トラクション制御においては、即応性の高い点火遅角が行われるため、速やかに駆動力を低下させることができる。かつ、継続トラクション制御においては、点火遅角は行わないで吸気量制御により駆動力を低下させているので、排気系に設けられた触媒の負担を軽減することができると共に、燃費低下も抑制することができる。
【0136】
図33は第2スリップしきい値を決定するための三次元しきい値マップである。前述した各実施形態では、継続トラクション制御に用いる第2スリップしきい値M2を一定としているが、状況に応じて変化させるようにしてもよい。具体的には、図33に示すように、前輪車速センサ34で検出される前輪車速(車体速度)と、スロットルポジションセンサ25で検出されるスロットル開度とに応じて第2スリップしきい値M2を変化させた3次元しきい値マップ54が、しきい値判定部46(図3参照)に予め記憶される。
【0137】
三次元しきい値マップ54は、所定のスロットル開度(例えば、50deg)未満において、前輪車速が増加するにつれて第2スリップしきい値M2が徐々に増加するよう設定された領域を有している。詳しくは、前輪車速が低速域(例えば、0〜30km/h)では、前輪車速が増加するにつれて第2スリップしきい値M2が増加し、中速域(例えば、30〜140km/h)では第2スリップしきい値M2が略一定であり、高速域(例えば、140km/h以上)では前輪車速が増加するにつれて増加している。また、第2スリップしきい値M2は、所定のスロットル開度(例えば、50deg)以上では、前輪車速が低速域では、輪車速が増加するにつれて第2スリップしきい値M2が増加し、中高速域(例えば、30km/h以上)では前輪車速が増加するにつれて第2スリップしきい値M2が略一定となっている。
【0138】
また、三次元しきい値マップ54は、前輪車速が所定値(例えば、30km/h)未満の低速域では、スロットル開度に関わりなく、第2スリップしきい値M2は所定値(例えば、3%)未満となるように設定されている。これにより、低速走行時において後輪3(駆動輪)が路面に対してグリップしやすくなり、スムーズな発進を実現することができる。さらに、三次元しきい値マップ54は、所定の前輪車速域(例えば、30km/h以上)において、スロットル開度が増加するにつれて第2スリップしきい値M2が徐々に増加するよう設定された領域を有している。詳しくは、スロットル開度が低開度域(例えば、35deg未満)では第2スリップしきい値M2が略一定であり、中開度域(例えば、35〜55deg)ではスロットル開度が増加するにつれて第2スリップしきい値M2が増加し、高開度域(例えば、55deg以上)ではスロットル開度が略一定となっている。このようにスロットル開度が増加すると第2スリップしきい値M2が大きくなる傾向としたのは、スロットルポジションセンサ25で検出されるスロットル開度は運転者のスロットルグリップ7の操作に連動しており、運転者の意思を極力反映させるためである。
【0139】
図34は点火時期の下限値を決定するための点火時期下限値マップである。前述した各実施形態では、エンジン出力に対応するパラメータである点火時期を遅角させる制御が実行されるが、図34に示すように、点火時期の遅角限度(下限値)を決定する下限値マップ56をトラクション制御部47に予め記憶させるようにしてもよい。下限値マップ56では、エンジン回転数が増加するにつれて、点火時期下限値が遅角側に向けて一旦徐々に減少した後に進角側に向けて徐々に増加するように設定されている。エンジン回転数が低い領域で点火時期下限値が大きくなっているのは、点火遅角量が大きくなって駆動力が低下しすぎることでエンジンストールが発生するのを防止するためである。エンジン回転数が高い領域で点火時期下限値が大きくなっているのは、トラクション制御が実行開始されたときに、点火遅角量が大きすぎて走行速度に変動が生じ、運転フィーリングが損なわれることを防止するためである。
【0140】
なお、この下限値マップ56は、点火時期を遅角する制御を有するものであれば、あらゆる車両に適用してもよい。また、図34に示す下限値マップ56は点火時期に関するものであるが、エンジン出力に対応する他のパラメータ(例えば、スロットル開度や燃料供給量)の下限値マップを設けてもよい。
【0141】
なお、本発明は、車両全般に適用可能である。たとえば鞍乗型車両などの比較的軽量車両に用いられてもよく、スリップが発生しやすい路面を走行する不整地走行車に用いられてもよい。また、トラクション制御を開始する直前における運転状態に基づいて、トラクション制御開始時の出力抑制量を変更してもよい。たとえば、車両のスロットル開度、車速及びエンジン回転数の少なくとも1つに基づいて、トラクション制御開始時のスロットル目標開度を変更してもよい。トラクション制御開始直前において、スロットル開度及び車速の少なくとも1つが予め定める設定値よりも大きい場合には、設定値よりも小さい場合に比べて出力抑制量を弱めるようにしてもよい。具体的には、低速走行時に比べて高速走行時の方が、スロットル開度の減少させる量を小さくする。これによって、高速走行時におけるトラクション制御開始時の変動ショックを低減することができる。
【産業上の利用可能性】
【0142】
以上のように、本発明に係るスリップ抑制制御装置は、運転者による入力手段の操作状態に応じてトラクション制御が強制終了されるので、駆動力の制御に運転者の意思を極力反映させるようにすることができる優れた効果を有し、この効果の意義を発揮できる自動二輪車等の車両に広く適用すると有益である。
【符号の説明】
【0143】
1 自動二輪車(車両)
3 後輪(駆動輪)
7 スロットルグリップ(スロットル入力手段)
8 クラッチレバー(クラッチ入力手段)
14 変速装置
16 スロットル装置
17 エンジンECU
18 スリップ抑制制御装置
25 スロットルポジションセンサ
26 点火装置
47 トラクション制御部(制御手段)

【特許請求の範囲】
【請求項1】
所定の開始条件が成立すると駆動輪の駆動力を減少させるトラクション制御を実行する制御手段と、
運転者により操作される入力手段と、を備え、
前記制御手段は、前記トラクション制御の実行中に前記入力手段に所定の入力がなされると、前記トラクション制御の強制終了制御を行うことを特徴とする車両用スリップ抑制制御装置。
【請求項2】
前記入力手段は、前記トラクション制御の実行/非実行にかかわらず、車両の走行状態を変化させることが可能な手段である請求項1に記載の車両用スリップ抑制制御装置。
【請求項3】
前記入力手段は、前記トラクション制御の実行/非実行にかかわらず、駆動輪の駆動力に対応するパラメータを変化させることが可能な手段であり、
前記制御手段は、前記トラクション制御の実行中に前記入力手段に対して前記パラメータが所定値以下となるような入力がなされると、前記強制終了制御を行う請求項2に記載の車両用スリップ抑制制御装置。
【請求項4】
エンジンの吸気量を制御するスロットルバルブを操作するためのスロットル入力手段と、前記スロットル入力手段の開度を検出可能なスロットル操作量検出手段と、を備え、
前記入力手段は、前記スロットル入力手段であり、
前記制御手段は、前記トラクション制御の実行中に前記スロットル操作量検出手段で検出された開度が所定開度以下であることを前記スロットル開度検出手段が検出すると、前記強制終了制御を行う請求項3に記載の車両用スリップ抑制制御装置。
【請求項5】
エンジンから駆動輪までの動力伝達を遮断/接続するクラッチと、運転者が前記クラッチを操作するためのクラッチ入力手段と、前記クラッチ入力手段が操作されたことを検出可能なクラッチ検出手段と、を備え、
前記入力手段は、前記クラッチ入力手段であり、
前記制御手段は、前記トラクション制御の実行中に前記動力伝達を遮断するように前記クラッチ入力手段が操作されたことを前記クラッチ検出手段が検出すると、前記強制終了制御を行う請求項2に記載の車両用スリップ抑制制御装置。
【請求項6】
前記強制終了制御は、前記駆動力を時間経過に伴って徐々に増加させてから前記トラクション制御を終了させるテーリング制御を含んでおり、
前記テーリング制御は、予め定められる第1のエンジン回転数のときに比べて前記第1のエンジン回転数よりも小さい第2のエンジン回転数のときの方が、前記駆動力の単位時間当たりの増加率が大きくなるように設定されている請求項1乃至5のいずれかに記載の車両用スリップ抑制制御装置。
【請求項7】
前記強制終了制御は、前記駆動力を時間経過に伴って徐々に増加させて、一旦前記トラクション制御の非実行時の駆動力を超えた値にしてから、前記トラクション制御の非実行時の駆動力に戻して前記トラクション制御を終了させるオーバーラン制御を含んでいる請求項1乃至6のいずれかに記載の車両用スリップ抑制制御装置。
【請求項8】
前記オーバーラン制御は、前記駆動力を前記トラクション制御の非実行時の駆動力を超えた値から、前記トラクション制御の非実行時の駆動力に戻す際に、前記駆動力を時間経過に伴って徐々に減少させる請求項7に記載の車両用スリップ抑制制御装置。
【請求項9】
前記オーバーラン制御は、点火時期を変化させることにより行われる請求項7又は8に記載の車両用スリップ抑制制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate


【公開番号】特開2010−31849(P2010−31849A)
【公開日】平成22年2月12日(2010.2.12)
【国際特許分類】
【出願番号】特願2009−145000(P2009−145000)
【出願日】平成21年6月18日(2009.6.18)
【出願人】(000000974)川崎重工業株式会社 (1,710)
【Fターム(参考)】